Abstract
Bacterial growth dynamics, typically represented by growth curves, are fundamental yet complex features of living populations. Traditional analyses focusing on specific parameters often overlook the full temporal patterns of growth. Here, we systematically investigated how genomic and environmental factors shape bacterial growth dynamics by analyzing 870 growth curves from five Escherichia coli strains with varying genome sizes cultured in 29 chemically defined media. Using dynamic time warping, clustering, and gradient boosting decision trees, we found that environmental components, especially glucose, primarily determine overall growth curve patterns, while genome size governs detailed growth parameters such as lag time, growth rate, and carrying capacity. Notably, finer clustering revealed increased genomic influence and decreased environmental impact, suggesting a hierarchical interaction where the environment modulates broad growth behavior and the genome fine-tunes specific growth responses. These findings provide insights into the coordinated roles of genome and environment in bacterial population dynamics, advancing our understanding of microbial growth regulation.
Similar content being viewed by others
Population Dynamics of Escherichia coli Growing under Chemically Defined Media
Data-driven discovery of the interplay between genetic and environmental factors in bacterial growth
Experimental mapping of bacterial fitness landscapes reveals eco-evolutionary fingerprints
Data availability
All data generated or analyzed in this study are available within the paper and its Supplementary Information.
Code availability
The codes are available at https://github.com/g2kajun-dev/growth-curve-analysis.
References
Klumpp, S. & Hwa, T. Bacterial growth: Global effects on gene expression, growth feedback and proteome partition. Curr. Opin. Biotechnol. 28, 96–102. https://doi.org/10.1016/j.copbio.2014.01.001 (2014).
Scott, M. & Hwa, T. Bacterial growth laws and their applications. Curr. Opin. Biotechnol. 22(4), 559–565. https://doi.org/10.1016/j.copbio.2011.04.014 (2011).
Ferenci, T. Growth of bacterial cultures’ 50 years on: Towards an uncertainty principle instead of constants in bacterial growth kinetics. Res. Microbiol. 150(7), 431–438. https://doi.org/10.1016/S0923-2508(99)00114-X (1999).
Maier, R. M. Bacterial growth. In: Maier RM, Pepper IL, Gerba CP, editors. Environmental Microbiology 37–54 (2009).
Ughy, B. et al. Reconsidering dogmas about the growth of bacterial populations. Cells 12(10), 1430. https://doi.org/10.3390/cells12101430 (2023).
Winsor, C. P. The Gompertz curve as a growth curve. Proc. Natl. Acad. Sci. U.S.A. 18(1), 1–8. https://doi.org/10.1073/pnas.18.1.1 (1932).
Zwietering, M. H., Jongenburger, I., Rombouts, F. M. & van ‘t Riet, K. Modeling of the bacterial growth curve. Appl. Environ. Microbiol. 56(6), 1875–1881. https://doi.org/10.1128/aem.56.6.1875-1881.1990 (1990).
Tsuchiya, K. et al. A decay effect of the growth rate associated with genome reduction in Escherichia coli. BMC Microbiol. 18(1), 101. https://doi.org/10.1186/s12866-018-1242-4 (2018).
Verissimo, A., Paixao, L., Neves, A. R. & Vinga, S. BGFit: Management and automated fitting of biological growth curves. BMC Bioinform. 14, 283. https://doi.org/10.1186/1471-2105-14-283 (2013).
Navarro-Perez, M. L., Fernandez-Calderon, M. C. & Vadillo-Rodriguez, V. Decomposition of growth curves into growth rate and acceleration: A novel procedure to monitor bacterial growth and the time-dependent effect of antimicrobials. Appl. Environ. Microbiol. 88(3), e0184921. https://doi.org/10.1128/AEM.01849-21 (2022).
Sprouffske, K. & Wagner, A. Growthcurver: An R package for obtaining interpretable metrics from microbial growth curves. BMC Bioinform. 17, 172. https://doi.org/10.1186/s12859-016-1016-7 (2016).
