in

Evaluating red tide effects on the West Florida Shelf using a spatiotemporal ecosystem modeling framework

  • Brown, A. R. et al. Assessing risks and mitigating impacts of harmful algal blooms on mariculture and marine fisheries. Rev. Aquac. 12, 1663–1688 (2020).

    Google Scholar 

  • Bechard, A. Red tide at morning, tourists take warning? County-level economic effects of HABS on tourism dependent sectors. Harmful Algae 85, 101689–101689 (2019).

    Article 

    Google Scholar 

  • Landsberg, J. H. The effects of harmful algal blooms on aquatic organisms. Rev. Fish. Sci. 10, 113–390 (2002).

    Article 

    Google Scholar 

  • Flewelling, L. J. et al. Brevetoxicosis: Red tides and marine mammal mortalities. Nature 435, 755–756 (2005).

    Article 
    CAS 

    Google Scholar 

  • Gannon, D. P. et al. Effects of Karenia brevis harmful algal blooms on nearshore fish communities in southwest Florida. Mar. Ecol. Prog. Ser. 378, 171–186 (2009).

    Article 
    CAS 

    Google Scholar 

  • Driggers, W. B. et al. Environmental conditions and catch rates of predatory fishes associated with a mass mortality on the West Florida Shelf. Estuar. Coast. Shelf Sci. 168, 40–49 (2016).

    Article 
    CAS 

    Google Scholar 

  • Hallett, C. S., Valesini, F. J., Clarke, K. R. & Hoeksema, S. D. Effects of a harmful algal bloom on the community ecology, movements and spatial distributions of fishes in a microtidal estuary. Hydrobiologia 763, 267–284 (2016).

    Article 

    Google Scholar 

  • Anderson, D. M. et al. Marine harmful algal blooms (HABs) in the United States: History, current status and future trends. Harmful Algae 102, 101975–101975 (2021).

    Article 
    CAS 

    Google Scholar 

  • Steidinger, K. A. & Haddad, K. Biologic and hydrographic aspects of red tides. Bioscience 31, 814–819 (1981).

    Article 

    Google Scholar 

  • Soto, I. M. et al. Advection of Karenia brevis blooms from the Florida Panhandle towards Mississippi coastal waters. Harmful Algae 72, 46–64 (2018).

    Article 

    Google Scholar 

  • Steidinger, K. A. & Ingle, R. M. Observations on the 1971 summer red tide in tampa bay, Florida1. Environ. Lett. 3, 271–278 (1972).

    Article 
    CAS 

    Google Scholar 

  • Liu, Y. et al. Offshore forcing on the “pressure point” of the West Florida Shelf: Anomalous upwelling and its influence on harmful algal blooms. J. Geophys. Res. 121, 5501–5515 (2016).

    Article 

    Google Scholar 

  • Liu, Y., Weisberg, R. H., Zheng, L., Heil, C. A. & Hubbard, K. A. Termination of the 2018 Florida red tide event: A tracer model perspective. Estuar. Coast. Shelf Sci. 272, 107901 (2022).

    Article 

    Google Scholar 

  • Weisberg, R. H. & Liu, Y. Local and deep-ocean forcing effects on the West Florida continental shelf circulation and ecology. Front. Mar. Sci. https://doi.org/10.3389/fmars.2022.863227 (2022).

    Article 

    Google Scholar 

  • Walsh, J. J. et al. Red tides in the Gulf of Mexico: Where, when, and why? Journal of Geophysical Research: Oceans 111, (2006).

  • Lapointe, B. E., Herren, L. W., Debortoli, D. D. & Vogel, M. A. Evidence of sewage-driven eutrophication and harmful algal blooms in Florida’s Indian River Lagoon. Harmful Algae 43, 82–102 (2015).

    Article 
    CAS 

    Google Scholar 

  • Medina, M. et al. Nitrogen-enriched discharges from a highly managed watershed intensify red tide (Karenia brevis) blooms in southwest Florida. Sci. Total Environ. 827, 154149–154149 (2022).

