in

Insight in transformations of nano-metallic and ionic platinum forms in different soil types in the context of Pt immobilization


Abstract

Platinum is emitted by road traffic mainly in the form of metallic particles. Interaction of Pt-NPs with soil causes their chemical transformation that may result in dissolution. Investigation of soil – Pt-NPs interactions presented in this study focuses on assessing the influence of soil type on Pt mobility in soil enriched in its metallic and ionic forms. Studied soil types included peat soil (high content of organic matter), sandy soil, chalk loam soil and transformed soil collected next to a road with high traffic (Zabrze, Poland), to which citrates were added to mimic the rhizosphere activity. Solid-liquid extractions based on modified BCR protocols were applied to establish mobile and organic fractions, and Pt was determined with both voltammetry and ICP-MS. Cross-comparison of the results of these two techniques allows to conclude about Pt-NPs transformation into Pt(II). The mobility of Pt in transformed soil and sandy soil (about 10% extractability with CH3COOH) is significantly higher than in clay (4–5%) and peat soil (0.4–0.8%). Metallic Pt-NPs with small diameters can be effectively transformed into ionic forms. Their content in mobile fraction reaches 30–50%, and in oxidizable fraction – even 75–80%. Higher mobility of Pt was observed after incubation in the presence of citrates, however it is not due to a transition of Pt-NPs into ionic forms but results from limited interaction of small NPs with the soil matrix.

Similar content being viewed by others

Perspectives of soil nanoremediation: the case of nano zerovalent iron and metal(loid) contaminants

Small, solubilized platinum nanocrystals consist of an ordered core surrounded by mobile surface atoms

Nano silica-mediated stabilization of heavy metals in contaminated soils

Data availability

Additional data will be made available on request addressed to the corresponding author.

References

  1. Savignan, L., Faucher, S., Chéry, P. & Lespes, G. Platinum group elements contamination in soils: review of the current state. Chemosphere 271, 129517 (2021).

    Google Scholar 

  2. Ely, J. C. et al. Implications of Platinum-Group element accumulation along U.S. Roads from Catalytic-Converter attrition. Environ. Sci. Technol. 35, 3816–3822 (2001).

    Google Scholar 

  3. Artelt, S., Kock, H., König, H. P., Levsen, K. & Rosner, G. Engine dynamometer experiments: platinum emissions from differently aged three-way catalytic converters. Atmos. Environ. 33, 3559–3567 (1999).

    Google Scholar 

  4. Moldovan, M. et al. Environmental risk of particulate and soluble platinum group elements released from gasoline and diesel engine catalytic converters. Sci. Total Environ. 296, 199–208 (2002).

    Google Scholar 

  5. Kolesnikov, S. et al. Ecotoxicity assessment of water-soluble platinum specie (PTCL2) in soils with contrasting properties. Environ. Sci. Pollut Res. 32, 14601–14613 (2025).

    Google Scholar 

  6. Wood, S. A. The role of humic substances in the transport and fixation of metals of economic interest (Au, Pt, Pd, U, V). Ore Geol. Rev. 11, 1–31 (1996).

    Google Scholar 

  7. Lustig, S., Zang, S., Beck, W. & Schramel, P. Dissolution of metallic platinum as water soluble species by naturally occurring complexing agents. Microchim Acta. 129, 189–194 (1998).

    Google Scholar 

  8. Lustig, S., Zang, S., Michalke, B., Schramel, P. & Beck, W. Transformation behaviour of different platinum compounds in a clay-like humic soil: speciation investigations. Sci. Total Environ. 188, 195–204 (1996).

    Google Scholar 

  9. Kulizhskiy, S. P. et al. Investigation of platinum and nickel nanoparticles migration and accumulation in soils within the southeastern part of West Siberia. Nano Hybrids Compos. 13, 115–122 (2017).

    Google Scholar 

  10. Krasnodębska-Ostręga, B. & Golimowski, J. Element fractionation in suspended matter in landfill leachate using single extractions. Microchim Acta. 146, 7–11 (2004).

    Google Scholar 

  11. Yuan, C. et al. Speciation of heavy metals in marine sediments from the East China sea by ICP-MS with sequential extraction. Environ. Int. 30, 769–783 (2004).

    Google Scholar 

  12. Quevauviller, P. et al. Evaluation of a sequential extraction procedure for the determination of extractable trace metal contents in sediments. Fresenius J. Anal. Chem. 349, 808–814 (1994).

    Google Scholar 

  13. Krasnodębska-Ostręga, B., Kaczorowska, M. & Golimowski, J. Ultrasound-Assisted extraction for the evaluation of element mobility in bottom sediment collected at mining and smelting Pb–Zn ores area in Poland. Microchim. Acta. 154, 39–43 (2006).

