in

Morphological and spectroscopic analysis of snow and glacier algae and their parasitic fungi on different glaciers of Svalbard

  • 1.

    Perini, L., Gostinčar, C. & Gunde-Cimerman, N. Fungal and bacterial diversity of Svalbard subglacial ice. Diversity and hidden host specificity of chytrids infecting colonial volvocacean algae. Sci. Rep. 27, 20230. https://doi.org/10.1038/s41598-019-56290-5 (2019).

    CAS 
    Article 

    Google Scholar 

  • 2.

    Margesin, R., Schinner, F. Cold-adapted organisms. In Ecology, Physiology, Enzymology and Molecular Biology (eds. Margesin, R. & Schinner, F) (Springer, 1999).

  • 3.

    Mueller, D. R. & Pollard, W. H. Gradient analysis of cryoconite ecosystems from two polar glaciers. Polar Biol. 27, 66–74 (2004).

    Article 

    Google Scholar 

  • 4.

    Hodson, A. et al. Glacial ecosystems. Ecol. Monogr. 78, 41–67 (2008).

    Article 

    Google Scholar 

  • 5.

    Hoham, R. W. & Remias, D. Snow and glacial algae: A review. J. Phycol. 56, 264–282. https://doi.org/10.1111/jpy.12952 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 6.

    Kol, E. & Eurola, S. Red snow algae from Spitsbergen. Astarte. J. Arct. Biol. 7, 61–66 (1974).

    Google Scholar 

  • 7.

    Stibal, M., Elster, J., Sabacká, M. & Kastovská, K. Seasonal and diel changes in photosynthetic activity of the snow alga Chlamydomonas nivalis (Chlorophyceae) from Svalbard determined by pulse amplitude modulation fluorometry. FEMS Microbiol. Ecol. 59, 265–273 (2007).

    CAS 
    Article 

    Google Scholar 

  • 8.

    Kviderová, J. Research on cryosestic communities in Svalbard: the snow algae of temporary snowfields in Petuniabukta, Central Svalbard. Czech Polar Rep. 2, 8–19 (2012).

    Article 

    Google Scholar 

  • 9.

    Remias, D., Lütz-Meindl, U. & Lütz, C. Photosynthesis, pigments, and ultrastructure of the alpine snow alga Chlamydomonas nivalis. Eur. J. Phycol. 40, 259–268 (2005).

    CAS 
    Article 

    Google Scholar 

  • 10.

    Takeuchi, N. et al. Variations in phototroph communities on the ablating bare-ice surface of glaciers on Brøggerhalvøya, Svalbard. Front. Earth Sci. https://doi.org/10.3389/feart.2019.00004 (2019).

    Article 

    Google Scholar 

  • 11.

    Leya, T., Müller, T., Ling, H. U., Fuhr, G. Snow algae from north-western Spitsbergen (Svalbard). In The Coastal Ecosystem of Kongsfjorden, Svalbard. Synopsis of Biological Research Performed at the Koldewey Station in the Years 1991–2003. Ber. (ed. Wiencke, C.) 46–54 (Polarforsch. Meeresforsch, 2004).

  • 12.

    Remias, D., Holzinger, A., Aigner, S. & Lütz, C. Ecophysiology and ultrastructure of Ancylonema nordenskioeldii (Zygnematales, Streptophyta), causing brown ice on glaciers in Svalbard (high Arctic). Polar Biol. 35, 899–908 (2011).

    Article 

    Google Scholar 

  • 13.

    Uetake, J., Naganuma, T., Hebsgaard, M. B., Kanda, H. & Kohshima, S. Communities of algae and cyanobacteria on glaciers in west Greenland. Polar Sci. 4, 71–80 (2010).

    ADS 
    Article 

    Google Scholar 

  • 14.

    Takeuchi, N. The altitudinal distribution of snow algae on an Alaska glacier (Gulkana Glacier in the Alaska Range). Hydrol. Process. 15, 3447–3459 (2001).

    ADS 
    Article 

    Google Scholar 

  • 15.

