in

Living in human-modified landscapes narrows the dietary niche of a specialised mammalian scavenger

  • Purvis, A., Gittleman, J. L., Cowlishaw, G. & Mace, G. M. Predicting extinction risk in declining species. Proc. R. Soc. B 267, 1947–1952 (2000).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Crooks, K. R. Relative sensitivities of mammalian carnivores to habitat fragmentation. Conserv. Biol. 16, 488–502 (2002).

    Article 

    Google Scholar 

  • Fahrig, L. Non-optimal animal movement in human-altered landscapes. Funct. Ecol. 21, 1003–1015 (2007).

    Article 

    Google Scholar 

  • Fahrig, L. & Rytwinski, T. Effects of roads on animal abundance: An empirical review and synthesis. Ecol. Soc. 14, 21 (2009).

    Article 

    Google Scholar 

  • Lowry, H., Lill, A. & Wong, B. B. M. Behavioural responses of wildlife to urban environments. Biol. Rev. 88, 537–549 (2013).

    Article 
    PubMed 

    Google Scholar 

  • Sévêque, A., Gentle, L. K., López-Bao, J. V., Yarnell, R. W. & Uzal, A. Human disturbance has contrasting effects on niche partitioning within carnivore communities. Biol. Rev. 95, 1689–1705 (2020).

    Article 
    PubMed 

    Google Scholar 

  • Woodroffe, R. & Ginsberg, J. R. Edge effects and the extinction of populations inside protected areas. Science 1979(280), 2126–2128 (1998).

    Article 
    ADS 

    Google Scholar 

  • Dressel, S., Sandström, C. & Ericsson, G. A meta-analysis of studies on attitudes toward bears and wolves across Europe 1976–2012. Conserv. Biol. 29, 565–574 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Owen, D. & Pemberton, D. Tasmanian Devil: A Unique and Threatened Animal (Allen & Unwin, 2005).

    Google Scholar 

  • Yirga, G. et al. Adaptability of large carnivores to changing anthropogenic food sources: diet change of spotted hyena (Crocuta crocuta) during Christian fasting period in northern Ethiopia. J. Anim. Ecol. 81, 1052–1055 (2012).

    Article 
    PubMed 

    Google Scholar 

  • Knight, R. L. & Kawashima, J. Y. Responses of raven and red-tailed hawk populations to linear right-of-ways. J. Wildl. Manag. 57, 266–271 (1993).

    Article 

    Google Scholar 

  • Wilmers, C. C., Stahler, D. R., Crabtree, R. L., Smith, D. W. & Getz, W. M. Resource dispersion and consumer dominance: Scavenging at wolf- and hunter-killed carcasses in Greater Yellowstone, USA. Ecol. Lett. 6, 996–1003 (2003).

    Article 

    Google Scholar 

  • Lambertucci, S. A., Speziale, K. L., Rogers, T. E. & Morales, J. M. How do roads affect the habitat use of an assemblage of scavenging raptors?. Biodivers. Conserv. 18, 2063–2074 (2009).

    Article 

    Google Scholar 

  • Šálek, M., Kreisinger, J., Sedláček, F. & Albrecht, T. Do prey densities determine preferences of mammalian predators for habitat edges in an agricultural landscape?. Landsc. Urban Plan. 98, 86–91 (2010).

    Article 

    Google Scholar 

  • Bateman, P. W. & Fleming, P. A. Big city life: Carnivores in urban environments. J. Zool. 287, 1–23 (2012).

    Article 

    Google Scholar 

  • Auman, H. J., Meathrel, C. E. & Richardson, A. Supersize me: Does anthropogenic food change the body condition of silver gulls? A comparison between urbanized and remote, non-urbanized areas. Waterbirds 31, 122–126 (2008).

    Article 

    Google Scholar 

  • Coon, C. A. C., Nichols, B. C., McDonald, Z. & Stoner, D. C. Effects of land-use change and prey abundance on the body condition of an obligate carnivore at the wildland-urban interface. Landsc. Urban Plan. 192, 103648 (2019).

