in

A general framework for nitrogen deposition effects on soil respiration in global forests


Abstract

Since the Industrial Revolution, human activities have altered atmospheric nitrogen (N) deposition to global forests, affecting carbon dioxide emissions from soils (soil respiration or SR) – one of the largest land-atmosphere carbon fluxes. However, experimental studies have demonstrated both positive and negative effects of N deposition on SR in global forests, leading to debates on how N deposition increases or decreases SR. We developed a framework for generalizing SR responses to N deposition using synthesized data from 168 N addition experiments worldwide and observed SR across the global natural N deposition gradient. The findings indicate that N deposition decreased SR in 2.9% of global forested areas, particularly in eastern China, western Europe, and the eastern USA. However, the net effect of N deposition increased the global forest SR by ~5% (1.7 ± 0.1 PgC yr–1). If N pollution could be effectively controlled, global forest SR would decrease, potentially contributing to a reduction in the terrestrial carbon emissions.

Similar content being viewed by others

Temporal patterns of soil carbon emission in tropical forests under long-term nitrogen deposition

Unexpected sustained soil carbon flux in response to simultaneous warming and nitrogen enrichment compared with single factors alone

Nitrogen deposition contributed to a global increase in nitrous oxide emissions from forest soils

Data availability

Data supporting the findings of this study (including CO2_exp and CO2_obs datasets) are available in Zenodo (https://doi.org/10.5281/zenodo.17670031).

Code availability

R code file supporting the findings of this study is available in Zenodo (https://doi.org/10.5281/zenodo.17670031).

References

  1. Friedlingstein, P. et al. Global Carbon Budget 2022. Earth Syst. Sci. Data 14, 4811–4900 (2022).

    Google Scholar 

  2. Lei, J. et al. Temporal changes in global soil respiration since 1987. Nat. Commun. 12, 403 (2021).

    Google Scholar 

  3. Lu, H. B. et al. Comparing machine learning-derived global estimates of soil respiration and its components with those from terrestrial ecosystem models. Environ. Res Lett. 16, 14 (2021).

    Google Scholar 

  4. Raich, J. W. & Schlesinger, W. H. The global carbon dioxide flux in soil respiration and its relationship to vegetation and climate. Tellus B 44, 81–99 (1992).

    Google Scholar 

  5. Cai, W. X. et al. Carbon sequestration of Chinese forests from 2010 to 2060 spatiotemporal dynamics and its regulatory strategies. Sci. Bull. 67, 836–843 (2022).

    Google Scholar 

  6. Mo, L. et al. Integrated global assessment of the natural forest carbon potential. Nature 624, 92–101 (2023).

    Google Scholar 

  7. Griscom, B. W. et al. Natural climate solutions. Proc. Natl. Acad. Sci. USA 114, 11645–11650 (2017).

    Google Scholar 

  8. Galloway, J. N. et al. Nitrogen cycles: Past, present, and future. Biogeochemistry 70, 153–226 (2004).

    Google Scholar 

  9. Ackerman, D., Millet, D. B. & Chen, X. Global estimates of inorganic nitrogen deposition across four decades. Glob. Biogeochem. Cycles 33, 100–107 (2019).

    Google Scholar 

  10. Liu, L., Wen, Z., Liu, S., Zhang, X. & Liu, X. Decline in atmospheric nitrogen deposition in China between 2010 and 2020. Nat. Geosci. 17, 733–736 (2024).

    Google Scholar 

  11. Aber, J. D. et al. Nitrogen saturation in temperate forest ecosystems: hypotheses revisited. BioScience 48, 921–934 (1998).

    Google Scholar 

  12. Fenn, M. E. et al. Nitrogen excess in North American ecosystems: predisposing factors, ecosystem responses, and management strategies. Ecol. Appl 8, 706–733 (1998).