    Article 
    CAS 

    Google Scholar 

  • Perkins, S. Ramping up the fight against Florida’s red tides. Proc. Natl. Acad. Sci. U.S.A. 116, 6510–6512 (2019).

    Article 
    CAS 

    Google Scholar 

  • Skripnikov, A. et al. Using localized Twitter activity to assess harmful algal bloom impacts of Karenia brevis in Florida, USA. Harmful Algae 110, 102118–102118 (2021).

    Article 
    CAS 

    Google Scholar 

  • SEDAR. SEDAR 33 Update – Gulf of Mexico gag grouper stock assessment report, 123. https://sedarweb.org/docs/suar/GagUpdateAssessReport_Final_0.pdf (2016).

  • SEDAR. SEDAR 61 – Gulf of Mexico red grouper stock assessment report, 285. https://sedarweb.org/docs/sar/S61_Final_SAR.pdf (2019).

  • SEDAR. SEDAR 10 Stock Assessment Report 2: Gulf of Mexico Gag Grouper, 250. www.sedarweb.org (2004).

  • SEDAR. SEDAR 10 Update – Gulf of Mexico gag grouper stock assessment report. http://www.sedarweb.org (2009).

  • SEDAR. SEDAR 72—Gulf of Mexico gag grouper stock assessment report, 318–318. https://sedarweb.org/docs/sar/S72_SAR_FINAL.pdf%0A (2021).

  • Geary, W. L. et al. A guide to ecosystem models and their environmental applications. Nat. Ecol. Evol. 4, 1459–1471 (2020).

    Article 

    Google Scholar 

  • Steenbeek, J. et al. Making spatial-temporal marine ecosystem modelling better—A perspective. Environ. Model. Softw. 145, 105209–105209 (2021).

    Article 

    Google Scholar 

  • Gray DiLeone, A. M. & Ainsworth, C. H. Effects of Karenia brevis harmful algal blooms on fish community structure on the West Florida Shelf. Ecol. Model. 392, 250–267 (2019).

    Article 

    Google Scholar 

  • Perryman, H. A. et al. A revised diet matrix to improve the parameterization of a West Florida Shelf Ecopath model for understanding harmful algal bloom impacts. Ecol. Model. 416, 108890–108890 (2020).

    Article 

    Google Scholar 

  • Mayer-Pinto, M., Ledet, J., Crowe, T. P. & Johnston, E. L. Sublethal effects of contaminants on marine habitat-forming species: A review and meta-analysis. Biol. Rev. 95, 1554–1573 (2020).

    Article 

    Google Scholar 

  • Reis Costa, P. Impact and effects of paralytic shellfish poisoning toxins derived from harmful algal blooms to marine fish. Fish Fish. 17, 226–248 (2016).

    Article 

    Google Scholar 

  • Dahood, A., de Mutsert, K. & Watters, G. M. Evaluating Antarctic marine protected area scenarios using a dynamic food web model. Biol. Cons. 251, 108766–108766 (2020).

    Article 

    Google Scholar 

  • de Mutsert, K. et al. Exploring effects of hypoxia on fish and fisheries in the northern Gulf of Mexico using a dynamic spatially explicit ecosystem model. Ecol. Model. 331, 142–150 (2016).

    Article 

    Google Scholar 

  • de Mutsert, K., Lewis, K. A., White, E. D. & Buszowski, J. End-to-end modeling reveals species-specific effects of large-scale coastal restoration on living resources facing climate change. Front. Mar. Sci. 8, 104–104 (2021).

    Article 

    Google Scholar 

  • Bauer, B. et al. Erratum: Reducing eutrophication increases spatial extent of communities supporting commercial fisheries: A model case study (ICES Journal of Marine Science (2018) DOI: https://doi.org/10.1093/icesjms/fsy003). ICES Journal of Marine Science, 75, 1155–1155 (2018).