    Google Scholar 

  14. Kowalska, J., Biaduń, E., Kińska, K., Gniadek, M. & Krasnodębska-Ostręga, B. Tracking changes in rhodium nanoparticles in the environment, including their mobility and bioavailability in soil. Sci. Total Environ. 806, 151272 (2022).

    Google Scholar 

  15. Leśniewska, B., Krymska, M., Świerad, E., Wiater, J. & Godlewska-Żyłkiewicz, B. An ultrasound-assisted procedure for fast screening of mobile fractions of Cd, Pb and Ni in soil. Insight into method optimization and validation. Environ. Sci. Pollut. Res. 23, 25093–25104 (2016).

    Google Scholar 

  16. Canepari, S., Cardarelli, E., Ghighi, S. & Scimonelli, L. Ultrasound and microwave-assisted extraction of metals from sediment: a comparison with the BCR procedure. Talanta 66, 1122–1130 (2005).

    Google Scholar 

  17. Gaudino, S. et al. The role of different soil sample digestion methods on trace elements analysis: a comparison of ICP-MS and INAA measurement results. Accredit. Qual. Assur. 12, 84–93 (2007).

    Google Scholar 

  18. Kowalska, J. et al. Determination of traces of Pt and Rh in soil and quartz samples contaminated by automobile exhaust after an ion-exchange matrix separation. Talanta 127, 250–254 (2014).

    Google Scholar 

  19. Amorello, D., Orecchio, S., Barreca, S. & Orecchio, S. Voltammetry for monitoring Platinum, palladium and rhodium in environmental and food matrices. ChemistrySelect 8, e202300200 (2023).

    Google Scholar 

  20. Kowalska, J., Bortka, K., Sadowska, M., Kińska, K. & Krasnodębska-Ostręga, B. Sample preparation – A crucial step to distinguish metallic and ionic platinum forms and their mobility in soil. Chemosphere 352, 141331 (2024).

    Google Scholar 

  21. Sadowska, M., Kińska, K. & Kowalska, J. Krasnodębska-Ostręga, B. Sample pretreatment for voltammetric determination of Pd – selective separation and preconcentration using Cellex-T. Microchem J. 154, 104557 (2020).

    Google Scholar 

  22. Wawer, M. et al. Traffic-Related pollutants in roadside soils of different countries in Europe and Asia. Water Air Soil. Pollut.. 226, 216 (2015).

    Google Scholar 

  23. Barrow, N. J., Debnath, A. & Sen, A. Mechanisms by which citric acid increases phosphate availability. Plant. Soil. 423, 193–204 (2018).

    Google Scholar 

  24. Huszał, S., Kowalska, J., Chmielewska, E. & Golimowski, J. Simultaneous determination of platinum and rhodium by adsorptive stripping voltammetry (AdSV) with semicarbazide. Chem. Anal. Wars.. 49 (6), 793–802 (2004).

    Google Scholar 

  25. Gálvez-Martínez, E., Haro-Pérez, C. & Kozina, A. The role of sodium citrate in the formation of platinum nanoparticles through colloidal synthesis. Colloids Surf. Physicochem Eng. Asp.. 709, 135982 (2025).

    Google Scholar 

  26. Reith, F. & Cornelis, G. Effect of soil properties on gold- and platinum nanoparticle mobility. Chem. Geol. 466, 446–453 (2017).

    Google Scholar 

  27. Islam, M. S. et al. Cadmium, lead, and zinc immobilization in soil using rice husk Biochar in the presence of citric acid. Int. J. Environ. Sci. Technol. 19, 567–580 (2022).

    Google Scholar 

  28. Dessureault-Rompré, J., Nowack, B., Schulin, R. & Luster, J. Modified micro Suction cup/rhizobox approach for the in-situ detection of organic acids in rhizosphere soil solution. Plant. Soil. 286, 99–107 (2006).

    Google Scholar 

  29. Azaroual, M., Romand, B., Freyssinet, P. & Disnar, J. R. Solubility of platinum in aqueous solutions at 25°C and pHs 4 to 10 under oxidizing conditions. Geochim. Cosmochim. Acta. 65, 4453–4466 (2001).

    Google Scholar 

  30. Leopold, K., Denzel, A., Gruber, A. & Malle, L. Mobility of traffic-related Pd and Pt species in soils evaluated by sequential extraction. Environ. Pollut. 242, 1119–1127 (2018).

    Google Scholar 

  31. Darlington, T. K., Neigh, A. M., Spencer, M. T., Guyen, O. T. N. & Oldenburg, S. J. Nanoparticle characteristics affecting environmental fate and transport through soil. Environ. Toxicol. Chem. 28, 1191–1199 (2009).

