in

Serotonin transporter (SERT) polymorphisms, personality and problem-solving in urban great tits

  • 1.

    Dingemanse, N. J. & Wolf, M. Recent models for adaptive personality differences: A review. Phil. Trans. R. Soc. B 365, 3947–3958. https://doi.org/10.1098/rstb.2010.0221 (2010).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 2.

    Wolf, M., van Doorn, G., Leimar, O. & Weissing, F. J. Life-history trade-offs favour the evolution of animal personalities. Nature 447, 581–584. https://doi.org/10.1038/nature05835 (2007).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 3.

    Dingemanse, N. J., Both, C., Drent, P. J. & Tinbergen, J. M. Fitness consequences of avian personalities in a fluctuating environment. Proc. R. Soc. B. 271, 847–852. https://doi.org/10.1098/rspb.2004.2680 (2004).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 4.

    Sih, A. & Bell, A. M. Insights for behavioral ecology from behavioral syndromes. Adv. Study Behav. 38, 227–281. https://doi.org/10.1016/S0065-3454(08)00005-3 (2008).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 5.

    Sih, A., Bell, A. M. & Johnson, J. C. Behavioral syndromes: An ecological and evolutionary overview. Trends Ecol. Evol. 19, 372–378. https://doi.org/10.1016/j.tree.2004.04.009 (2004).

    Article 
    PubMed 

    Google Scholar 

  • 6.

    Drent, P. J., van Oers, K. & van Noordwijk, A. J. Realized heritability of personalities in the great tit (Parus major). Proc. R. Soc. B. 270, 45–51. https://doi.org/10.1098/rspb.2002.2168 (2003).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 7.

    Sol, D., Griffin, A. S., Bartomeus, I. & Boyce, H. Exploring or avoiding novel food resources? The novelty conflict in an invasive bird. PLoS ONE 6, e19535. https://doi.org/10.1371/journal.pone.0019535 (2011).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 8.

    Dammhahn, M., Mazza, V., Schirmer, A., Göttsche, C. & Eccard, J. C. Of city and village mice: Behavioural adjustments of striped field mice to urban environments. Sci. Rep. 10, 13056. https://doi.org/10.1038/s41598-020-69998-6 (2020).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 9.

    Sih, A. & Del Giudice, M. Linking behavioural syndromes and cognition: A behavioural ecological perspective. Phil. Trans. R. Soc. B 367, 2762–2772. https://doi.org/10.1098/rstb.2012.0216 (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 10.

    Stoewe, M. & Kotrschal, K. Behavioural phenotypes may determine whether social context facilitates or delays novel object exploration in ravens (Corvus corax). J. Ornithol. 148, S179–S184. https://doi.org/10.1007/s10336-007-0145-1 (2007).

    Article 

    Google Scholar 

  • 11.

    Guillette, L. M., Reddon, A. R., Hoeschele, M. & Sturdy, C. B. Sometimes slower is better: Slow-exploring birds are more sensitive to changes in a vocal discrimination task. Proc. R. Soc. B 278, 767–773. https://doi.org/10.1098/rspb.2010.1669 (2011).

    Article 
    PubMed 

    Google Scholar 

  • 12.

    Dochtermann, N. A., Schwab, T. & Sih, A. The contribution of additive genetic variation to personality variation: Heritability of personality. Proc. R. Soc. B 282, 20142201. https://doi.org/10.1098/rspb.2014.2201 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 13.

    Van Oers, K., De Jong, G., Van Noordwijk, A. J., Kempenaers, B. & Drent, P. J. Contribution of genetics to the study of animal personalities: A review of case studies. Behaviour 142, 1185–1206. https://doi.org/10.1163/156853905774539364 (2005).

    Article 

    Google Scholar 

  • 14.

    Van Oers, K. & Mueller, J. C. Evolutionary genomics of animal personality. Phil. Trans. R. Soc. B 365, 3991–4000. https://doi.org/10.1098/rstb.2010.0178 (2010).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 15.

    Croston, R., Branch, C. L., Kozlovsky, D. Y., Dukas, R. & Pravosudov, V. V. Heritability and the evolution of cognitive traits. Behav. Ecol. 26, 1447–1459. https://doi.org/10.1093/beheco/arv088 (2015).

    Article 

    Google Scholar 

  • 16.

    Quinn, J. L., Cole, E. F., Reed, T. E. & Morand-Ferron, J. Environmental and genetic determinants of innovativeness in a natural population of birds. Phil. Trans. R. Soc. B 371, 20150184. https://doi.org/10.1098/rstb.2015.0184 (2016).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 17.