  • Sadchatheeswaran, S., Branch, G. M., Shannon, L. J., Coll, M. & Steenbeek, J. A novel approach to explicitly model the spatiotemporal impacts of structural complexity created by alien ecosystem engineers in a marine benthic environment. Ecol. Model. 459, 109731–109731 (2021).

    Article 

    Google Scholar 

  • Coll, M. et al. Advancing global ecological modeling capabilities to simulate future trajectories of change in marine ecosystems. Front. Mar. Sci. 7, 741–741 (2020).

    Article 

    Google Scholar 

  • Hernvann, P. Y. et al. The celtic sea through time and space: Ecosystem modeling to unravel fishing and climate change impacts on food-web structure and dynamics. Front. Mar. Sci. 7, 1018–1018 (2020).

    Article 

    Google Scholar 

  • Walters, C. Ecospace: Prediction of mesoscale spatial patterns in trophic relationships of exploited ecosystems, with emphasis on the impacts of marine protected areas. Ecosystems 2, 539–554 (1999).

    Article 

    Google Scholar 

  • Christensen, V., Walters, C. J., Pauly, D. & Forrest, R. Ecopath with Ecosim version 6 user guide. Fish. Cent. Univ. Br. Columbia Vanc. Can. 281, 1–235 (2008).

    Google Scholar 

  • Okey, T. A., Mahmoudi, B., Mackinson, S., Vasconcellos, M. & Vidal-Hernandez, L. An ecosystem model of the West Florida Shelf for use in fisheries management and ecological research: Volume II. Model construction. Fish. Manag. II, 163–163 (2002).

    Google Scholar 

  • Liu, Y. & Weisberg, R. H. Seasonal variability on the West Florida Shelf. Prog. Oceanogr. 104, 80–98 (2012).

    Article 

    Google Scholar 

  • Moretzsohn, F., Chávez-Sánchez, J. A. & J.W. Tunnell, Jr. GulfBase: Resource Database for Gulf of Mexico Research. World Wide Web electronic publication (2016).

  • Murawski, S. A., Peebles, E. B., Gracia, A., Tunnell, J. W. & Armenteros, M. Comparative abundance, species composition, and demographics of continental shelf fish assemblages throughout the Gulf of Mexico. Mar. Coast. Fish. 10, 325–346 (2018).

    Article 

    Google Scholar 

  • Darnell, R. M. The American sea: A natural history of the gulf of Mexico. The American Sea: A Natural History of the Gulf of Mexico, 557, https://doi.org/10.5860/choice.193769 (2015).

  • Brochure, I. Marine recreational information program: Implementation plan (2008).

  • Florida Fish and Wildlife Conservation Commission. Commercial fisheries landings summaries (2021).

  • Murawski, S. A. et al. How did the deepwater horizon oil spill affect coastal and continental shelf ecosystems of the Gulf of Mexico?. Oceanography 29, 160–173 (2016).

    Article 

    Google Scholar 

  • Chagaris, D. D., Patterson, W. F. & Allen, M. S. Relative effects of multiple stressors on reef food webs in the Northern Gulf of Mexico revealed via ecosystem modeling. Front. Mar. Sci. 7, 513–513 (2020).

    Article 

    Google Scholar 

  • South, A. rnaturalearth: world map data from Natural Earth. R package version 0.1.0. The R Foundation. https://CRAN.R-project.org/package=rnaturalearth (2017).

  • Colleter, M. et al. Global overview of the applications of the Ecopath with Ecosim modeling approach using the EcoBase models repository. Ecol. Model. 302, 42–53 (2015).

    Article 

    Google Scholar 

  • Ahrens, R. N., Walters, C. J. & Christensen, V. Foraging arena theory. Fish fish. 13, 41–59 (2012).

    Article 

    Google Scholar 

  • Christensen, V. et al. Representing variable habitat quality in a spatial food web model. Ecosystems 17, 1397–1412 (2014).

