Falchi, F. et al. The new world atlas of artificial night sky brightness. Sci. Adv. 2, e1600377 (2016).
Google Scholar
Holker, F., Wolter, C., Perkin, E. K. & Tockner, K. Light pollution as a biodiversity threat. Trends Ecol. Evol. 25, 681–682. https://doi.org/10.1016/j.tree.2010.09.007 (2010).
Google Scholar
Kyba, C., Mohar, A. & Posch, T. How bright is moonlight?. Astron. Geophys. 58, 1.31-1.32 (2017).
Hölker, F. et al. The dark side of light: A transdisciplinary research agenda for light pollution policy. Ecol. Soc. 15, 150413 (2010).
Sanders, D., Frago, E., Kehoe, R., Patterson, C. & Gaston, K. J. A meta-analysis of biological impacts of artificial light at night. Nat. Ecol. Evol. 5, 74–81 (2021).
Google Scholar
Gaston, K. J., Bennie, J., Davies, T. W. & Hopkins, J. The ecological impacts of nighttime light pollution: A mechanistic appraisal. Biol. Rev. 88, 912–927. https://doi.org/10.1111/brv.12036 (2013).
Google Scholar
Gaston, K. J. & Bennie, J. Demographic effects of artificial nighttime lighting on animal populations. Environ. Rev. 22, 323–330. https://doi.org/10.1139/er-2014-0005 (2014).
Google Scholar
Gaston, K. J., Visser, M. E. & Hoelker, F. The biological impacts of artificial light at night: The research challenge. R. Soc. Philos. Trans. Biol. Sci. 370, 20140133–20140133 (2015).
Ouyang, J. Q. et al. Stressful colours: Corticosterone concentrations in a free-living songbird vary with the spectral composition of experimental illumination. Biol. Lett. https://doi.org/10.1098/rsbl.2015.0517 (2016).
Google Scholar
Ouyang, J. Q., Davies, S. & Dominoni, D. Hormonally mediated effects of artificial light at night on behavior and fitness: Linking endocrine mechanisms with function. J. Exp. Biol. https://doi.org/10.1242/jeb.156893 (2018).
Google Scholar
Dominoni, D., Quetting, M. & Partecke, J. Artificial light at night advances avian reproductive physiology. Proc. Biol. Sci. 280(1756), 20123017. https://doi.org/10.1098/rspb.2012.3017 (2012).
Google Scholar
Ayalon, I. et al. Coral gametogenesis collapse under artificial light pollution. Curr. Biol. 31, 413–419 (2021).
Google Scholar
Ayalon, I., de Barros Marangoni, L. F., Benichou, J. I., Avisar, D. & Levy, O. Red Sea corals under Artificial Light Pollution at Night (ALAN) undergo oxidative stress and photosynthetic impairment. Glob. Change Biol. 25, 4194–4207 (2019).
Google Scholar
Amichai, E. & Kronfeld-Schor, N. Artificial light at night promotes activity throughout the night in nesting common swifts (Apus apus). Sci. Rep. 9, 11052 (2019).
Google Scholar
Kronfeld-Schor, N. et al. Drivers of infectious disease seasonality: Potential implications for COVID-19. J. Biol. Rhythms 36, 35–54 (2021).
Google Scholar
Kronfeld-Schor, N., Visser, M. E., Salis, L. & van Gils, J. A. Chronobiology of interspecific interactions in a changing world. Philos. Trans. R. Soc. Lond. B https://doi.org/10.1098/rstb.2016.0248 (2017).
Google Scholar
Kronfeld-Schor, N. et al. Chronobiology by moonlight. Proc. R. Soc. B 280, 20123088 (2013).
Google Scholar
Stevenson, T. J. et al. Disrupted seasonal biology impacts health, food security and ecosystems. Proc. R. Soc. Lond. B. https://doi.org/10.1098/rspb.2015.1453 (2015).