    Evans, J., Boudreau, K. & Hyman, J. Behavioural syndromes in urban and rural populations of song sparrows. Ethology 116, 588–595. https://doi.org/10.1111/j.1439-0310.2010.01771.x (2010).

    Article 

    Google Scholar 

  • 18.

    Bókony, V., Kulcsár, A., Tóth, Z. & Liker, A. Personality traits and behavioral syndromes in differently urbanized populations of house sparrows (Passer domesticus). PLoS ONE 7, 36639. https://doi.org/10.1371/journal.pone.0036639 (2007).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 19.

    Charmantier, A., Deyeyrier, V., Lambrechts, M., Perret, S. & Grégoire, A. Urbanization is associated with divergence in pace-of-life in great tits. Front. Ecol. Evol. https://doi.org/10.3389/fevo.2017.00053 (2017).

    Article 

    Google Scholar 

  • 20.

    Isaksson, C., Rodewald, A. D. & Gil, D. Editorial: Behavioural and ecological consequences of urban life in birds. Front. Ecol. Evol. https://doi.org/10.3389/fevo.2018.00050 (2018).

    Article 

    Google Scholar 

  • 21.

    Audet, J.-N., Ducatez, S. & Lefebvre, L. The town bird and the country bird: Problem solving and immunocompetence vary with urbanization. Behav. Ecol. 27, 637–644. https://doi.org/10.1093/beheco/arv201 (2016).

    Article 

    Google Scholar 

  • 22.

    Miranda, A. C., Schielzeth, H., Sonntag, T. & Partecke, J. Urbanization and its effects on personality traits: A result of microevolution or phenotypic plasticity. Glob. Change Biol. 19, 2634–2644. https://doi.org/10.1111/gcb.12258 (2013).

    ADS 
    Article 

    Google Scholar 

  • 23.

    Riyahi, S., Björklund, M., Mateos-Gonzalez, F. & Senar, J. C. Personality and urbanization: Behavioural traits and DRD4 SNP830 polymorphisms in great tits in Barcelona city. J. Ethol. 35, 101–108. https://doi.org/10.1007/s10164-016-0496-2 (2017).

    Article 

    Google Scholar 

  • 24.

    Schinka, J. A., Letsch, E. A. & Crawford, F. C. DRD4 and novelty seeking: Results of meta-analyses. Am. J. Med. Genet. 114, 643–648. https://doi.org/10.1002/ajmg.10649 (2002).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 25.

    Chen, C. S., Burton, M., Greenberger, E. & Dmitrieva, J. Population migration and the variation of Dopamine D4 Receptor (DRD4) allele frequencies around the globe. Evol. Hum. Behav. 20, 309–324. https://doi.org/10.1016/S1090-5138(99)00015-X (1999).

    Article 

    Google Scholar 

  • 26.

    Shimada, M. K. et al. Polymorphism in the second intron of dopamine receptor D4 gene in humans and apes. Biochem. Biophys. Res. Commun. 316, 1186–1190. https://doi.org/10.1016/j.bbrc.2004.03.006 (2004).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 27.

    Fidler, A. E. et al. Drd4 gene polymorphisms are associated with personality variation in a passerine bird. Proc. R. Soc. B. 274, 1685–1691. https://doi.org/10.1098/rspb.2007.0337 (2007).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 28.

    Mueller, J. C. et al. Haplotype structure, adaptive history and associations with exploratory behaviour of the DRD4 gene region in four great tit (Parus major) populations. Mol. Ecol. 22, 2797–2809. https://doi.org/10.1111/mec.12282 (2013).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 29.

    Korsten, P. et al. Association between DRD4 gene polymorphism and personality variation in great tits: A test across four wild populations. Mol. Ecol. 19, 832–843. https://doi.org/10.1111/j.1365-294X.2009.04518.x (2010).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 30.

    Jiang, W., Shang, S. & Su, Y. Genetic influences on insight problem solving: The role of catechol-O-methyltransferase polymorphisms. Front. Psychol. 6, 1569. https://doi.org/10.3389/fpsyg.2015.01569 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 31.

    Hopkins, W. et al. Genetic influences on receptive joint attention in chimpanzees (Pan troglodytes). Sci. Rep. 4, 3774. https://doi.org/10.1038/srep03774 (2014).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 32.

    Fitzpatrick, M. J. et al. Candidate genes for behavioural ecology. Trends Ecol. Evol. 20, 96–104. https://doi.org/10.1016/j.tree.2004.11.017 (2005).

    Article 
    PubMed 

    Google Scholar 

  • 33.

