Soule, M. The epistasis cycle: a theory of marginal populations. Annu. Rev. Ecol. Syst. 4, 165–187 (1973).
Google Scholar
Brown, J. H. On the relationship between abundance and distribution of species. Am. Nat. 124, 255–279 (1984).
Google Scholar
Gaston, K. J. The Structure and Dynamics of Geographic Ranges (Oxford Univ. Press, 2003).
Sexton, J. P., McIntyre, P. J., Angert, A. L. & Rice, K. J. Evolution and ecology of species range limits. Annu. Rev. Ecol. Evol. Syst. 40, 415–436 (2009).
Google Scholar
Gaston, K. J. Geographic range limits: achieving synthesis. Proc. R. Soc. B 276, 1395–1406 (2009).
Google Scholar
Zizka, A. et al. No one-size-fits-all solution to clean GBIF. PeerJ 8, e9916 (2020).
Google Scholar
Goldberg, E. E. & Lande, R. Species’ borders and dispersal barriers. Am. Nat. 170, 297–304 (2007).
Google Scholar
Bachmann, J. C., Rensburg, A. J. V., Cortazar-Chinarro, M., Laurila, A. & Buskirk, J. V. Gene flow limits adaptation along steep environmental gradients. Am. Nat. 195, E67–E86 (2020).
Google Scholar
Hargreaves, A. L., Samis, K. E. & Eckert, C. G. Are species’ range limits simply niche limits writ large? A review of transplant experiments beyond the range. Am. Nat. 183, 157–173 (2014).
Google Scholar
Henry, R. C., Bartoń, K. A. & Travis, J. M. J. Mutation accumulation and the formation of range limits. Biol. Lett. 11, 20140871 (2015).
Google Scholar
Perrier, A., Sánchez-Castro, D. & Willi, Y. Environment dependence of the expression of mutational load and species’ range limits. J. Evol. Biol. 35, 731–741 (2022).
Google Scholar
Bontrager, M. et al. Adaptation across geographic ranges is consistent with strong selection in marginal climates and legacies of range expansion. Evolution 75, 1316–1333 (2021).
Google Scholar
Santini, L., Pironon, S., Maiorano, L. & Thuiller, W. Addressing common pitfalls does not provide more support to geographical and ecological abundant-centre hypotheses. Ecography 42, 696–705 (2019).
Google Scholar
Oldfather, M. F., Kling, M. M., Sheth, S. N., Emery, N. C. & Ackerly, D. D. Range edges in heterogeneous landscapes: integrating geographic scale and climate complexity into range dynamics. Glob. Chang. Biol. 26, 1055–1067 (2020).
Google Scholar
Janzen, D. H. Why mountain passes are higher in the tropics. Am. Nat. 101, 233–249 (1967).
Google Scholar
Maxwell, M. F., Leprieur, F., Quimbayo, J. P., Floeter, S. R. & Bender, M. G. Global patterns and drivers of beta diversity facets of reef fish faunas. J. Biogeogr. 49, 954–967 (2022).
Google Scholar
Roy, K., Hunt, G., Jablonski, D., Krug, A. Z. & Valentine, J. W. A macroevolutionary perspective on species range limits. Proc. R. Soc. B 276, 1485–1493 (2009).
Google Scholar
Loiseau, N. et al. Global distribution and conservation status of ecologically rare mammal and bird species. Nat. Commun. 11, 5071 (2020).
Google Scholar
Kerkhoff, A. J., Moriarty, P. E. & Weiser, M. D. The latitudinal species richness gradient in New World woody angiosperms is consistent with the tropical conservatism hypothesis. Proc. Natl Acad. Sci. USA 111, 8125–8130 (2014).
Google Scholar
Donoghue, M. J. & Edwards, E. J. Biome shifts and niche evolution in plants. Annu. Rev. Ecol. Evol. Syst. 45, 547–572 (2014).