    Article 
    CAS 

    Google Scholar 

  • Steenbeek, J. et al. Bridging the gap between ecosystem modeling tools and geographic information systems: Driving a food web model with external spatial–temporal data. Ecol. Model. 263, 139–151 (2013).

    Article 

    Google Scholar 

  • Walters, C., Christensen, V., Walters, W. & Rose, K. Representation of multistanza life histories in Ecospace models for spatial organization of ecosystem trophic interaction patterns. Bull. Mar. Sci. 86, 439–459 (2010).

    Google Scholar 

  • Heymans, J. J. et al. Best practice in Ecopath with Ecosim food-web models for ecosystem-based management. Ecol. Model. 331, 173–184 (2016).

    Article 

    Google Scholar 

  • Okey, T. Simulating community effects of sea floor shading by plankton blooms over the West Florida Shelf. Ecol. Model. 172, 339–359 (2004).

    Article 

    Google Scholar 

  • Chagaris, D. D. Ecosystem-based Evaluation of Fishery Policies and Tradeoffs on the West Florida Shelf Vol. 53, 1699 (University of Florida, 2013).

    Google Scholar 

  • Chagaris, D. D., Mahmoudi, B., Walters, C. J. & Allen, M. S. Simulating the trophic impacts of fishery policy options on the west florida shelf using ecopath with ecosim. Mar. Coast. Fish. 7, 44–58 (2015).

    Article 

    Google Scholar 

  • Chagaris, D. et al. An ecosystem-based approach to evaluating impacts and management of invasive lionfish. Fisheries 42, 421–431 (2017).

    Article 

    Google Scholar 

  • Chagaris, D. West Florida Shelf Ecosystem Model. University of Florida. https://ufdc.ufl.edu/IR00011604/00001%0A West Florida Shelf Ecosystem Model (2021).

  • Vilas, D. Spatiotemporal Ecosystem Dynamics on the West Florida Shelf: Prediction, Validation, and Application to Red Tides and Stock Assessment (University of Florida, 2022).

    Google Scholar 

  • Chassignet, E. P. et al. The HYCOM (HYbrid Coordinate Ocean Model) data assimilative system. J. Mar. Syst. 65, 60–83 (2007).

    Article 

    Google Scholar 

  • NOAA National Geophysical Data Center. U.S. Coastal Relief Model Vol. 3—Florida and East Gulf of Mexico. https://doi.org/10.7289/V5W66HP (2001).

  • NASA. Goddard Space Flight Center, Ocean Ecology Laboratory, Ocean Biology Processing Group. Earth Data (2018).

  • Casey, L. Nutrient and pesticide data collected from the USGS National Water Quality Network and previous networks, 1950–2020: U.S. Geological Survey, https://doi.org/10.5066/P9P2PF1N (2021).

  • Chagaris, D. & Vilas, D. NOAA RESTORE Science Program: Ecosystem modeling to improve fisheries management in the Gulf of Mexico: model inputs and outputs for the West Florida Shelf, 1985–01–01 to 2018–12–31 (NCEI Accession 0242339), https://doi.org/10.25921/t26e-wj91. (2022).

  • Püts, M. et al. Insights on integrating habitat preferences in process-oriented ecological models—A case study of the southern North Sea. Ecol. Model. 431, 109189–109189 (2020).

    Article 

    Google Scholar 

  • Vilas, D., Fletcher, R. J. Jr., Siders, Z. A. & Chagaris, D. Understanding the temporal dynamics of estimated environmental niche hypervolumes for marine fishes. Ecol. Evol. 12, e9604 (2022).

    Article 

    Google Scholar 

  • Grubbs, R. D., Musick, J. A., Conrath, C. L. & Romine, J. G. Long-term movements, migration, and temporal delineation of a summer nursery for Juvenile Sandbar Sharks in the Chesapeake Bay region. In Shark Nursery Grounds of the Gulf of Mexico and the East Coast Waters of the United States. American Fisheries Society Symposium 50 Vol. 50 (eds Grubbs, R. D. et al.) 87–107 (American Fisheries Society, 2007).