    Google Scholar 

  32. Tourinho, P. S. et al. Metal-based nanoparticles in soil: Fate, behavior, and effects on soil invertebrates. Environ. Toxicol. Chem. 31, 1679–1692 (2012).

    Google Scholar 

  33. Hashimoto, Y., Takeuchi, S., Mitsunobu, S. & Ok, Y. S. Chemical speciation of silver (Ag) in soils under aerobic and anaerobic conditions: ag nanoparticles vs. ionic ag. J. Hazard. Mater. 322, 318–324 (2017).

    Google Scholar 

  34. Martinez, C. M., Alvarez, L. H., Celis, L. B. & Cervantes, F. J. Humus-reducing microorganisms and their valuable contribution in environmental processes. Appl. Microbiol. Biotechnol. 97, 10293–10308 (2013).

    Google Scholar 

  35. Badawy, A. M. E. et al. Impact of environmental conditions (pH, ionic Strength, and electrolyte Type) on the surface charge and aggregation of silver nanoparticles suspensions. Environ. Sci. Technol. 44, 1260–1266 (2010).

    Google Scholar 

  36. Stone, V. et al. Nanomaterials for environmental studies: Classification, reference material issues, and strategies for physico-chemical characterisation. Sci. Total Environ. 408, 1745–1754 (2010).

    Google Scholar 

  37. Fang, J., Shan, X., Wen, B., Lin, J. & Owens, G. Stability of Titania nanoparticles in soil suspensions and transport in saturated homogeneous soil columns. Environ. Pollut.. 157, 1101–1109 (2009).

    Google Scholar 

  38. Cui, Y. J. et al. Transfer of metals from soil to vegetables in an area near a smelter in Nanning, China. Environ. Int. 30, 785–791 (2004).

    Google Scholar 

  39. Wang, Z., Shan, X. & Zhang, S. Comparison of speciation and bioavailability of rare Earth elements between wet rhizosphere soil and air-dried bulk soil. Anal. Chim. Acta. 441, 147–156 (2001).

    Google Scholar 

  40. Kińska, K., Jiménez-Lamana, J., Kowalska, J., Krasnodębska-Ostręga, B. & Szpunar, J. Study of the uptake and bioaccumulation of palladium nanoparticles by Sinapis Alba using single particle ICP-MS. Sci. Total Environ. 615, 1078–1085 (2018).

    Google Scholar 

  41. Lee, S. et al. Nanoparticle size detection limits by single particle ICP-MS for 40 elements. Environ. Sci. Technol. 48, 10291–10300 (2014).

    Google Scholar 

  42. Jiménez-Lamana, J., Wojcieszek, J., Jakubiak, M., Asztemborska, M. & Szpunar, J. Single particle ICP-MS characterization of platinum nanoparticles uptake and bioaccumulation by lepidium sativum and sinapis Alba plants. J. Anal. Spectrom. 31, 2321–2329 (2016).

    Google Scholar 

  43. Kowalska, J., Kińska, K., Biesaga, M. & Asztemborska, M. Application of selective extraction and reverse phase chromatography with three detectors – PAD, FLD and ESI MS for characterization of platinum metabolites and identification of phytochelatins in Sinapis Alba L. tissues. Microchem J. 132, 198–204 (2017).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: Joanna Kowalska, Beata Krasnodębska-Ostręga; Methodology: Joanna Kowalska, Katarzyna Kińska, Beata Krasnodębska-Ostręga; Formal analysis and investigation: Joanna Kowalska, Paulina Brusik, Monika Sadowska, Beata Krasnodębska-Ostręga; Writing – original draft preparation: Joanna Kowalska, Monika Sadowska, Katarzyna Kińska, Beata Krasnodębska-Ostręga; Writing – review and editing: Joanna Kowalska, Monika Sadowska, Katarzyna Kińska, Beata Krasnodębska-Ostręga; Resources: Beata Krasnodębska-Ostręga; Supervision: Beata Krasnodębska-Ostręga.

Corresponding author

Correspondence to
Beata Krasnodębska-Ostręga.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

Reprints and permissions

About this article

Cite this article

Kowalska, J., Brusik, P., Sadowska, M. et al. Insight in transformations of nano-metallic and ionic platinum forms in different soil types in the context of Pt immobilization.
Sci Rep (2025). https://doi.org/10.1038/s41598-025-30219-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41598-025-30219-7

Keywords

  • Platinum nanoparticles
  • Platinum mobility
  • Soil type effect
  • Rhizosphere activity
  • Fractionation
  • Ultrasound assisted extraction
  • Voltammetry


Source: Ecology - nature.com

Entomopathogenic fungi disrupt the feeding behavior of Euschistus heros in soybean

Post-COP30, more aggressive policies needed to cap global warming at 1.5 C

Back to Top