    Article 

    Google Scholar 

  • Beckmann, J. P. & Berger, J. Using black bears to test ideal-free distribution models experimentally. J. Mammal. 84, 594–606 (2003).

    <a data-track="click" rel="nofollow noopener" data-track-label="10.1644/1545-1542(2003)0842.0.CO;2″ data-track-action=”article reference” href=”https://doi.org/10.1644%2F1545-1542%282003%29084%3C0594%3AUBBTTI%3E2.0.CO%3B2″ aria-label=”Article reference 18″ data-doi=”10.1644/1545-1542(2003)0842.0.CO;2″>Article 

    Google Scholar 

  • Fedriani, J. M., Fuller, T. K. & Sauvajot, R. M. Does availability of anthropogenic food enhance densities of omnivorous mammals? An example with coyotes in southern California. Ecography 24, 325–331 (2001).

    Article 

    Google Scholar 

  • Prange, S., Gehrt, S. D. & Wiggers, E. P. Influences of anthropogenic resources on raccoon (Procyon lotor) movements and spatial distribution. J. Mammal. 85, 483–490 (2004).

    Article 

    Google Scholar 

  • Tucker, M. A., Santini, L., Carbone, C. & Mueller, T. Mammal population densities at a global scale are higher in human-modified areas. Ecography 44, 1–13 (2021).

    Article 

    Google Scholar 

  • Blanco, G., Lemus, J. A. & García-Montijano, M. When conservation management becomes contraindicated: Impact of food supplementation on health of endangered wildlife. Ecol. Appl. 21, 2469–2477 (2011).

    Article 
    PubMed 

    Google Scholar 

  • Fischer, J. R., Stallknecht, D. E., Luttrell, M. P., Dhondt, A. A. & Converse, K. A. Mycoplasmal conjunctivitis in wild songbirds: The spread of a new contagious disease in a mobile host population. Emerg. Infect. Dis. 3, 69–72 (1997).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Brittingham, M. C. & Temple, S. A. A survey of avian mortality at winter feeders. Wildl. Soc. Bull. 14, 445–450 (1986).

    Google Scholar 

  • Hivert, L. G. et al. High blood lead concentrations in captive Tasmanian devils (Sarcophilus harrisii): A threat to the conservation of the species?. Aust. Vet. J. 96, 442–449 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Carrete, M., Donázar, J. A. & Margalida, A. Density-dependent productivity depression in pyrenean bearded vultures: Implications for conservation. Ecol. Appl. 16, 1674–1682 (2006).

    Article 
    PubMed 

    Google Scholar 

  • Bozek, C. K., Prange, S. & Gehrt, S. D. The influence of anthropogenic resources on multi-scale habitat selection by raccoons. Urban Ecosyst. 10, 413–425 (2007).

    Article 

    Google Scholar 

  • Jones, J. D. et al. Supplemental feeding alters migration of a temperate ungulate. Ecol. Appl. 24, 1769–1779 (2014).

    Article 
    PubMed 

    Google Scholar 

  • Šálek, M., Drahníková, L. & Tkadlec, E. Changes in home range sizes and population densities of carnivore species along the natural to urban habitat gradient. Mamm. Rev. 45, 1–14 (2015).

    Article 

    Google Scholar 

  • Newsome, D. & Rodger, K. To feed or not to feed: a contentious issues in wildlife tourism. In Too Close for Comfort: Contentious Issues in Human-Wildlife Encounters (ed. Lunney, D.) 255–270 (Royal Zoological Society of New South Wales, 2008).

    Chapter 

    Google Scholar 

  • Tucker, M. A. et al. Moving in the anthropocene: Global reductions in terrestrial mammalian movements. Science 1979(359), 466–469 (2018).

    Article 
    ADS 

    Google Scholar 

  • Polis, G. A., Anderson, W. B. & Holt, R. D. Toward an integration of landscape and food web ecology: The dynamics of spatially subsidized food webs. Annu. Rev. Ecol. Syst. 28, 289–316 (1997).