    Google Scholar 

  • Addis, D. T., Patterson, W. F., Dance, M. A. & Ingram, G. W. Implications of reef fish movement from unreported artificial reef sites in the northern Gulf of Mexico. Fish. Res. 147, 349–358 (2013).

    Article 

    Google Scholar 

  • Akins, J. L., Morris, J. A. & Green, S. J. In situ tagging technique for fishes provides insight into growth and movement of invasive lionfish. Ecol. Evol. 4, 3768–3777 (2014).

    Article 

    Google Scholar 

  • Chen, Z., Xu, S., Qiu, Y., Lin, Z. & Jia, X. Modeling the effects of fishery management and marine protected areas on the Beibu Gulf using spatial ecosystem simulation. Fish. Res. 100, 222–229 (2009).

    Article 

    Google Scholar 

  • Steenbeek, J. et al. Ecopath with ecosim as a model-building toolbox: Source code capabilities, extensions, and variations. Ecol. Model. 319, 178–189 (2016).

    Article 

    Google Scholar 

  • Moriasi, D. N. et al. Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Trans. ASABE 50, 885–900 (2007).

    Article 

    Google Scholar 

  • Hu, C. et al. Red tide detection and tracing using MODIS fluorescence data: A regional example in SW Florida coastal waters. Remote Sens. Environ. 97, 311–321 (2005).

    Article 

    Google Scholar 

  • Chagaris, D., Vilas, D., Siders, Z. A. & Sinnickson, D. Monthly maps of red tide on the West Florida Shelf 2002–2021: A simple approach combining remote sensing and in situ measurements (in prep).

  • Florida Fish and Wildlife Conservation Commission-Fish and Wildlife Research Institute. Statewide harmful algal bloom karenia brevis current status map (2022).

  • Wickham, H. et al. ggplot2: Create elegant data visualisations using the grammar of graphics (2016).

  • Landsberg, J. H., Flewelling, L. J. & Naar, J. Karenia brevis red tides, brevetoxins in the food web, and impacts on natural resources: Decadal advancements. Harmful Algae 8, 598–607 (2009).

    Article 
    CAS 

    Google Scholar 

  • Gianelli, I., Ortega, L. & Defeo, O. Modeling short-term fishing dynamics in a small-scale intertidal shellfishery. Fish. Res. 209, 242–250 (2019).

    Article 

    Google Scholar 

  • Moore, S. K. et al. An index of fisheries closures due to harmful algal blooms and a framework for identifying vulnerable fishing communities on the U.S. West Coast. Mar. Policy 110, 103543–103543 (2019).

    Article 

    Google Scholar 

  • GSMFC. SEAMAP: Environmental and Biological Atlas of the Gulf of Mexico. www.seamap.org (2020).

  • Bechard, A. Harmful algal blooms and tourism: The economic impact to counties in Southwest Florida. Rev. Reg. Stud. 50, 170–188 (2020).

    Google Scholar 

  • Foley, A. M. et al. Effects of Karenia brevis harmful algal blooms on nearshore fish communities in southwest Florida. Mar. Ecol. Prog. Ser. 378, 171–186 (2009).

    Article 

    Google Scholar 

  • Karnauskas, M. et al. Timeline of severe red tide events on the West Florida Shelf: insights from oral histories. http://sedarweb.org/docs/wpapers/S61_WP_20_Karnauskasetal_red_tide.pdf (2019).

  • Sagarese, S. R., Gruss, A., Karnauskas, M. & Walter, J. F. Ontogenetic spatial distributions of red grouper (Epinephelus morio) within the northeastern Gulf of Mexico and spatio‐ temporal overlap with red tide events, 35–35. http://sedarweb.org/docs/wpapers/S42_DW_04_Red_tide_distribution.pdf (2014).