    Munafo, M. R., Brown, S. M. & Harkless, K. C. Serotonin transporter (5-HTTLPR) genotype and amygdala activation: A meta-analysis. Biol. Psychiatry 63, 852–857. https://doi.org/10.1016/j.biopsych.2007.08.016 (2008).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 34.

    Staes, N. et al. Serotonin receptor 1A variation is associated with anxiety and agonistic behavior in chimpanzees. Mol. Biol. Evol. 36, 1418–1429. https://doi.org/10.1093/molbev/msz061 (2019).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 35.

    Mueller, J. C. et al. Behaviour-related DRD4 polymorphisms in invasive bird populations. Mol. Ecol. 23, 2876–2885. https://doi.org/10.1111/mec.12763 (2014).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 36.

    Timm, K., Tilgar, V. & Saag, P. DRD4 gene polymorphism in great tits: Gender-specific association with behavioural variation in the wild. Behav. Ecol. Sociobiol. 69, 729–735. https://doi.org/10.1007/s00265-015-1887-z (2015).

    Article 

    Google Scholar 

  • 37.

    Riyahi, S., Sánchez-Delgado, M., Calafell, F., Monk, D. & Senar, J. C. Combined epigenetic and intraspecific variation of the DRD4 and SERT genes influence novelty seeking behaviour in great tit Parus major. Epigenetics 10, 516–525. https://doi.org/10.1080/15592294.2015.1046027 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 38.

    Holtmann, B. et al. Population differentiation and behavioural association of the two ‘personality’ genes DRD4 and SERT in dunnocks (Prunella modularis). Mol. Ecol. 25, 706–722. https://doi.org/10.1111/mec.13514 (2016).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 39.

    Krause, E. T., Kjaer, J. B., Lüders, C. & van Phi, L. A polymorphism in the 5′-flanking region of the serotonin transporter (5-HTT) gene affects fear-related behaviors of adult domestic chickens. Behav. Brain Res. 14, 92–96. https://doi.org/10.1016/j.bbr.2017.04.051 (2017).

    CAS 
    Article 

    Google Scholar 

  • 40.

    Timm, K., van Oers, K. & Tilgar, V. SERT gene polymorphisms are associated with risk-taking behaviour and breeding parameters in wild great tits. J. Exp. Biol. 221, jeb171595. https://doi.org/10.1242/jeb.171595 (2018).

    Article 
    PubMed 

    Google Scholar 

  • 41.

    Timm, K., Koosa, K. & Tilgar, V. The serotonin transporter gene could play a role in anti-predator behaviour in a forest passerine. J. Ethol. 37, 221–227. https://doi.org/10.1007/s10164-019-00593-7 (2019).

    Article 

    Google Scholar 

  • 42.

    Berger, M., Gray, J. A. & Roth, B. L. The expanded biology of serotonin. Annu. Rev. Med. 60, 355–366. https://doi.org/10.1146/annurev.med.60.042307.110802 (2009).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 43.

    Lesch, K. P. & Merschdorf, U. Impulsivity, aggression, and serotonin: A molecular psychobiological perspective. Behav. Sci. Law 18, 581–604 (2000).

    CAS 
    Article 

    Google Scholar 

  • 44.

    Duke, A. A., Bègue, L., Bell, R. & Eisenlohr-Moul, T. Revisiting the serotonin-aggression relation in humans: A meta-analysis. Psychol. Bull. 139, 1148–1172. https://doi.org/10.1037/a0031544 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 45.

    Ferrari, P. F., Palanza, P., Parmigiani, S., de Almeida, R. M. & Miczek, K. A. Serotonin and aggressive behavior in rodents and nonhuman primates: Predispositions and plasticity. Eur. J. Pharmacol. 526, 259–273. https://doi.org/10.1016/j.ejphar.2005.10.002 (2005).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 46.

    Bacqué-Cazenave, J. et al. Serotonin in animal cognition and behavior. Int. J. Mol. Sci. 21, 1649. https://doi.org/10.3390/ijms21051649 (2020).

    CAS 
    Article 
    PubMed Central 

    Google Scholar 

  • 47.

    Walker, S. C. et al. Selective prefrontal serotonin depletion impairs acquisition of a detour-reaching task. Eur. J. Neurosci. 23, 3119–3123. https://doi.org/10.1111/j.1460-9568.2006.04826.x (2006).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 48.

    Cools, R., Roberts, A. C. & Robbins, T. W. Serotoninergic regulation of emotional and behavioural control processes. Trends Cogn. Sci. 12, 31–40. https://doi.org/10.1016/j.tics.2007.10.011 (2008).

    Article 
    PubMed 

    Google Scholar 

  • 49.