    Google Scholar 

  13. Cen, X. et al. Global patterns of nitrogen saturation in forests. One Earth 8, 101132 (2025).

    Google Scholar 

  14. Du, E. et al. Global patterns of terrestrial nitrogen and phosphorus limitation. Nat. Geosci. 13, 221–226 (2020).

    Google Scholar 

  15. Cen, X. et al. Suppression of nitrogen deposition on global forest soil CH4 uptake depends on nitrogen status. Glob. Biogeochem. Cycles 38, e2024GB008098 (2024).

    Google Scholar 

  16. Cleveland, C. C. & Townsend, A. R. Nutrient additions to a tropical rain forest drive substantial soil carbon dioxide losses to the atmosphere. Proc. Natl. Acad. Sci. USA 103, 10316–10321 (2006).

    Google Scholar 

  17. Mo, J. et al. Nitrogen addition reduces soil respiration in a mature tropical forest in southern China. Glob. Change Biol. 14, 403–412 (2008).

    Google Scholar 

  18. Bowden, R. D., Davidson, E., Savage, K., Arabia, C. & Steudler, P. Chronic nitrogen additions reduce total soil respiration and microbial respiration in temperate forest soils at the Harvard Forest. For. Ecol. Manag. 196, 43–56 (2004).

    Google Scholar 

  19. Janssens, I. A. et al. Reduction of forest soil respiration in response to nitrogen deposition. Nat. Geosci. 3, 315–322 (2010).

    Google Scholar 

  20. Liu, Y. et al. Spatially explicit estimate of nitrogen effects on soil respiration across the globe. Glob. Change Biol. 29, 3591 (2023).

    Google Scholar 

  21. Chen, C. & Chen, H. Y. H. Mapping global nitrogen deposition impacts on soil respiration. Sci. Total Environ. 871, 161986 (2023).

    Google Scholar 

  22. Bond-Lamberty, B. et al. Twenty Years of Progress, Challenges, and Opportunities in Measuring and Understanding Soil Respiration. J. Geophys. Res.: Biogeosciences 129, e2023JG007637 (2024).

    Google Scholar 

  23. Zhou, L. Y. et al. Different responses of soil respiration and its components to nitrogen addition among biomes: a meta-analysis. Glob. Change Biol. 20, 2332–2343 (2014).

    Google Scholar 

  24. de Vries, W., Du, E. Z. & Butterbach-Bahl, K. Short and long-term impacts of nitrogen deposition on carbon sequestration by forest ecosystems. Curr. Opin. Environ. Sustainability 9-10, 90–104 (2014).

    Google Scholar 

  25. Li, X. Y. et al. The contrasting effects of deposited NH4+ and NO3 on soil CO2, CH4 and N2O fluxes in a subtropical plantation, southern China. Ecol. Eng. 85, 317–327 (2015).

    Google Scholar 

  26. Bai, Y. et al. Tradeoffs and thresholds in the effects of nitrogen addition on biodiversity and ecosystem functioning: evidence from inner Mongolia Grasslands. Glob. Change Biol. 16, 358–372 (2010).

    Google Scholar 

  27. Reich, P. B., Tjoelker, M. G., Machado, J.-L. & Oleksyn, J. Universal scaling of respiratory metabolism, size and nitrogen in plants. Nature 439, 457–461 (2006).

    Google Scholar 

  28. Egidi, E., Coleine, C., Delgado-Baquerizo, M. & Singh, B. K. Assessing critical thresholds in terrestrial microbiomes. Nat. Microbiol. 8, 2230–2233 (2023).

    Google Scholar 

  29. Michaelis, L. & Menten, M. L. Die kinetik der invertinwirkung. Biochem. z. 49, 352 (1913).

    Google Scholar 

  30. Zhou, Z., Wang, C., Zheng, M., Jiang, L. & Luo, Y. Patterns and mechanisms of responses by soil microbial communities to nitrogen addition. Soil Biol. Biochem. 115, 433–441 (2017).

    Google Scholar 

  31. LeBauer, D. S. & Treseder, K. K. Nitrogen limitation of net primary productivity in terrestrial ecosystems is globally distributed. Ecology 89, 371–379 (2008).

    Google Scholar 

  32. Geisseler, D. & Horwath, W. R. Relationship between carbon and nitrogen availability and extracellular enzyme activities in soil. Pedobiologia 53, 87–98 (2009).