Google Scholar
Ringelberg, J. J., Zimmermann, N. E., Weeks, A., Lavin, M. & Hughes, C. E. Biomes as evolutionary arenas: convergence and conservatism in the trans-continental succulent biome. Glob. Ecol. Biogeogr. 29, 1100–1113 (2020).
Google Scholar
Smith, J. R. et al. A global test of ecoregions. Nat. Ecol. Evol. 2, 1889–1896 (2018).
Google Scholar
Paquette, A. & Messier, C. The effect of biodiversity on tree productivity: from temperate to boreal forests. Glob. Ecol. Biogeogr. 20, 170–180 (2011).
Google Scholar
Pichancourt, J. B., Firn, J., Chadès, I. & Martin, T. G. Growing biodiverse carbon-rich forests. Glob. Chang. Biol. 20, 382–393 (2014).
Google Scholar
Pennington, R. T., Lavin, M. & Oliveira-Filho, A. Woody plant diversity, evolution, and ecology in the tropics: perspectives from seasonally dry tropical forests. Annu. Rev. Ecol. Evol. Syst. 40, 437–457 (2009).
Google Scholar
Zhu, K., Woodall, C. W. & Clark, J. S. Failure to migrate: lack of tree range expansion in response to climate change. Glob. Chang. Biol. 18, 1042–1052 (2012).
Google Scholar
Corlett, R. T. & Westcott, D. A. Will plant movements keep up with climate change? Trends Ecol. Evol. 28, 482–488 (2013).
Google Scholar
la Sorte, F. A., Butchart, S. H. M., Jetz, W. & Böhning-Gaese, K. Range-wide latitudinal and elevational temperature gradients for the world’s terrestrial birds: implications under global climate change. PLoS One 9, e98361 (2014).
Google Scholar
Title, P. O. & Bemmels, J. B. ENVIREM: an expanded set of bioclimatic and topographic variables increases flexibility and improves performance of ecological niche modeling. Ecography 41, 291–307 (2018).
Google Scholar
Veresoglou, S. D. & Peñuelas, J. Variance in biomass-allocation fractions is explained by distribution in European trees. New Phytol. 222, 1352–1363 (2019).
Google Scholar
Grantham, H. S. et al. Anthropogenic modification of forests means only 40% of remaining forests have high ecosystem integrity. Nat. Commun. 11, 5978 (2020).
Google Scholar
Holdridge, L. R. Determination of world plant formations from simple climatic data. Science 105, 367–368 (1947).
Google Scholar
Whittaker, R. H. Classification of natural communities. Bot. Rev. 28, 1–239 (1962).
Google Scholar
McDonald, R. et al. Species compositional similarity and ecoregions: do ecoregion boundaries represent zones of high species turnover? Biol. Conserv. 126, 24–40 (2005).
Google Scholar
von Humboldt, A. & Bonpland, A. Essay on the Geography of Plants (Univ. Chicago Press, 2013).
Cardillo, M. Latitude and rates of diversifcation in birds and butterfies. Proc. R. Soc. Lond. B 266, 1221–1225 (1999).
Google Scholar
Hillebrand, H. On the generality of the latitudinal diversity gradient. Am. Nat. 163, 192–211 (2004).
Google Scholar
Mittelbach, G. G. et al. Evolution and the latitudinal diversity gradient: speciation, extinction and biogeography. Ecol. Lett. 10, 315–331 (2007).
Google Scholar
Hewitt, G. M. Genetic consequences of climatic oscillations in the Quaternary. Phil. Trans. R. Soc. Lond. B 359, 183–195 (2004).
Google Scholar
Crane, P. & Scott, L. Angiosperm diversification and paleolatitudinal gradients in Cretaceous floristic diversity. Science 246, 675–678 (1989).
Google Scholar
Jablonski, D. The tropics as a source of evolutionary novelty through geological time. Nature 364, 142–144 (1993).