Google Scholar
Kaniewska, P., Alon, S., Karako-Lampert, S., Hoegh-Guldberg, O. & Levy, O. Signaling cascades and the importance of moonlight in coral broadcast mass spawning. eLife 4, e09991 (2015).
Google Scholar
Liu, J. A., Meléndez-Fernández, O. H., Bumgarner, J. R. & Nelson, R. J. Effects of light pollution on photoperiod-driven seasonality. Horm. Behav. 141, 105150. https://doi.org/10.1016/j.yhbeh.2022.105150 (2022).
Google Scholar
Grubisic, M. et al. Light pollution, circadian photoreception, and melatonin in vertebrates. Sustainability 11, 6400 (2019).
Google Scholar
Stevenson, T. J. & Prendergast, B. J. Photoperiodic time measurement and seasonal immunological plasticity. Front. Neuroendocrinol. 37, 76–88. https://doi.org/10.1016/j.yfrne.2014.10.002 (2015).
Google Scholar
Bumgarner, J. R. & Nelson, R. J. Light at night and disrupted circadian rhythms alter physiology and behavior. Integr. Comp. Biol. 61, 1160–1169 (2021).
Google Scholar
Mishra, I. et al. Light at night disrupts diel patterns of cytokine gene expression and endocrine profiles in zebra finch (Taeniopygia guttata). Sci. Rep. 9, 1–12 (2019).
Grunst, M. L. et al. Early-life exposure to artificial light at night elevates physiological stress in free-living songbirds. Environ. Pollut. 259, 113895 (2020).
Google Scholar
Bedrosian, T., Galan, A., Vaughn, C., Weil, Z. M. & Nelson, R. J. Light at night alters daily patterns of cortisol and clock proteins in female Siberian hamsters. J. Neuroendocrinol. 25, 590–596 (2013).
Google Scholar
Touzot, M. et al. Artificial light at night alters the sexual behaviour and fertilisation success of the common toad. Environ. Pollut. 259, 113883 (2020).
Google Scholar
de Jong, M. et al. Effects of nocturnal illumination on life-history decisions and fitness in two wild songbird species. Philos. Trans. R. Soc. B 370, 20140128 (2015).
Spoelstra, K. et al. Experimental illumination of natural habitat: An experimental set-up to assess the direct and indirect ecological consequences of artificial light of different spectral composition. Philos. Trans. R. Soc. Lond. B 370, 20140129 (2015).
Hattar, S., Liao, H. W., Takao, M., Berson, D. M. & Yau, K. W. Melanopsin-containing retinal ganglion cells: Architecture, projections, and intrinsic photosensitivity. Science 295, 1065–1070. https://doi.org/10.1126/science.1069609 (2002).
Google Scholar
Gutman, R., Dayan, T., Levy, O., Schubert, I. & Kronfeld-Schor, N. The effect of the lunar cycle on fecal cortisol metabolite levels and foraging ecology of nocturnally and diurnally active spiny mice. PLoS ONE 6, e23446 (2011).
Google Scholar
Dhairykar, M., Singh, K. P., Kumar Jadav, K. & Rajput, N. Comparison of cortisol level in Asian elephants of different tiger reserves of Madhya Pradesh. Int. J. Vet. Sci. Anim. Husb. 5, 152–155 (2020).
Sosnowski, M. J., Benítez, M. E. & Brosnan, S. F. Endogenous cortisol correlates with performance under pressure on a working memory task in capuchin monkeys. Sci. Rep. 12, 1–10. https://doi.org/10.1038/s41598-022-04986-6 (2022).
Google Scholar
Bewick, V., Cheek, L. & Ball, J. Statistics review 12: survival analysis. Crit. care 8, 1–6 (2004).
Shkolnik, A. Studies in the Comparative Biology of Israel’s Two Species of Spiny Mice (genus Acomys). Hebrew (1966).
Shkolnik, A. Diurnal activity in a small desert rodent. Int. J. Biometeorol. 15, 115–120 (1971).