Towbin, B. D. et al. Optimality and sub-optimality in a bacterial growth law. Nat. Commun. 8, 14123. https://doi.org/10.1038/ncomms14123 (2017).
Vadia, S. & Levin, P. A. Growth rate and cell size: A re-examination of the growth law. Curr. Opin. Microbiol. 24, 96–103. https://doi.org/10.1016/j.mib.2015.01.011 (2015).
Kurokawa, M., Seno, S., Matsuda, H. & Ying, B. W. Correlation between genome reduction and bacterial growth. DNA Res. Int. J. Rapid Publ. Rep. Genes Genomes. 23(6), 517–525. https://doi.org/10.1093/dnares/dsw035 (2016).
Aida, H., Hashizume, T., Ashino, K. & Ying, B. W. Machine learning-assisted discovery of growth decision elements by relating bacterial population dynamics to environmental diversity. Elife 11, e76846. https://doi.org/10.7554/eLife.76846 (2022).
Peleg, M. & Corradini, M. G. Microbial growth curves: What the models tell us and what they cannot. Crit. Rev. Food Sci. Nutr. 51(10), 917–945. https://doi.org/10.1080/10408398.2011.570463 (2011).
Huang, L. Optimization of a new mathematical model for bacterial growth. Food Control. 32, 283–288. https://doi.org/10.1016/j.foodcont.2012.11.019 (2013).
Sant’Ana, A. S., Franco, B. D. & Schaffner, D. W. Modeling the growth rate and lag time of different strains of Salmonella enterica and Listeria monocytogenes in ready-to-eat lettuce. Food Microbiol. 30(1), 267–273. https://doi.org/10.1016/j.fm.2011.11.003 (2012).
Koseki, S. & Nonaka, J. Alternative approach to modeling bacterial lag time, using logistic regression as a function of time, temperature, pH, and sodium chloride concentration. Appl. Environ. Microbiol. 78(17), 6103–6112. https://doi.org/10.1128/AEM.01245-12 (2012).
Kremling, A., Geiselmann, J., Ropers, D. & de Jong, H. An ensemble of mathematical models showing diauxic growth behaviour. BMC Syst. Biol. 12(1), 82. https://doi.org/10.1186/s12918-018-0604-8 (2018).
Tonner, P. D. et al. A bayesian non-parametric mixed-effects model of microbial growth curves. PLoS Comput. Biol. 16(10), e1008366. https://doi.org/10.1371/journal.pcbi.1008366 (2020).
Loomis, W. F. & Magasanik, B. Glucose-Lactose Diauxie in Escherichia coli. J. Bacteriol. 93(4), 1397–1401. https://doi.org/10.1128/jb.93.4.1397-1401.1967 (1967).
Wong, P., Gladney, S. & Keasling, J. D. Mathematical model of thelacoperon: inducer exclusion, catabolite repression, and diauxic growth on glucose and lactose. Biotechnol. Prog. 13, 132–143. https://doi.org/10.1021/bp970003 (1997).
Russell, J. B. & Cook, G. M. Energetics of bacterial growth: Balance of anabolic and catabolic reactions. Microbiol. Rev. 59(1), 48–62 (1995).
Chu, D. & Barnes, D. J. The lag-phase during diauxic growth is a trade-off between fast adaptation and high growth rate. Sci. Rep. 6(1), 25191. https://doi.org/10.1038/srep25191 (2016).
Salvy, P. & Hatzimanikatis, V. Emergence of diauxie as an optimal growth strategy under resource allocation constraints in cellular metabolism. Proc. Natl. Acad. Sci. 118(8), e2013836118. https://doi.org/10.1073/pnas.2013836118 (2021).
Aida, H. & Ying, B-W. Population dynamics of Escherichia coli growing under chemically defined media. Sci. Data 12, 984 https://doi.org/10.1038/s41597-025-05356-3 (2025).