    Takeuchi, N. & Kohshima, S. A snow algal community on Tyndall Glacier in the Southern Patagonia Icefield, Chile. Arct. Antarct. Alp. Res. 36, 92–99 (2004).

    Article 

    Google Scholar 

  • 16.

    Yoshimura, Y., Kohshima, S. & Ohtani, S. A community of snow algae on a Himalayan glacier: Change of algal biomass and community structure with altitude. Arct. Antarct. Alp. Res. 29, 126–137 (1997).

    Article 

    Google Scholar 

  • 17.

    Komárek, O. & Komárek, J. Contribution to the taxonomy and ecology of cryosestic algae in the summer season 1995–96 at King George Island, S. Shetland Islands. Nova Hedwig. Beih. 123, 121–140 (2001).

    Google Scholar 

  • 18.

    Kagami, M., de Bruin, A., Ibelings, B. W. & Van Donk, E. Parasitic chytrids: their effects on phytoplankton communities and food-web dynamics. Hydrobiologia 578, 113–129 (2007).

    Article 

    Google Scholar 

  • 19.

    Gromov, B. V., Pljusch, A. V. & Mamkaeva, K. A. Morphology and possible host range of Rhyizophydium algavorum sp. nov. (Chytridiales) – An obligate parasite of algae. Protistology 1, 62–65 (1999).

    Google Scholar 

  • 20.

    Hassett, B. T. & Gradinger, R. Chytrids dominate arctic marine fungal communities. Environ. Microbiol. 18, 2001–2009 (2016).

    CAS 
    Article 

    Google Scholar 

  • 21.

    Hassett, B. T. et al. Arctic marine fungi: Biomass, functional genes, and putative ecological roles. ISME J. 13, 1484–1496 (2019).

    CAS 
    Article 

    Google Scholar 

  • 22.

    Rämä, T. et al. Fungi sailing the Arctic Ocean: Speciose communities in North Atlantic driftwood as revealed by high-throughput amplicon sequencing. Microb. Ecol. 72, 295–304 (2016).

    Article 

    Google Scholar 

  • 23.

    Rämä, T., Hassett, B. T. & Bubnova, E. Arctic marine fungi: From filaments and flagella to operational taxonomic units and beyond. Bot. Mar. 60, 433–452 (2017).

    Article 

    Google Scholar 

  • 24.

    Zhang, T., Wang, N. F., Zhang, Y. Q., Liu, H. Y. & Yu, L. Y. Diversity and distribution of fungal communities in the marine sediments of Kongsfjorden, Svalbard (High Arctic). Sci. Rep. 5, 14524. https://doi.org/10.1038/srep14524 (2015).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 25.

    Zhang, T., Wang, N. F., Zhang, Y. Q., Liu, H. Y. & Yu, L. Y. Diversity, and distribution of aquatic fungal communities in the Ny-Ålesund region, Svalbard (High Arctic): aquatic fungi in the Arctic. Microb. Ecol. 71, 543–554 (2016).

    Article 

    Google Scholar 

  • 26.

    Remy, W., Taylor, T. N. & Hass, H. Early Devonian fungi: A Blastocladalean fungus with sexual reproduction. Am. J. Bot. 81, 690–702 (1994).

    Article 

    Google Scholar 

  • 27.

    Senanayake, I. C. et al. Morphological approaches in studying fungi: Collection, examination, isolation, sporulation and preservation. Mycosphere 11, 2678–2754 (2020).

    Article 

    Google Scholar 

  • 28.

    Fiołka, M. J., Takeuchi, N., Sofińska-Chmiel, W., Mieszawska, S. & Treska, I. Morphological and physicochemical diversity of snow algae from Alaska. Sci. Rep. 10, 19167. https://doi.org/10.1038/s41598-020-76215-x (2020).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 29.

    Monheit, J. E., Cowan, D. F. & Moore, D. G. Rapid detection of fungi in tissues using calcofluor white and fluorescence microscopy. Arch. Pathol. Lab. Med. 108, 616–618 (1984).

    CAS 
    PubMed 

    Google Scholar 

  • 30.

    Semedo, M. C., Karmali, A. & Fonseca, L. A high throughput colorimetric assay of β-1,3-d-glucans by Congo red dye. J. Microbiol. Methods. 10, 140–148 (2015).