  • Sagarese, S. R., Vaughan, N. R., Walter, J. F. & Karnauskas, M. Enhancing single-species stock assessments with diverse ecosystem perspectives: A case study for gulf of mexico red grouper (epinephelus morio) and red tides. Can. J. Fish. Aquat. Sci. 78, 1168–1180 (2021).

    Article 

    Google Scholar 

  • Sagarese, S. R. & Harford, W. J. Evaluating the risks of red tide mortality misspecification when modeling stock dynamics. Fish. Res. 250, 106271–106271 (2022).

    Article 

    Google Scholar 

  • Whitehouse, G. A. & Aydin, K. Y. Assessing the sensitivity of three Alaska marine food webs to perturbations: An example of Ecosim simulations using Rpath. Ecol. Model. 429, 109074–109074 (2020).

    Article 

    Google Scholar 

  • Walter, J. F. et al. Satellite derived indices of red tide severity for input for Gulf of Mexico Gag grouper stock assessment. SEDAR33-DW08 SEDAR. North Charlest. S. C. 43, 40–40 (2013).

    Google Scholar 

  • Jackson, M. C., Pawar, S. & Woodward, G. The temporal dynamics of multiple stressor effects: From individuals to ecosystems. Trends Ecol. Evol. 36, 402–410 (2021).

    Article 

    Google Scholar 

  • Walters, S., Lowerre-Barbieri, S., Bickford, J., Tustison, J. & Landsberg, J. H. Effects of Karenia brevis red tide on the spatial distribution of spawning aggregations of sand seatrout Cynoscion arenarius in Tampa Bay Florida. Mar. Ecol. Prog. Ser. 479, 191–202 (2013).

    Article 

    Google Scholar 

  • Reynolds, D. A., Yoo, M. J., Dixson, D. L. & Ross, C. Exposure to the Florida red tide dinoflagellate, Karenia brevis, and its associated brevetoxins induces ecophysiological and proteomic alterations in Porites astreoides. PLoS One 15, e0228414–e0228414 (2020).

    Article 
    CAS 

    Google Scholar 

  • Bornman, E., Cowley, P. D., Adams, J. B. & Strydom, N. A. Daytime intra-estuary movements and harmful algal bloom avoidance by Mugil cephalus (family Mugilidae). Estuar. Coast. Shelf Sci. 260, 107492–107492 (2021).

    Article 
    CAS 

    Google Scholar 

  • Moreira-Santos, M., Ribeiro, R. & Araújo, C. V. M. What if aquatic animals move away from pesticide-contaminated habitats before suffering adverse physiological effects? A critical review. Crit. Rev. Environ. Sci. Technol. 49, 989–1025 (2019).

    Article 
    CAS 

    Google Scholar 

  • Schreck, C. B. & Tort, L. The concept of stress in fish. In Fish Physiology Vol. 35 (eds Schreck, C. B. & Tort, L.) 1–34 (Elsevier, 2016).

    Google Scholar 

  • Madin, E. M. P., Dill, L. M., Ridlon, A. D., Heithaus, M. R. & Warner, R. R. Human activities change marine ecosystems by altering predation risk. Glob. Change Biol. 22, 44–60 (2016).

    Article 

    Google Scholar 

  • Walsh, J. R., Carpenter, S. R. & Van Der Zanden, M. J. Invasive species triggers a massive loss of ecosystem services through a trophic cascade. Proc. Natl. Acad. Sci. U.S.A. 113, 4081–4085 (2016).

    Article 
    CAS 

    Google Scholar 

  • Short, J. W. et al. Evidence for ecosystem-level trophic cascade effects involving gulf menhaden (Brevoortia patronus) triggered by the Deepwater horizon blowout. J. Mar. Sci. Eng. 9, 1–20 (2021).

    Article 

    Google Scholar 

  • Zohdi, E. & Abbaspour, M. Harmful algal blooms (red tide): A review of causes, impacts and approaches to monitoring and prediction. Int. J. Environ. Sci. Technol. 16, 1789–1806 (2019).