Hilau, S., Katz, S., Wasserman, T., Hershberg, R. & Savir, Y. Density-dependent effects are the main determinants of variation in growth dynamics between closely related bacterial strains. PLoS Comput. Biol. 18(10), e1010565. https://doi.org/10.1371/journal.pcbi.1010565 (2022).
Ashino, K., Sugano, K., Amagasa, T. & Ying, B. W. Predicting the decision making chemicals used for bacterial growth. Sci. Rep. 9(1), 7251. https://doi.org/10.1038/s41598-019-43587-8 (2019).
Senin, P. Dynamic time warping algorithm review. Inf. Comput. Sci. Dep. Univ. Hawaii Manoa Honolulu, USA 855(1–23), 40 (2008).
Salvador, S. & Chan, P. Toward accurate dynamic time warping in linear time and space. Intell. Data Anal. 11, 561–580. https://doi.org/10.3233/IDA-2007-11508 (2007).
Sakoe, H. & Chiba, S. Dynamic programming algorithm optimization for spoken word recognition. IEEE Trans. Acoust. Speech Signal Process. 26(1), 43–49. https://doi.org/10.1109/TASSP.1978.1163055 (1978).
Cao, Y. Y., Yomo, T. & Ying, B. W. Clustering of bacterial growth dynamics in response to growth media by dynamic time warping. Microorganisms 8(3), 331. https://doi.org/10.3390/microorganisms8030331 (2020).
Aida, H. & Ying, B-W. Data-driven discovery of the interplay between genetic and environmental factors in bacterial growth. Commun. Biology. 7(1), 1691. https://doi.org/10.1038/s42003-024-07347-3 (2024).
Matsui, Y., Nagai, M. & Ying, B. W. Growth rate-associated transcriptome reorganization in response to genomic, environmental, and evolutionary interruptions. Front. Microbiol. 14, 1145673. https://doi.org/10.3389/fmicb.2023.1145673 (2023).
Lundberg, S. M. & Lee, S-I. A unified approach to interpreting model predictions. https://doi.org/10.48550/arXiv.1705.07874 (2017).
Fraebel, D. T. et al. Environment determines evolutionary trajectory in a constrained phenotypic space. Elife 6, e24669. https://doi.org/10.7554/eLife.24669 (2017).
Nagai, M., Kurokawa, M. & Ying, B. W. The highly conserved chromosomal periodicity of transcriptomes and the correlation of its amplitude with the growth rate in Escherichia coli. DNA Research: Int. J. Rapid Publication Rep. Genes Genomes. 27(3), dsaa018. https://doi.org/10.1093/dnares/dsaa018 (2020).
Liu, L., Kurokawa, M., Nagai, M., Seno, S. & Ying, B. W. Correlated chromosomal periodicities according to the growth rate and gene expression. Sci. Rep. 10(1), 15531. https://doi.org/10.1038/s41598-020-72389-6 (2020).
Long, A. M., Hou, S., Ignacio-Espinoza, J. C. & Fuhrman, J. A. Benchmarking microbial growth rate predictions from metagenomes. ISME J. 15(1), 183–195. https://doi.org/10.1038/s41396-020-00773-1 (2021).
Wytock, T. P. & Motter, A. E. Predicting growth rate from gene expression. Proc. Natl. Acad. Sci. U.S.A. 116(2), 367–372. https://doi.org/10.1073/pnas.1808080116 (2019).
Wytock, T. P. et al. Extreme antagonism arising from gene-environment interactions. Biophys. J. 119(10), 2074–2086. https://doi.org/10.1016/j.bpj.2020.09.038 (2020).
Scheuerl, T. et al. Bacterial adaptation is constrained in complex communities. Nat. Commun. 11(1), 754. https://doi.org/10.1038/s41467-020-14570-z (2020).
Bank, C., Epistasis and adaptation on fitness landscapes. Annu. Rev. Ecol. Evol. Syst. 53, 457–479. https://doi.org/10.1146/annurev-ecolsys-102320-112153 (2022).