Google Scholar
Levy, O., Dayan, T. & Kronfeld-Schor, N. The relationship between the golden spiny mouse circadian system and its diurnal activity: An experimental field enclosures and laboratory study. Chronobiol. Int. 24, 599–613. https://doi.org/10.1080/07420520701534640 (2007).
Google Scholar
Levy, O., Dayan, T. & Kronfeld-Schor, N. Interspecific competition and torpor in golden spiny mice: Two sides of the energy-acquisition coin. Integr. Comp. Biol. 51, 441–448. https://doi.org/10.1093/icb/icr071 (2011).
Google Scholar
Jones, M. & Dayan, T. Foraging behavior and microhabitat use by spiny mice, Acomys cahirinus and A. russatus, in the presence of Blanford’s fox (Vulpes cana) odor. J. Chem. Ecol. 26, 455–469 (2000).
Google Scholar
Jones, M., Mandelik, Y. & Dayan, T. Coexistence of temporally partitioned spiny mice: Roles of habitat structure and foraging behavior. Ecology 82, 2164–2176 (2001).
Kronfeld, N., Dayan, T., Zisapel, N. & Haim, A. Coexisting populations of Acomys cahirinus and A. russatus: A preliminary report. Isr. J. Zool. 40, 177–183 (1994).
Kronfeld-Schor, N. & Dayan, T. Partitioning of time as an ecological resource. Annu. Rev. Ecol. Evol. Syst. 34, 153–181. https://doi.org/10.1146/annurev.ecolsys.34.011802.132435 (2003).
Google Scholar
Kronfeld-Schor, N. & Dayan, T. The dietary basis for temporal partitioning: Food habits of coexisting Acomys species. Oecologia 121, 123–128 (1999).
Google Scholar
Pinter-Wollman, N., Dayan, T., Eilam, D. & Kronfeld-Schor, N. Can aggression be the force driving temporal separation between competing common and golden spiny mice?. J. Mammal. 87, 48–53 (2006).
Shargal, E., Kronfeld-Schor, N. & Dayan, T. Population biology and spatial relationships of coexisting spiny mice (Acomys) in Israel. J. Mammal. 81, 1046–1052 (2000).
Pasco, R., Gardner, D. K., Walker, D. W. & Dickinson, H. A superovulation protocol for the spiny mouse (Acomys cahirinus). Reprod. Fertil. Dev. 24, 1117–1122 (2012).
Google Scholar
Lee, T. E., Watkins, J. F. & Cash, C. G. Acomys russatus. Mammal. Species 550, 1–4 (1998).
Dominoni, D., Quetting, M. & Partecke, J. Artificial light at night advances avian reproductive physiology. Proc. R. Soc. B 280, 20123017 (2013).
Google Scholar
Kempenaers, B., Borgström, P., Loës, P., Schlicht, E. & Valcu, M. Artificial night lighting affects dawn song, extra-pair siring success, and lay date in songbirds. Curr. Biol. 20, 1735–1739. https://doi.org/10.1016/j.cub.2010.08.028 (2010).
Google Scholar
Le Tallec, T., Théry, M. & Perret, M. Melatonin concentrations and timing of seasonal reproduction in male mouse lemurs (Microcebus murinus) exposed to light pollution. J. Mammal. 97, 753–760 (2016).
Vonshak, M., Dayan, T. & Kronfeld-Schor, N. Arthropods as a prey resource: Patterns of diel, seasonal, and spatial availability. J. Arid Environ. 73, 458–462. https://doi.org/10.1016/j.jaridenv.2008.11.013 (2009).
Google Scholar
Levy, O., Dayan, T. & Kronfeld-Schor, N. Adaptive thermoregulation in golden spiny mice: The influence of season and food availability on body temperature. Physiol. Biochem. Zool. 84, 175–184 (2011).
Google Scholar
Levy, O., Dayan, T., Rotics, S. & Kronfeld-Schor, N. Foraging sequence, energy intake and torpor: An individual-based field study of energy balancing in desert golden spiny mice. Ecol. Lett. 15, 1240–1248. https://doi.org/10.1111/j.1461-0248.2012.01845.x (2012).