    Article 

    Google Scholar 

  • Weisberg, R. H., Barth, A., Alvera-Azcarate, A. & Zheng, L. A coordinated coastal ocean observing and modeling system for the West Florida Continental Shelf. Harmful Algae 8, 585–597 (2009).

    Article 

    Google Scholar 

  • Turley, B. D., Karnauskas, M., Campbell, M. D., Hanisko, D. S. & Kelble, C. R. Relationships between blooms of Karenia brevis and hypoxia across the West Florida Shelf. Harmful Algae 114, 102223 (2022).

    Article 

    Google Scholar 

  • Fulton, E. A., Smith, A. D., Smith, D. C. & Johnson, P. An integrated approach is needed for ecosystem based fisheries management: Insights from ecosystem-level management strategy evaluation. PLoS One 9, e84242 (2014).

    Article 

    Google Scholar 

  • Flynn, K. J. & McGillicuddy, D. J. Modeling marine harmful algal blooms: Current status and future prospects. Harmful Algal Blooms https://doi.org/10.1002/9781118994672.ch3 (2018).

    Article 

    Google Scholar 

  • Thorson, J. T. Guidance for decisions using the Vector Autoregressive Spatio-Temporal (VAST) package in stock, ecosystem, habitat and climate assessments. Fish. Res. 210, 143–161 (2019).

    Article 

    Google Scholar 

  • Fossum, T. O., Travelletti, C., Eidsvik, J., Ginsbourger, D. & Rajan, K. Learning excursion sets of vector-valued gaussian random fields for autonomous ocean sampling. Ann. Appl. Stat. 15, 597–618 (2021).

    Article 
    MathSciNet 
    MATH 

    Google Scholar 

  • Fu, F. X., Place, A. R., Garcia, N. S. & Hutchins, D. A. CO2 and phosphate availability control the toxicity of the harmful bloom dinoflagellate Karlodinium veneficum. Aquat. Microb. Ecol. 59, 55–65 (2010).

    Article 

    Google Scholar 

  • Hardison, D. R., Sunda, W. G., Shea, D. & Litaker, R. W. Increased toxicity of Karenia brevis during phosphate limited growth: Ecological and evolutionary implications. PLoS One 8, e58545–e58545 (2013).

    Article 
    CAS 

    Google Scholar 

  • Errera, R. M., Yvon-Lewis, S., Kessler, J. D. & Campbell, L. Reponses of the dinoflagellate Karenia brevis to climate change: PCO2 and sea surface temperatures. Harmful Algae 37, 110–116 (2014).

    Article 
    CAS 

    Google Scholar 

  • Wells, M. L. et al. Future HAB science: Directions and challenges in a changing climate. Harmful Algae 91, 101632–101632 (2020).

    Article 

    Google Scholar 

  • Wolny, J. L. et al. Current and future remote sensing of harmful algal blooms in the chesapeake bay to support the shellfish industry. Front. Mar. Sci. 7, 337–337 (2020).

    Article 

    Google Scholar 

  • Reum, J. C. P. et al. It’s not the destination, It’s the journey: Multispecies model ensembles for ecosystem approaches to fisheries management. Front. Mar. Sci. 8, 75–75 (2021).

    Article 

    Google Scholar 

  • Howell, D. et al. Combining ecosystem and single-species modeling to provide ecosystem-based fisheries management advice within current management systems. Front. Mar. Sci. 7, 607831 (2021).

    Article 

    Google Scholar 

  • McPherson, W. C. and J. C. and J. A. and Y. X. and J. shiny: Web application framework for R. R package version 1.4.0, 115–115 (2019).


  • Source: Ecology - nature.com

    Soil, leaf and fruit nutrient data for pear orchards located in the Circum-Bohai Bay and Loess Plateau regions

    Adjusting time-of-day and depth of fishing provides an economically viable solution to seabird bycatch in an albacore tuna longline fishery