    Article 

    Google Scholar 

  • 31.

    Herburger, K. & Holzinger, A. Aniline blue and Calcofluor white staining of callose and cellulose in the streptophyte green algae Zygnema and Klebsormidium. Bio Protoc. 6, 1969. https://doi.org/10.21769/BioProtoc.1969 (2016).

    Article 

    Google Scholar 

  • 32.

    Müller, U. & Sengbusch, P. Visualization of aquatic fungi (Chytridiales) parasitizing on algae by means of induced fluorescence. Arch. Hydrobiol. 97, 471–485 (1983).

    Google Scholar 

  • 33.

    Yang, Y., Xiang, Y. & Xu, M. From red to green: The propidium iodide-permeable membrane of Shewanella decolorationis S12 is repairable. Sci. Rep. 5, 18583. https://doi.org/10.1038/srep18583 (2016).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 34.

    Luo, Z. et al. Preparation and properties of enzyme-modified cassava starch−zinc complexes. Agric. Food Chem. 61, 4631–4638 (2013).

    CAS 
    Article 

    Google Scholar 

  • 35.

    Beamson, G., Briggs, D. High Resolution XPS of Organic Polymers—The Scienta ESCA300 Database (Wiley Interscience, 1992).

  • 36.

    Miller, D. J., Biesinger, M. C. & McIntyre, N. S. Interactions of CO2 and CO at fractional atmosphere pressures with iron and iron oxide surfaces: One possible mechanism for surface contamination?. Surf. Interface Anal. 33, 299–305 (2002).

    CAS 
    Article 

    Google Scholar 

  • 37.

    Payne, B. P., Biesinger, M. C. & McIntyre, N. S. The study of polycrystalline nickel metal oxidation by water vapour. J. Electron Spectros. Relat. Phenom. 184, 29–37 (2011).

    CAS 
    Article 

    Google Scholar 

  • 38.

    Oh, Y. J. et al. Oxygen functional groups and electrochemical capacitive behavior of incompletely reduced graphene oxides as a thin-film electrode of supercapacitor. Electrachem. Acta. 116, 118–128 (2014).

    CAS 
    Article 

    Google Scholar 

  • 39.

    Procházková, L., Leya, T., Křížková, H. & Nedbalová, L. Sanguina nivaloides and Sanguina aurantia gen. et spp. nov. (Chlorophyta): The taxonomy, phylogeny, biogeography and ecology of two newly recognised algae causing red and orange snow. FEMS Microbiol. Ecol. https://doi.org/10.1093/femsec/fiz064 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 40.

    Procházková, L., Řezanka, T., Nedbalová, L. & Remias, D. Unicellular versus filamentous: The glacial alga Ancylonema alaskana comb. et stat. nov. and its ecophysiological relatedness to Ancylonema nordenskioeldii (Zygnematophyceae, Streptophyta). Microorganisms. https://doi.org/10.3390/microorganisms9051103 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 41.

    Müller, T., Bleiss, W., Martin, C. D., Rogaschewski, S. & Fuhr, G. Snow algae from northwest Svalbard: Their identification, distribution, pigment and nutrient content. Polar Biol. 20, 14–32 (1998).

    Article 

    Google Scholar 

  • 42.

    Domozych, D. et al. The cell walls of green algae: A journey through evolution and diversity. Front. Plant. Sci. https://doi.org/10.3389/fpls.2012.00082 (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 43.

    Holzinger, A. & Lütz, C. Algae and UV irradiation: Effects on ultrastructure and related metabolic functions. Micron 37, 190–207 (2006).

    Article 

    Google Scholar 

  • 44.

    Rad-Menéndez, C. et al. Rediscovering Zygorhizidium affluenscanter: molecular taxonomy, infectious cycle, and cryopreservation of a chytrid infecting the bloom-forming diatom Asterionella formosa. Appl. Environ. Microbiol. 84, e01826-e1918. https://doi.org/10.1128/AEM.01826-18 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 45.