Google Scholar
Katz, N., Dayan, T. & Kronfeld-Schor, N. Fitness effects of interspecific competition between two species of desert rodents. Zoology 128, 62–68 (2018).
Google Scholar
Brzezinski, A. Melatonin in humans. N. Engl. J. Med. 336, 186–195 (1997).
Google Scholar
Hastings, M., Vance, G. & Maywood, E. Some reflections on the phylogeny and function of the pineal. Experientia 45, 903–909 (1989).
Google Scholar
Oster, H. et al. The circadian rhythm of glucocorticoids is regulated by a gating mechanism residing in the adrenal cortical clock. Cell Metab. 4, 163–173 (2006).
Google Scholar
Mora, F., Segovia, G., Del Arco, A., de Blas, M. & Garrido, P. Stress, neurotransmitters, corticosterone and body–brain integration. Brain Res. 1476, 71–85 (2012).
Google Scholar
Farrell, M. R. Sex Differences and Stress Effects in Corticolimbic Structure and Function (Indiana University, 2013).
Son, G. H., Chung, S. & Kim, K. The adrenal peripheral clock: Glucocorticoid and the circadian timing system. Front. Neuroendocrinol. 32, 451–465 (2011).
Google Scholar
Schradin, C. Seasonal changes in testosterone and corticosterone levels in four social classes of a desert dwelling sociable rodent. Horm. Behav. 53, 573–579 (2008).
Google Scholar
Zatra, Y. et al. Seasonal changes in plasma testosterone and cortisol suggest an androgen mediated regulation of the pituitary adrenal axis in the Tarabul’s gerbil Gerbillus tarabuli (Thomas, 1902). Gen. Comp. Endocrinol. 258, 173–183 (2018).
Google Scholar
Richardson, C. S., Heeren, T. & Kunz, T. H. Seasonal and sexual variation in metabolism, thermoregulation, and hormones in the big brown bat (Eptesicus fuscus). Physiol. Biochem. Zool. 91, 705–715 (2018).
Google Scholar
Touitou, S., Heistermann, M., Schülke, O. & Ostner, J. Triiodothyronine and cortisol levels in the face of energetic challenges from reproduction, thermoregulation and food intake in female macaques. Horm. Behav. 131, 104968 (2021).
Google Scholar
Rotics, S., Dayan, T. & Kronfeld-Schor, N. Effect of artificial night lighting on temporally partitioned spiny mice. J. Mammal. 92, 159–168. https://doi.org/10.1644/10-mamm-a-112.1 (2011).
Google Scholar
Rotics, S., Dayan, T., Levy, O. & Kronfeld-Schor, N. Light masking in the field: An experiment with nocturnal and diurnal spiny mice under semi-natural field conditions. Chronobiol. Int. 28, 70–75. https://doi.org/10.3109/07420528.2010.525674 (2011).
Google Scholar
Padgett, D. A. & Glaser, R. How stress influences the immune response. Trends Immunol. 24, 444–448 (2003).
Google Scholar
Khansari, D. N., Murgo, A. J. & Faith, R. E. Effects of stress on the immune system. Immunol. Today 11, 170–175 (1990).
Google Scholar
Zozaya, S. M., Alford, R. A. & Schwarzkopf, L. Invasive house geckos are more willing to use artificial lights than are native geckos. Austral. Ecol. 40, 982–987 (2015).
Komine, H., Koike, S. & Schwarzkopf, L. Impacts of artificial light on food intake in invasive toads. Sci. Rep. 10, 1–8 (2020).
Murphy, S., Vyas, D., Sher, A. & Grenis, K. Light pollution affects invasive and native plant traits important to plant competition and herbivorous insects. Biol. Invasions 24, 599–602. https://doi.org/10.1007/s10530-021-02670-w (2022).
Google Scholar
Murphy, S. M. et al. Streetlights positively affect the presence of an invasive grass species. Ecol. Evol. 11, 10320–10326 (2021).
Google Scholar
Source: Ecology - nature.com