    Rudnick, G. & Sandtner, W. Serotonin transport in the 21st century. J. Gen. Physiol. 151, 1248–1264. https://doi.org/10.1085/jgp.201812066 (2018).

    CAS 
    Article 

    Google Scholar 

  • 50.

    Lesch, K. P. et al. Association of anxiety-related traits with a polymorphism in the serotonin transporter gene regulatory region. Science 274, 1527–1531. https://doi.org/10.1126/science.274.5292.1527 (1996).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 51.

    Sen, S., Burmeister, M. & Ghosh, D. Meta-analysis of the association between a serotonin transporter promoter polymorphism (5- HTTLPR) and anxiety-related personality traits. Am. J. Med. Genet. 127, 85–89. https://doi.org/10.1002/ajmg.b.20158 (2004).

    Article 

    Google Scholar 

  • 52.

    Karg, K., Burmeister, M., Shedden, K. & Sen, S. The serotonin transporter promoter variant (5-HTTLPR), stress, and depression meta-analysis revisited: Evidence of genetic moderation. Arch. Gen. Psychiatry 68, 444–454. https://doi.org/10.1001/archgenpsychiatry.2010.189 (2011).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 53.

    Beversdorf, D. Q. et al. Influence of serotonin transporter SLC6A4 genotype on the effect of psychosocial stress on cognitive performance: An exploratory pilot study. Cogn. Behav. Neurol. 31, 79–85. https://doi.org/10.1097/WNN.0000000000000153 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 54.

    Canli, T. & Lesch, P.-K. Long story short: The serotonin transporter in emotion regulation and social cognition. Nat. Neurosci. 10, 1103–1109. https://doi.org/10.1038/nn1964 (2007).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 55.

    Jarrell, H. et al. Polymorphisms in the serotonin reuptake transporter gene modify the consequences of social status on metabolic health in female rhesus monkeys. Physiol. Behav. 93, 807–819. https://doi.org/10.1016/j.physbeh.2007.11.042 (2008).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 56.

    Bennett, A. et al. Early experience and serotonin transporter gene variation interact to influence primate CNS function. Mol. Psychiatry 7, 118–122. https://doi.org/10.1038/sj.mp.4000949 (2002).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 57.

    Golebiowska, J. et al. Serotonin transporter deficiency alters socioemotional ultrasonic communication in rats. Sci. Rep. 9, 20283. https://doi.org/10.1038/s41598-019-56629-y (2019).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 58.

    Thys, B. et al. The serotonin transporter gene and female personality variation in a free-living passerine. Sci. Rep. 11, 8577. https://doi.org/10.1038/s41598-021-88225-4 (2021).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 59.

    Audet, J.-N. et al. Divergence in problem-solving skills is associated with differential expression of glutamate receptors in wild finches. Sci. Adv. 4, eaao6369. https://doi.org/10.1126/sciadv.aao6369 (2018).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 60.

    Grunst, A. S., Grunst, M. L., Pinxten, R. & Eens, M. Personality and plasticity in neophobia levels vary with anthropogenic disturbance but not toxic metal exposure in urban great tits. Sci. Total Environ. 656, 997–1009. https://doi.org/10.1016/j.scitotenv.2018.11.383 (2019).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 61.

    Grunst, A. S., Grunst, M. L., Pinxten, R. & Eens, M. Sources of individual variation in problem-solving performance in urban great tits (Parus major): Exploring effects of metal pollution, urban disturbance and personality. Sci. Tot. Environ. 749, 141436. https://doi.org/10.1016/j.scitotenv.2020.141436 (2020).

    CAS 
    Article 

    Google Scholar 

  • 62.

    Thys, B. et al. The female perspective of personality in a wild songbird: Repeatable aggressiveness relates to exploration behavior. Sci. Rep. 7, 7656. https://doi.org/10.1038/s41598-017-08001-1 (2017).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 63.

    Grunst, A. S. et al. An important personality trait varies with blood and plumage metal concentrations in a free-living songbird. Environ. Sci. Technol. 53, 10487–10496. https://doi.org/10.1021/acs.est.9b03548 (2019).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 64.

    Grunst, A. S. et al. Variation in personality traits across a metal pollution gradient in a free-living songbird. Sci. Total Environ. 630, 668–678. https://doi.org/10.1016/j.scitotenv.2018.02.19 (2018).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 65.

    Laucht, M. et al. Interaction between the 5-HTTLPR serotonin transporter polymorphism and environmental adversity for mood and anxiety psychopathology: Evidence from a high-risk community sample of young adults. Int. J. Neuropharmacol. 12, 737–747. https://doi.org/10.1017/S1461145708009875 (2009).

    CAS 
    Article 

    Google Scholar 

  • 66.