    Article 

    Google Scholar 

  • Prange, S. & Gehrt, S. D. Changes in mesopredator-community structure in response to urbanization. Can. J. Zool. 82, 1804–1817 (2004).

    Article 

    Google Scholar 

  • Rodewald, A. D., Kearns, L. J. & Shustack, D. P. Anthropogenic resource subsidies decouple predator–prey relationships. Ecol. Appl. 21, 936–943 (2011).

    Article 
    PubMed 

    Google Scholar 

  • Cortés-Avizanda, A., Jovani, R., Carrete, M. & Donázar, J. A. Resource unpredictability promotes species diversity and coexistence in an avian scavenger guild: A field experiment. Ecology 93, 2570–2579 (2012).

    Article 
    PubMed 

    Google Scholar 

  • Arrondo, E., Cortés-Avizanda, A. & Donázar, J. A. Temporally unpredictable supplementary feeding may benefit endangered scavengers. Ibis 157, 648–651 (2015).

    Article 

    Google Scholar 

  • Smith, J. A., Thomas, A. C., Levi, T., Wang, Y. & Wilmers, C. C. Human activity reduces niche partitioning among three widespread mesocarnivores. Oikos 127, 890–901 (2018).

    Article 

    Google Scholar 

  • de León, L. F. et al. Urbanization erodes niche segregation in Darwin’s finches. Evol. Appl. 12, 1329–1343 (2019).

    Article 
    PubMed 

    Google Scholar 

  • Manlick, P. J. & Pauli, J. N. Human disturbance increases trophic niche overlap in terrestrial carnivore communities. PNAS 117, 26842–26848 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Blair, R. B. Land use and avian species diversity along an urban gradient. Ecol. Appl. 6, 506–519 (1996).

    Article 

    Google Scholar 

  • Dettori, E. E. et al. Distribution and diet of recovering Eurasian otter (Lutra lutra) along the natural-to-urban habitat gradient (river Segura, SE Spain). Urban Ecosyst. 24, 1221–1230 (2021).

    Article 

    Google Scholar 

  • McKinney, M. L. Urbanization as a major cause of biotic homogenization. Biol. Conserv. 127, 247–260 (2006).

    Article 

    Google Scholar 

  • Guiler, E. R. Temporal and spatial distribution of the Tasmanian Devil, Sarcophilus harrisii (Dasyuridae: Marsupialia). Pap. Proc. R. Soc. Tasman 116, 153–163 (1982).

    Google Scholar 

  • Patton, A. H. et al. A transmissible cancer shifts from emergence to endemism in Tasmanian devils. Science (1979) 370, eabb9772 (2020).

    CAS 

    Google Scholar 

  • Cunningham, C. X. et al. Quantifying 25 years of disease-caused declines in Tasmanian devil populations: Host density drives spatial pathogen spread. Ecol. Lett. 24, 958–969 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Rose, R. K., Pemberton, D. A., Mooney, N. J. & Jones, M. E. Sarcophilus harrisii (Dasyuromorphia: Dasyuridae). Mamm. Species 49, 1–17 (2017).

    Article 

    Google Scholar 

  • Guiler, E. R. Observations on the Tasmanian devil, Sarcophilus harrisii (Marsupialia: Dasyuridae) I. Numbers, home range, movements and food in two populations. Aust. J. Zool. 18, 49–62 (1970).

    Article 

    Google Scholar 

  • Jones, M. E. & Barmuta, L. A. Diet overlap and relative abundance of sympatric dasyurid carnivores: A hypothesis of competition. J. Anim. Ecol. 67, 410–421 (1998).

    Article 

    Google Scholar 

  • Pemberton, D. et al. The diet of the Tasmanian Devil, Sarcophilus harrisii, as determined from analysis of scat and stomach contents. Pap. Proc. R. Soc. Tasman. 142, 13–22 (2008).

    Google Scholar 

  • Rogers, T. L., Fox, S., Pemberton, D. & Wise, P. Sympathy for the devil: Captive-management style did not influence survival, body-mass change or diet of Tasmanian devils 1 year after wild release. Wildl. Res. 43, 544–552 (2016).