    Google Scholar 

  33. Allison, S. D. & Vitousek, P. M. Responses of extracellular enzymes to simple and complex nutrient inputs. Soil Biol. Biochem. 37, 937–944 (2005).

    Google Scholar 

  34. Goyal, S. S. & Huffaker, R. C. In Nitrogen in Crop Production (ed. Hauck, R. D.) (ASA, CSSA, SSSA;) 97–118 (1984).

  35. Kreutzer, K., Butterbach-Bahl, K., Rennenberg, H. & Papen, H. The complete nitrogen cycle of an N-saturated spruce forest ecosystem. Plant Biol. 11, 643–649 (2009).

    Google Scholar 

  36. Costantini, D., Metcalfe, N. B. & Monaghan, P. Ecological processes in a hormetic framework. Ecol. Lett. 13, 1435–1447 (2010).

    Google Scholar 

  37. Morgan Ernest, S. K. & Brown, J. H. Homeostasis and compensation: The role of species and resources in ecosystem stability. Ecology 82, 2118–2132 (2001).

    Google Scholar 

  38. Gilliam, F. S. Response of the herbaceous layer of forest ecosystems to excess nitrogen deposition. J. Ecol. 94, 1176–1191 (2006).

    Google Scholar 

  39. Bobbink, R. et al. Global assessment of nitrogen deposition effects on terrestrial plant diversity: a synthesis. Ecol. Appl. 20, 30–59 (2010).

    Google Scholar 

  40. Zheng, M. et al. Temporal patterns of soil carbon emission in tropical forests under long-term nitrogen deposition. Nat. Geosci. 15, 1002–1010 (2022).

    Google Scholar 

  41. Jian J. et al. A restructured and updated global soil respiration database (SRDB-V5). Earth Syst. Sci. Data 13, 255–267 (2021).

  42. Fog, K. The effect of added nitrogen on the rate of decomposition of organic matter. Biol. Rev. 63, 433–462 (1988).

    Google Scholar 

  43. Erofeeva, E. A. Environmental hormesis: from cell to ecosystem. Curr. Opin. Environ. Sci. Health 29, 100378 (2022).

    Google Scholar 

  44. Amyntas, A. et al. Niche complementarity among plants and animals can alter the biodiversity–ecosystem functioning relationship. Funct. Ecol. 37, 2652–2665 (2023).

    Google Scholar 

  45. Band, N., Kadmon, R., Mandel, M. & DeMalach, N. Assessing the roles of nitrogen, biomass, and niche dimensionality as drivers of species loss in grassland communities. Proc. Natl. Acad. Sci. 119, e2112010119 (2022).

    Google Scholar 

  46. Wang, C. et al. Long-term nitrogen input reduces soil bacterial network complexity by shifts in life history strategy in temperate grassland. iMeta 3, e194 (2024).

    Google Scholar 

  47. Liu, J. et al. Nitrogen addition reduced ecosystem stability regardless of its impacts on plant diversity. J. Ecol. 107, 2427–2435 (2019).

    Google Scholar 

  48. Melillo, J. M. et al. Long-term pattern and magnitude of soil carbon feedback to the climate system in a warming world. Science 358, 101–104 (2017).

    Google Scholar 

  49. Levin, S. A. The problem of pattern and scale in ecology: the Robert H. MacArthur award lecture. Ecology 73, 1943–1967 (1992).

    Google Scholar 

  50. Bae, K., Fahey, T. J., Yanai, R. D. & Fisk, M. Soil nitrogen availability affects belowground carbon allocation and soil respiration in northern hardwood forests of new hampshire. Ecosystems 18, 1179–1191 (2015).

    Google Scholar 

  51. Haynes, B. E. & Gower, S. T. Belowground carbon allocation in unfertilized and fertilized red pine plantations in Northern Wisconsin. Tree Physiol. 15, 317–325 (1995).