    Canter-Lund, H., Lund, J.G. Freshwater Algae: Their Microscopic World Explored. (ed. Canter-Lund, H.). 21–93. (Biopress, 1995).

  • 46.

    Kol, E. Kryobiologie. Biologie und Limnologie des Schneesund Eises. I. Kryovegetation. Die Binnengewa¨sser, Band XXIV. Schweizerbart’sche Verlagsbuchhandlung, Stuttgart (1968).

  • 47.

    Stein, J. R. & Amundsen, C. C. Studies on snow algae and fungi from the front range of Colorado. Can. J. Bot. 45, 2033–2045 (1967).

    Article 

    Google Scholar 

  • 48.

    Hoham, R. W., Laursen, A. E., Clive, S. O., Duval, B. Snow algae and other microbes in several alpine areas in New England. in Proceedings of the 61st Annual Western Snow Conference, Quebec City, Canada. 165–173 (1993).

  • 49.

    Brown, P. S., Olson, B. J. S. C. & Jumpponen, A. Fungi and algae co-occur in snow: an issue of shared habitat or algal facilitation of heterotrophs?. Arct. Antarct. Alp. Res. 47, 729–749 (2015).

    Article 

    Google Scholar 

  • 50.

    Jumpponen, A., Egerton-Warburton, L. Mycorrhizal fungi in successional environments—A community assembly model incorporating host plant, environmental and biotic filters. In Dighton (ed. White, J. & Oudemans, P.) 139–180 (CRC Press, 2005).

  • 51.

    Freeman, K. R. et al. Evidence that chytrids dominate fungal communities in high elevation soils. PNAS 106, 18315–18320 (2009).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 52.

    Sime-Ngando, T. Phytoplankton chytridiomycosis: Fungal parasites of phytoplankton and their imprints on the food web dynamics. Front. Microbiol. https://doi.org/10.3389/fmicb.2012.00361 (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 53.

    Powell, M. J. Looking at mycology with a Janus face. A glimpse at Chytridiomycetes active in the environment. Mycologia 85, 1–20 (1993).

    Article 

    Google Scholar 

  • 54.

    Ibelings, B. W. et al. Host parasite interactions between freshwater phytoplankton and chytrid fungi (Chytridiomycota). J. Phycol. 40, 437–453 (2004).

    Article 

    Google Scholar 

  • 55.

    Scholz, B., Küpper, F. C., Vyverman, W., Ólafsson, H. G. & Karsten, U. Chytridiomycosis of marine diatoms—The role of stress physiology and resistance in parasite-host recognition and accumulation of defense molecules. Mar. Drugs. 15, 26. https://doi.org/10.3390/md15020026 (2017).

    CAS 
    Article 
    PubMed Central 

    Google Scholar 

  • 56.

    Müehlstein, L. K., Amon, J. P. & Leffler, D. L. Chemotaxis in the marine fungus Rhizophydium littoreum. Appl. Environ. Microbiol. 54, 1668–1672 (1988).

    ADS 
    Article 

    Google Scholar 

  • 57.

    Moss, A. S., Reddy, N. S., Dortaj, I. M. & San Francisco, M. J. Chemotaxis of the amphibian pathogen Batrachochytrium dendrobatidis and its response to a variety of attractants. Mycologia 100, 1–5 (2008).

    CAS 
    Article 

    Google Scholar 

  • 58.

    Powell, M. J. Production, and modifications of extracellular structures during development of Chytridiomycetes. Protoplasma 181, 123–141 (1994).

    Article 

    Google Scholar 

  • 59.

    Konishi, H., Hio, M., Kobayashi, M., Takase, R. & Hashimoto, W. Bacterial chemotaxis towards polysaccharide pectin by pectin-binding protein. Sci. Rep. 10, 3977. https://doi.org/10.1038/s41598-020-60274-1 (2020).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 60.

    Bruning, K. Effects of temperature and light on the population-dynamics of the Asterionella-Rhizophydium association. J. Plankton Res. 13, 707–719 (1991).

    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    Viral community analysis in a marine oxygen minimum zone indicates increased potential for viral manipulation of microbial physiological state

    Q&A: Options for the Diablo Canyon nuclear plant