    Article 

    Google Scholar 

  • Andersen, G. E., Johnson, C. N., Barmuta, L. A. & Jones, M. E. Dietary partitioning of Australia’s two marsupial hypercarnivores, the Tasmanian devil and the spotted-tailed quoll, across their shared distributional range. PLoS ONE 12, e0188529 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Department of Primary Industries Parks Water and Environment. Recovery Plan for the Tasmanian devil (Sarcophilus harrisii) (2010).

  • Brown, O. J. F. Tasmanian devil (Sarcophilus harrisii) extinction on the Australian mainland in the mid-Holocene: multicausality and ENSO intensification. Alcheringa Aust. J. Palaeontol. 30, 49–57 (2006).

    Article 

    Google Scholar 

  • Lewis, A. C., Hughes, C. & Rogers, T. L. Effects of intraspecific competition and body mass on diet specialization in a mammalian scavenger. Ecol. Evol. 12, e8338 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Andersen, G. E., McGregor, H. W., Johnson, C. N. & Jones, M. E. Activity and social interactions in a wide-ranging specialist scavenger, the Tasmanian devil (Sarcophilus harrisii), revealed by animal-borne video collars. PLoS ONE 15, e0230216 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Jones, M. E. Road upgrade, road mortality and remedial measures: Impacts on a population of eastern quolls and Tasmanian devils. Wildl. Res. 27, 289–296 (2000).

    Article 

    Google Scholar 

  • Jones, M. E. & Barmuta, L. A. Niche differentiation among sympatric australian dasyurid carnivores. J. Mammal. 81, 434–447 (2000).

    <a data-track="click" rel="nofollow noopener" data-track-label="10.1644/1545-1542(2000)0812.0.CO;2″ data-track-action=”article reference” href=”https://doi.org/10.1644%2F1545-1542%282000%29081%3C0434%3ANDASAD%3E2.0.CO%3B2″ aria-label=”Article reference 57″ data-doi=”10.1644/1545-1542(2000)0812.0.CO;2″>Article 

    Google Scholar 

  • Andersen, G. E., Johnson, C. N., Barmuta, L. A. & Jones, M. E. Use of anthropogenic linear features by two medium-sized carnivores in reserved and agricultural landscapes. Sci. Rep. 7, 11624 (2017).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hamede, R. K., McCallum, H. & Jones, M. Seasonal, demographic and density-related patterns of contact between Tasmanian devils (Sarcophilus harrisii): Implications for transmission of devil facial tumour disease. Austral. Ecol. 33, 614–622 (2008).

    Article 

    Google Scholar 

  • Kitchener, A. & Harris, S. From Forest to Fjaeldmark: Descriptions of Tasmania’s Vegetation (Department of Primary Industries, Parks, Water and Environment, Tasmania, 2013).

    Google Scholar 

  • Wiggins, N. L. & Bowman, D. M. J. S. Macropod habitat use and response to management interventions in an agricultural—Forest mosaic in north-eastern Tasmania as inferred by scat surveys. Wildl. Res. 38, 103–113 (2011).

    Article 

    Google Scholar 

  • Hobday, A. J. & Minstrell, M. L. Distribution and abundance of roadkill on Tasmanian highways: Human management options. Wildl. Res. 35, 712–726 (2008).

    Article 

    Google Scholar 

  • Hingston, A. B. Impacts of logging on autumn bird populations in the southern forests of Tasmania. Pap. Proc. R. Soc. Tasman. 134, 19–28 (2000).

    Google Scholar 

  • Taylor, R. J. Notes on the diet of the carnivorous mammals of the Upper Henty River Region, western Tasmania. Pap. Proc. R. Soc. Tasman. 120, 7–10 (1986).

    Google Scholar 

  • Hall-Aspland, S., Rogers, T., Canfield, R. & Tripovich, J. Food transit times in captive leopard seals (Hydrurga leptonyx). Polar Biol. 34, 95–99 (2011).