Google Scholar
Jablonski, D. et al. Out of the tropics, but how? Fossils, bridge species, and thermal ranges in the dynamics of the marine latitudinal diversity gradient. Proc. Natl Acad. Sci. USA 110, 10487–10494 (2013).
Google Scholar
Antonelli, A. et al. An engine for global plant diversity: highest evolutionary turnover and emigration in the American tropics. Front. Genet. 6, 130 (2015).
Google Scholar
Jump, A. S. & Peñuelas, J. Running to stand still: adaptation and the response of plants to rapid climate change. Ecol. Lett. 8, 1010–1020 (2005).
Google Scholar
Morreale, L. L., Thompson, J. R., Tang, X., Reinmann, A. B. & Hutyra, L. R. Elevated growth and biomass along temperate forest edges. Nat. Commun. 12, 7181 (2021).
Google Scholar
Wilkinson, S., Clephan, A. L. & Davies, W. J. Rapid low temperature-induced stomatal closure occurs in cold-tolerant Commelina communis but not in cold-sensitive tobacco leaves, via a mechanism that involves apoplastic calcium but not abscisic acid. Plant Physiol. 126, 1566–1578 (2001).
Google Scholar
Brodribb, T. J. & Holbrook, N. M. Stomatal protection against hydraulic failure: a comparison of coexisting ferns and angiosperms. New Phytol. 162, 663–670 (2004).
Google Scholar
Davis, B. A. S. & Brewer, S. Orbital forcing and role of the latitudinal insolation/temperature gradient. Clim. Dyn. 32, 143–165 (2009).
Google Scholar
Seager, R. et al. Strengthening tropical Pacific zonal sea surface temperature gradient consistent with rising greenhouse gases. Nat. Clim. Change 9, 517–522 (2019).
Google Scholar
Xu, Y. & Ramanathan, V. Latitudinally asymmetric response of global surface temperature: implications for regional climate change. Geophys. Res. Lett. 39, L13706 (2012).
Google Scholar
Colwell, R. K., Brehm, G., Cardelús, C. L., Gilman, A. C. & Longino, J. T. Global warming, elevational range shifts, and lowland biotic attrition in the wet tropics. Science 322, 258–261 (2008).
Google Scholar
Basso, B., Martinez-Feria, R. A., Rill, L. & Ritchie, J. T. Contrasting long-term temperature trends reveal minor changes in projected potential evapotranspiration in the US Midwest. Nat. Commun. 12, 1476 (2021).
Google Scholar
Zizka, A. et al. CoordinateCleaner: standardized cleaning of occurrence records from biological collection databases. Methods Ecol. Evol. 10, 744–751 (2019).
Google Scholar
Serra-Diaz, J. M., Enquist, B. J., Maitner, B., Merow, C. & Svenning, J. Big data of tree species distributions: how big and how good? For. Ecosyst. 4, 30 (2017).
Google Scholar
Getis, A. & Ord, J. K. The analysis of spatial association by use of distance statistics. Geogr. Anal. 24, 189–206 (1992).
Google Scholar
Mendez, C. Spatial autocorrelation analysis in R. R Studio/RPubs. https://rpubs.com/quarcs-lab/spatial-autocorrelation (2020).
Bivand, R. S., Pebesma, E. & Gómez-Rubio, V. Applied Spatial Data Analysis with R (Springer, 2013).
Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G. & Jarvis, A. Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol. 25, 1965–1978 (2005).
Google Scholar
Heath, J. P. Quantifying temporal variability in population abundances. Oikos 115, 573–581 (2006).
Google Scholar
Fernández-Martínez, M. et al. The consecutive disparity index, D: a measure of temporal variability in ecological studies. Ecosphere 9, e02527 (2018).
Google Scholar
Bartoń, K. MuMIn: multi-model inference. R package v.1.10.1. (2013).
F. Dormann, C. et al. Methods to account for spatial autocorrelation in the analysis of species distributional data: a review. Ecography 30, 609–628 (2007).
Google Scholar
Source: Ecology - nature.com