    Google Scholar 

  52. Wallenstein, M. D., McNulty, S., Fernandez, I. J., Boggs, J. & Schlesinger, W. H. Nitrogen fertilization decreases forest soil fungal and bacterial biomass in three long-term experiments. For. Ecol. Manag. 222, 459–468 (2006).

    Google Scholar 

  53. Treseder, K. K. Nitrogen additions and microbial biomass: a meta-analysis of ecosystem studies. Ecol. Lett. 11, 1111–1120 (2008).

    Google Scholar 

  54. Zhang, T. A., Chen, H. Y. H. & Ruan, H. Global negative effects of nitrogen deposition on soil microbes. ISME J. 12, 1817–1825 (2018).

    Google Scholar 

  55. Xing, A. J. et al. Nonlinear responses of ecosystem carbon fluxes to nitrogen deposition in an old-growth boreal forest. Ecol. Lett. 25, 77–88 (2022).

    Google Scholar 

  56. Zhang, D. et al. Changes in above-/below-ground biodiversity and plant functional composition mediate soil respiration response to nitrogen input. Funct. Ecol. 35, 1171–1182 (2021).

    Google Scholar 

  57. Lamanna, C. et al. Functional trait space and the latitudinal diversity gradient. Proc. Natl Acad. Sci. 111, 13745–13750 (2014).

    Google Scholar 

  58. Hillebrand, H. On the Generality of the Latitudinal Diversity Gradient. Am. Naturalist 163, 192–211 (2004).

    Google Scholar 

  59. Du, E. & de Vries, W. Links between nitrogen limitation and saturation in terrestrial ecosystems. Glob. Change Biol. 31, e70271 (2025).

    Google Scholar 

  60. Bond-Lamberty, B., Bronson, D., Bladyka, E. & Gower, S. T. A comparison of trenched plot techniques for partitioning soil respiration. Soil Biol. Biochem. 43, 2108–2114 (2011).

    Google Scholar 

  61. Wang, W., Chen, W. & Wang, S. Forest soil respiration and its heterotrophic and autotrophic components: Global patterns and responses to temperature and precipitation. Soil Biol. Biochem. 42, 1236–1244 (2010).

    Google Scholar 

  62. Zhao, Z., Ding, X., Wang, G. & Li, Y. 30 m Resolution Global Maps of Forest Soil Respiration and Its Changes From 2000 to 2020. Earth’s Future 12, e2023EF004007 (2024).

    Google Scholar 

  63. Cottingham, K. L., Lennon, J. T. & Brown, B. L. Knowing when to draw the line: designing more informative ecological experiments. Front. Ecol. Environ. 3, 145–152 (2005).

    Google Scholar 

  64. Yu, G. et al. Stabilization of atmospheric nitrogen deposition in China over the past decade. Nat. Geosci. 12, 424–429 (2019).

    Google Scholar 

  65. Liu, Y. et al. Spatially explicit estimate of nitrogen effects on soil respiration across the globe. Glob. Change Biol. 29, 3591–3600 (2023).

    Google Scholar 

  66. Yan, W., Zhong, Y., Yang, J., Shangguan, Z. & Torn, M. S. Response of soil greenhouse gas fluxes to warming: A global meta-analysis of field studies. Geoderma 419, 115865 (2022).

    Google Scholar 

  67. Shangguan, W., Dai, Y., Duan, Q., Liu, B. & Yuan, H. A global soil data set for earth system modeling. J. Adv. Modeling Earth Syst. 6, 249–263 (2014).

    Google Scholar 

  68. Liu, H. et al. Annual dynamics of global land cover and its long-term changes from 1982 to 2015. Earth Syst. Sci. Data 12, 1217–1243 (2020).

    Google Scholar 

  69. Hansen, M. C., Stehman, S. V. & Potapov, P. V. Quantification of global gross forest cover loss. Proc. Natl. Acad. Sci. 107, 8650–8655 (2010).

    Google Scholar 

  70. Wang, C. & Tang, Y. Responses of plant phenology to nitrogen addition: a meta-analysis. Oikos 128, 1243–1253 (2019).

    Google Scholar 

  71. Xu, C. et al. Long-term, amplified responses of soil organic carbon to nitrogen addition worldwide. Glob. Change Biol. 27, 1170–1180 (2021).