    Article 

    Google Scholar 

  • Bell, O. et al. Age-related variation in the trophic characteristics of a marsupial carnivore, the Tasmanian devil Sarcophilus harrisii. Ecol. Evol. 10, 7861–7871 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bell, O. et al. Isotopic niche variation in Tasmanian devils Sarcophilus harrisii with progression of devil facial tumor disease. Ecol. Evol. 11, 8038–8053 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bearhop, S., Adams, C. E., Waldron, S., Fuller, R. A. & MacLeod, H. Determining trophic niche width: A novel approach using stable isotope analysis. J. Anim. Ecol. 73, 1007–1012 (2004).

    Article 

    Google Scholar 

  • Layman, C. A. et al. Applying stable isotopes to examine food-web structure: An overview of analytical tools. Biol. Rev. 87, 545–562 (2012).

    Article 
    PubMed 

    Google Scholar 

  • Crawford, K., McDonald, R. A. & Bearhop, S. Applications of stable isotope techniques to the ecology of mammals. Mamm. Rev. 38, 87–107 (2008).

    Article 

    Google Scholar 

  • Bender, M. M., Rouhani, I., Vines, H. M. & Black, C. C. Jr. 13C/12C ratio changes in crassulacean acid metabolism plants. Plant Physiol. 52, 427–430 (1973).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • O’Leary, M. H. Carbon isotope fractionation in plants. Phytochemistry 20, 553–567 (1981).

    Article 

    Google Scholar 

  • Farquhar, G. D., O’Leary, M. H. & Berry, J. A. On the relationship between carbon isotope discrimination and the intercellular carbon dioxide concentration in leaves. Aust. J. Plant Physiol. 9, 121–137 (1982).

    CAS 

    Google Scholar 

  • Cernusak, L. A. et al. Environmental and physiological determinants of carbon isotope discrimination in terrestrial plants. New Phytol. 200, 950–965 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • NSW Parliamentary Counsel. Animal Research Act 1985 (NSW Parliamentary Counsel, 1985).

    Google Scholar 

  • National Health and Medical Research Council (Australia). Australian Code for the Care and Use of Animals for Scientific Purposes (National Health and Medical Research Council, 2013).

    Google Scholar 

  • du Sert, N. P. et al. Reporting animal research: Explanation and elaboration for the ARRIVE guidelines 2.0. PLoS Biol. 18, e3000411 (2020).

    Article 

    Google Scholar 

  • Environmental Systems Research Institute. ArcGIS Desktop Version 10.8.1. https://www.esri.com/en-us/arcgis/products/arcgis-desktop/overview (2020).

  • Tasmanian Vegetation Monitoring and Mapping Program. TASVEG 4.0. Natural Values Conservation Branch, Department of Primary Industries, Parks, Water and Environment thelist.tas.gov.au/app/content/data/geo-meta-data-record?detailRecordUID=b5c7a079-14bc-4b3c-af73-db7585d34cdd (2020).

  • Land Tasmania. LIST Land Tenure. Land Tasmania thelist.tas.gov.au/app/content/data/geo-meta-data-record?detailRecordUID=9b8bf099-d668–433d-981b-a0f8f964f827 (2015).

  • Hickey, J. E. & Wilkinson, G. R. The development and current implementation of silvicultural pratices in native forests in Tasmania. Aust. For. 62, 245–254 (1999).

    Article 

    Google Scholar 

  • Whiteley, S. B. Calculating the sustainable yield of Tasmania’s State forests. Tasforests 11, 23–34 (1999).

    Google Scholar 

  • Pemberton, D. Social Organisation and Behaviour of the Tasmanian devil, Sarcophilus harrisii (University of Tasmania, 1990).

    Google Scholar 

  • Attard, M. R. G., Lewis, A. C., Wroe, S., Hughes, C. & Rogers, T. L. Whisker growth in Tasmanian devils (Sarcophilus harrisii) and applications for stable isotope studies. Ecosphere 12, e03846 (2021).

    Article 

    Google Scholar 

  • von Bertalanffy, L. Quantitative laws in metabolism and growth. Q. Rev. Biol. 32, 217–231 (1957).