Cvijovic, I., Nguyen Ba, A. N. & Desai, M. M. Experimental studies of evolutionary dynamics in microbes. Trends Genet. 34(9), 693–703. https://doi.org/10.1016/j.tig.2018.06.004 (2018).
DelaFuente, J., Diaz-Colunga, J., Sanchez, A. & San Millan, A. Global epistasis in plasmid-mediated antimicrobial resistance. Mol. Syst. Biol. 20(4), 311–320. https://doi.org/10.1038/s44320-024-00012-1 (2024).
Ying, B. W., Seno, S., Kaneko, F., Matsuda, H. & Yomo, T. Multilevel comparative analysis of the contributions of genome reduction and heat shock to the Escherichia coli transcriptome. BMC Genom. 14, 25. https://doi.org/10.1186/1471-2164-14-25 (2013).
Fink, J. W. & Manhart, M. How do microbes grow in nature? The role of population dynamics in microbial ecology and evolution. Curr. Opin. Syst. Biol. 36, 100470. https://doi.org/10.1016/j.coisb.2023.100470 (2023).
Borer, B. & Or, D. Spatiotemporal metabolic modeling of bacterial life in complex habitats. Curr. Opin. Biotechnol. 67, 65–71. https://doi.org/10.1016/j.copbio.2021.01.004 (2021).
Pentney, W. & Meilă, M. Spectral clustering of biological sequence data. In: Proceedings of the AAAI Conference on Artificial Intelligence, 20 845–850 (2005).
Löffler, M., Zhang, A. Y. & Zhou, H. H. Optimality of spectral clustering in the Gaussian mixture model. Ann. Stat. 49(5), 2506–2530. https://doi.org/10.1214/20-aos2044 (2021).
Mahmood, H., Mehmood, T. & Al-Essa, L. A. Optimizing clustering algorithms for anti-microbial evaluation data: A majority score-based evaluation of K-means, Gaussian mixture model, and multivariate T-distribution mixtures. IEEE Access. ;11, 79793–79800. https://doi.org/10.1109/access.2023.3288344 (2023).
Sharma, A. et al. Hierarchical maximum likelihood clustering approach. IEEE Trans. Biomed. Eng. 64(1), 112–122. https://doi.org/10.1109/TBME.2016.2542212 (2017).
Warren Liao, T. Clustering of time series data: A survey. Pattern Recogn. 38, 1857–1874. https://doi.org/10.1016/j.patcog.2005.01.025 (2005).
De Souto, M. C., Costa, I. G., De Araujo, D. S., Ludermir, T. B. & Schliep, A. Clustering cancer gene expression data: A comparative study. BMC Bioinform. 9(1), 497. https://doi.org/10.1186/1471-2105-9-497 (2008).
Ashari, I. F., Dwi Nugroho, E., Baraku, R., Novri Yanda, I. & Liwardana, R. Analysis of elbow, silhouette, Davies-Bouldin, Calinski-Harabasz, and rand-index evaluation on K-means algorithm for classifying flood-affected areas in Jakarta. J. Appl. Inf. Comput. 7(1), 89–97. https://doi.org/10.30871/jaic.v7i1.4947 (2023).
Li, J., Hassan, D., Brewer, S. & Sitzenfrei, R. Is clustering time-series water depth useful? An exploratory study for flooding detection in urban drainage systems. Water 12(9), 2433. https://doi.org/10.3390/w12092433 (2020).
Suarez-Alvarez, M. M., Pham, D-T., Prostov, M. Y. & Prostov, Y. I. Statistical approach to normalization of feature vectors and clustering of mixed datasets. Proc. R. Soc. A Math. Phys. Eng. Sci. 468(2145), 2630–2651. https://doi.org/10.1098/rspa.2011.0704 (2012).
Wongoutong, C. The impact of neglecting feature scaling in k-means clustering. PLoS One. 19(12), e0310839. https://doi.org/10.1371/journal.pone.0310839 (2024).
Baba, T. et al. Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection. Mol. Syst. Biol. 2, 20060008. https://doi.org/10.1038/msb4100050 (2006).