    Google Scholar 

  72. Wang, Z., Xing, A. & Shen, H. Effects of nitrogen addition on the combined global warming potential of three major soil greenhouse gases: A global meta-analysis. Environ. Pollut. 334, 121848 (2023).

    Google Scholar 

  73. R Core Team. R: A Language and Environment For Statistical Computing (R Foundation for Statistical Computing, 2020).

  74. Breiman, L. Random Forests. Mach. Learn. 45, 5–32 (2001).

    Google Scholar 

  75. Bond-Lamberty, B. & Thomson, A. Temperature-associated increases in the global soil respiration record. Nature 464, 579–U132 (2010).

    Google Scholar 

  76. Reay, D. S., Dentener, F., Smith, P., Grace, J. & Feely, R. A. Global nitrogen deposition and carbon sinks. Nat. Geosci. 1, 430–437 (2008).

    Google Scholar 

  77. Wang, W. J., Dalal, R. C., Moody, P. W. & Smith, C. J. Relationships of soil respiration to microbial biomass, substrate availability and clay content. Soil Biol. Biochem. 35, 273–284 (2003).

    Google Scholar 

  78. Chen, S., Zou, J., Hu, Z., Chen, H. & Lu, Y. Global annual soil respiration in relation to climate, soil properties and vegetation characteristics: Summary of available data. Agr. For. Meteorol. 198-199, 335–346 (2014).

    Google Scholar 

  79. Huang, N. et al. Spatial and temporal variations in global soil respiration and their relationships with climate and land cover. Sci. Adv. 6, 11 (2020).

    Google Scholar 

  80. Liaw, A. & Wiener, M. Classification and regression by randomForest. R. N. 2, 18–22 (2002).

    Google Scholar 

  81. Muggeo, V. M. Segmented: an R package to fit regression models with broken-line relationships. R. N. 8, 20–25 (2008).

    Google Scholar 

  82. Ritz, C., Baty, F., Streibig, J. C. & Gerhard, D. Dose-response analysis using R. PLoS ONE 10, e0146021 (2016).

    Google Scholar 

  83. ESRI. ArcGIS Desktop: Release 10 (ESRI, 2011).

  84. Mason, R. E. et al. Evidence, causes, and consequences of declining nitrogen availability in terrestrial ecosystems. Science 376, eabh3767 (2022).

    Google Scholar 

Download references

Acknowledgements

The authors thank Prof. James Raich (Iowa State University) for his inputs on early version of this paper. We are grateful to all the researchers who spent time and effort on manipulative experiments and observations and made the data publicly accessible. This work was financially supported by the National Natural Science Foundation of China (32430067, 32588202, 42141004) and the National Key R&D Program of China (2023YFF1305900, 2022YFF080210102) received by N.H., and the Pioneer Center for Landscape Research in Sustainable Agricultural Futures (Land-CRAFT), DNRF grant number P2 received by K.B.B.

Author information

Authors and Affiliations

Authors

Contributions

X.C. collected data and carried out the analysis based on feedback from N.H., P.V., and K.B.B. X.C. drafted the initial manuscript, P.V., N.H., B.B.L., S.N., E.D., K.Y., M.Z., K.V.S., E.L.P., L.H., L.X., M.L., and K.B.B. reviewed and edited the manuscript.

Corresponding author

Correspondence to
Nianpeng He.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Communications thanks the anonymous reviewers for their contribution to the peer review of this work. A peer review file is available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Transparent Peer Review file

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Cite this article

Cen, X., Vitousek, P., He, N. et al. A general framework for nitrogen deposition effects on soil respiration in global forests.
Nat Commun (2025). https://doi.org/10.1038/s41467-025-67203-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41467-025-67203-8


Source: Ecology - nature.com

Climate and sedimentary structure drive deep labile carbon accumulation in alpine wetlands

Introducing the Minerals Stewardship Consortium at MIT

Back to Top