    Article 

    Google Scholar 

  • Rogers, T. L., Fung, J., Slip, D., Steindler, L. & O’Connell, T. C. Calibrating the time span of longitudinal biomarkers in vertebrate tissues when fine-scale growth records are unavailable. Ecosphere 7, e01449 (2016).

    Article 

    Google Scholar 

  • Qi, H., Coplen, T. B., Geilmann, H., Brand, W. A. & Böhlke, J. K. Two new organic reference materials for δ13C and δ15N measurements and a new value for the δ13C of NBS 22 oil. Rapid Commun. Mass Spectrom. 17, 2483–2487 (2003).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Qi, H. et al. A new organic reference material, l-glutamic acid, USGS41a, for δ13C and δ15N measurements—A replacement for USGS41. Rapid Commun. Mass Spectrom. 30, 859–866 (2016).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Bond, A. L. & Hobson, K. A. Reporting stable-isotope ratios in ecology: Recommended terminology. Guidel. Best Pract. Waterbirds 35, 324–331 (2012).

    Google Scholar 

  • O’Connell, T. C. & Hedges, R. E. M. Investigations into the effect of diet on modern human hair isotopic values. Am. J. Phys. Anthropol. 108, 409–425 (1999).

    <a data-track="click" rel="nofollow noopener" data-track-label="10.1002/(SICI)1096-8644(199904)108:43.0.CO;2-E” data-track-action=”article reference” href=”https://doi.org/10.1002%2F%28SICI%291096-8644%28199904%29108%3A4%3C409%3A%3AAID-AJPA3%3E3.0.CO%3B2-E” aria-label=”Article reference 90″ data-doi=”10.1002/(SICI)1096-8644(199904)108:43.0.CO;2-E”>Article 
    PubMed 

    Google Scholar 

  • Jackson, A. L., Inger, R., Parnell, A. C. & Bearhop, S. Comparing isotopic niche widths among and within communities: SIBER—Stable Isotope Bayesian Ellipses in R. J. Anim. Ecol. 80, 595–602 (2011).

    Article 
    PubMed 

    Google Scholar 

  • R Core Team. R: A Language and Environment for Statistical Computing Version 4.2.0. https://www.r-project.org/ (2022).

  • Bartoń, K. MuMIn: Multi-model inference. R Package Version 1.47.1. https://cran.r-project.org/package=MuMIn (2022).

  • Burnham, K. P. & Anderson, D. R. Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach (Colorado Cooperative Fish and Wildlife Research Unit, 2002).

    MATH 

    Google Scholar 

  • Stock, B. C. et al. Analyzing mixing systems using a new generation of Bayesian tracer mixing models. PeerJ 6, e5096 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Stock, B. C. & Semmens, B. X. MixSIAR: Bayesian Mixing Models in R. R Package Version 3.1.12. https://doi.org/10.5281/zenodo.1209993 (2022).

  • Plummer, M., Stukalov, A. & Denwood, M. rjags: Bayesian graphical models using MCMC. R Package Version 4-13. https://cran.r-project.org/web/packages/rjags/rjags.pdf (2022).

  • Newsome, S. D. et al. Variation in δ13C and δ15N diet–vibrissae trophic discrimination factors in a wild population of California sea otters. Ecol. Appl. 20, 1744–1752 (2010).

    Article 
    PubMed 

    Google Scholar 

  • Brooks, T. M. et al. Habitat loss and extinction in the hotspots of biodiversity. Conserv. Biol. 16, 909–923 (2002).

    Article 

    Google Scholar 

  • Fahrig, L. Effects of habitat fragmentation on biodiversity. Annu. Rev. Ecol. Evol. Syst. 34, 487–515 (2003).

    Article 

    Google Scholar 

  • Pardini, R., Nichols, E. & Püttker, T. Biodiversity response to habitat loss and fragmentation. Encycl. Anthr. 3, 229–239 (2018).

    Article 

    Google Scholar 

  • Koch, A., Munks, S. & Driscoll, D. The use of hollow-bearing trees by vertebrate fauna in wet and dry Eucalyptus obliqua forest, Tasmania. Wildl. Res. 35, 727–746 (2008).