Kato, J. & Hashimoto, M. Construction of consecutive deletions of the Escherichia coli chromosome. Mol. Syst. Biol. 3, 132. https://doi.org/10.1038/msb4100174 (2007).
Jagdish, T. & Nguyen Ba, A. N. Microbial experimental evolution in a massively multiplexed and high-throughput era. Curr. Opin. Genet. Dev. 75, 101943. https://doi.org/10.1016/j.gde.2022.101943 (2022).
Smith, T. P. et al. High-throughput characterization of bacterial responses to complex mixtures of chemical pollutants. Nat. Microbiol. https://doi.org/10.1038/s41564-024-01626-9 (2024).
Zhang, S. & Ying, B-W. Experimental mapping of bacterial fitness landscapes reveals eco-evolutionary fingerprints. Sci. Rep. 15(1), 32634. https://doi.org/10.1038/s41598-025-17103-0 (2025).
Keogh, E. J. & Pazzani, M. J. Derivative dynamic time warping. In: Proceedings of the 2001 SIAM International Conference on Data Mining 1–11 (SIAM, 2001).
Jeong, Y. S., Jeong, M. K. & Omitaomu, O. A. Weighted dynamic time warping for time series classification. Pattern Recogn. 44(9), 2231–2240. https://doi.org/10.1016/j.patcog.2010.09.022 (2011).
Zhao, J. P. & Itti, L. shapeDTW: Shape dynamic time warping. Pattern Recogn. 74, 171–184. https://doi.org/10.1016/j.patcog.2017.09.020 (2018).
Mizoguchi, H., Sawano, Y., Kato, J. & Mori, H. Superpositioning of deletions promotes growth of Escherichia coli with a reduced genome. DNA Res. Int. J. Rapid Publ. Rep. Genes Genomes. 15(5), 277–284. https://doi.org/10.1093/dnares/dsn019 (2008).
Kurokawa, M., Nishimura, I. & Ying, B. W. Experimental evolution expands the breadth of adaptation to an environmental gradient correlated with genome reduction. Front. Microbiol. 13, 826894. https://doi.org/10.3389/fmicb.2022.826894 (2022).
Kurokawa, M. & Ying, B. W. Precise, high-throughput analysis of bacterial growth. J. Vis. Exp. 127, 56197. https://doi.org/10.3791/56197 (2017).
Gupta, Y. M., Kirana, S. N. & Homchan, S. Representing DNA for machine learning algorithms: A primer on one-hot, binary, and integer encodings. Biochem. Mol. Biol. Educ. 53(2), 142–146. https://doi.org/10.1002/bmb.21870 (2025).
Acknowledgements
We thank the National BioResource Project, National Institute of Genetics (Shizuoka, Japan), for providing the E. coli strains and Issei Nishimura for his experimental assistance in acquiring the growth curves.
Funding
This work was supported by the JSPS KAKENHI grant number 25K02259 (to BWY).
Author information
Authors and Affiliations
Contributions
JG conducted data mining, validation, and drafted the manuscript. BWY conceived the research, experiments, and rewrote the manuscript. All authors approved the final manuscript.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Additional information
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary Information
Below is the link to the electronic supplementary material.
Supplementary Material 1
Supplementary Material 2
Supplementary Material 3
Supplementary Material 4
Supplementary Material 5
Supplementary Material 6
Supplementary Material 7
Supplementary Material 8
Rights and permissions
Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.
Reprints and permissions
About this article
Cite this article
Gong, J., Ying, BW. Data-driven analysis reveals distinct genomic and environmental contributions to bacterial growth curves.
Sci Rep (2025). https://doi.org/10.1038/s41598-025-32144-1
Received:
Accepted:
Published:
DOI: https://doi.org/10.1038/s41598-025-32144-1
Keywords
- Bacterial growth dynamics
- Time series data mining
- Genome-environment interaction
- Dynamic time warping
- Machine learning in biology
Source: Ecology - nature.com