    Article 

    Google Scholar 

  • Donázar, J. A., Cortés-Avizanda, A. & Carrete, M. Dietary shifts in two vultures after the demise of supplementary feeding stations: consequences of the EU sanitary legislation. Eur. J. Wildl. Res. 56, 613–621 (2010).

    Article 

    Google Scholar 

  • Carbone, C., Teacher, A. & Rowcliffe, J. M. The costs of carnivory. PLoS Biol. 5, e22 (2007).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Tucker, M. A., Ord, T. J. & Rogers, T. L. Revisiting the cost of carnivory in mammals. J. Evol. Biol. 29, 2181–2190 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Carbone, C., Mace, G. M., Roberts, S. C. & Macdonald, D. W. Energetic constraints on the diet of terrestrial carnivores. Nature 402, 286–288 (1999).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Fisher, D. O. & Dickman, C. R. Body size-prey relationships in insectivorous marsupials: Tests of three hypotheses. Ecology 74, 1871–1883 (1993).

    Article 

    Google Scholar 

  • Ruxton, G. D. & Houston, D. C. Obligate vertebrate scavengers must be large soaring fliers. J. Theor. Biol. 228, 431–436 (2004).

    Article 
    ADS 
    MathSciNet 
    PubMed 
    MATH 

    Google Scholar 

  • Pemberton, D. & Renouf, D. A field-study of communication and social-behavior of the Tasmanian devil at feeding sites. Aust. J. Zool. 41, 507–526 (1993).

    Article 

    Google Scholar 

  • Pye, R. J. et al. A second transmissible cancer in Tasmanian devils. Proc. Natl. Acad. Sci. USA 113, 374–379 (2016).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • James, S. et al. Tracing the rise of malignant cell lines: Distribution, epidemiology and evolutionary interactions of two transmissible cancers in Tasmanian devils. Evol. Appl. 12, 1772–1780 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hawkins, C. E. et al. Emerging disease and population decline of an island endemic, the Tasmanian devil Sarcophilus harrisii. Biol. Conserv. 131, 307–324 (2006).

    Article 

    Google Scholar 

  • Pearse, A.-M. & Swift, K. Transmission of devil facial-tumour disease. Nature 439, 549 (2006).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Wood, S. W., Hua, Q. & Bowman, D. M. J. S. Fire-patterned vegetation and the development of organic soils in the lowland vegetation mosaics of south-west Tasmania. Aust. J. Bot. 59, 126–136 (2011).

    Article 

    Google Scholar 

  • Kohn, M. J. Carbon isotope compositions of terrestrial C3 plants as indicators of (paleo)ecology and (paleo)climate. PNAS 107, 19691–19695 (2010).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Mayer, M., Ullmann, W., Sunde, P., Fischer, C. & Blaum, N. Habitat selection by the European hare in arable landscapes: The importance of small-scale habitat structure for conservation. Ecol. Evol. 8, 11619–11633 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Barker, R. & Vestjens, W. Food of Australian Birds 1. Non-Passerines (CSIRO Publishing, 1989).

    Book 

    Google Scholar 

  • Thomas, D. G. The bird community of Tasmanian temperate rainforest. Ibis 122, 298–306 (1980).

    Article 

    Google Scholar 

  • DeVault, T. L., Rhodes, O. E. Jr. & Shivik, J. A. Scavenging by vertebrates: Behavioral, ecological, and evolutionary perspectives on an important energy transfer pathway in terrestrial ecosystems. Oikos 102, 225–234 (2003).

    Article 

    Google Scholar 

  • DPIPWE. Annual Statewide Spotlight Surveys, Tasmania 2020/2021. Nature Conservation Report 21/2. (2021).

  • Nguyen, H. K. D., Fielding, M. W., Buettel, J. C. & Brook, B. W. Habitat suitability, live abundance and their link to road mortality of Tasmanian wildlife. Wildl. Res. 46, 236–246 (2019).

    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    Taking the long view: The Deep Time Project

    Aviva Intveld named 2023 Gates Cambridge Scholar