    Wang, Z. et al. Genome-wide gene by lead exposure interaction analysis identifies UNC5D as a candidate gene for neurodevelopment. Environ. Health 16, 81. https://doi.org/10.1186/s12940-017-0288-3 (2017).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 67.

    Grunst, A. S., Grunst, M. L., Pinxten, R. & Eens, M. Proximity to roads, but not exposure to metal pollution, is associated with accelerated developmental telomere shortening in nestling great tits. Environ. Pollut. 256, 113373. https://doi.org/10.1016/j.envpol.2019.113373 (2019).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 68.

    Dingemanse, N. J. et al. Repeatability and heritability of exploratory behaviour in great tits from the wild. Anim. Behav. 64, 929–937. https://doi.org/10.1006/anbe.2002.2006 (2002).

    Article 

    Google Scholar 

  • 69.

    Solé, X. et al. SNPStats: A web tool for the analysis of association studies. Bioinformatics 22, 1928–1929. https://doi.org/10.1093/bioinformatics/bti283 (2005).

    Article 

    Google Scholar 

  • 70.

    Hecht, M., Bromberg, Y. & Rost, B. Better prediction of functional effects for sequence variants from VarI-SIG 2014: Identification and annotation of genetic variants in the context of structure, function and disease. BMC Genom. 16, S1. https://doi.org/10.1186/1471-2164-16-S8-S1 (2015).

    CAS 
    Article 

    Google Scholar 

  • 71.

    Choi, Y. & Chan, A. PROVEAN web server: A tool to predict the functional effect of amino acid substitutions and indels. Bioinformatics 31, 2745–2747. https://doi.org/10.1093/bioinformatics/btv195 (2015).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 72.

    Omasits, U., Ahrens, C. H., Müller, S. & Wollscheid, B. Protter: Interactive protein feature visualization and integration with experimental proteomic data. Bioinformatics 30(6), 884–886. https://doi.org/10.1093/bioinformatics/btt607 (2014).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 73.

    R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria (2019). URL https://www.R-project.org/.

  • 74.

    Bates, D., Maechler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48. https://doi.org/10.18637/jss.v067.i01 (2014).

    Article 

    Google Scholar 

  • 75.

    Kuznetsova, A., Brockhoff, P. B. & Christensen, R. H. B. lmerTest Package: Tests in linear mixed effects models. J. Stat. Softw. 82, 1–26. https://doi.org/10.18637/jss.v082.i13 (2017).

    Article 

    Google Scholar 

  • 76.

    Stoffel, M. A., Nakagawa, S. & Schielzeth, H. rptR: repeatability estimation and variance decomposition by generalized linear mixed-effects models. Methods Ecol. Evol. 8, 1639–1644. https://doi.org/10.1111/2041-210X.12797 (2017).

    Article 

    Google Scholar 

  • 77.

    Harrison, X. A. Using observation-level random effects to model overdispersion in count data in ecology and evolution. PeerJ 2, e616. https://doi.org/10.7717/peerj.616 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 78.

    Lenth, R. emmeans: Estimated Marginal Means, aka Least-Squares Means. R package version 1.4.3.01 (2019). https://CRAN.R-project.org/package=emmeans.

  • 79.

    Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: A practical and powerful approach to multiple testing. J. R. Stat. Soc. B 57, 289–300. https://doi.org/10.2307/2346101 (1995).

    MathSciNet 
    Article 
    MATH 

    Google Scholar 

  • 80.

    Nakagawa, S. & Schielzeth, H. A general and simple method for obtaining R2 from generalized linear mixed-effects models. Methods Ecol. Evol. 4, 133–142. https://doi.org/10.1111/j.2041-210x.2012.00261.x (2013).

    Article 

    Google Scholar 

  • 81.

    Lüdecke, D., Makowski, D., Waggoner, P. & Patil, I. performance: Assessment of Regression Models Performance. R package version 0.4.6 (2020). https://CRAN.R-project.org/package=performance.

  • 82.

    Hartig, F. DHARMa: Residual Diagnostics for Hierarchical (Multi-Level/Mixed) Regression Models. R package version 0.2.6 (2019). https://CRAN.R-project.org/package=DHARMa.

  • 83.

    Mikros, E. & Diallinas, G. Tales of tails in transporters. Open Biol. 9, 190083. https://doi.org/10.1098/rsob.190083 (2019).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 84.

    Kern, C. et al. The N teminus specifies the switch between transporter modes of the human serotonin transporter. J. Biol. Chem. 292, 3603–3613. https://doi.org/10.1074/jbc.M116.771360 (2017).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 85.

    Visser, M. E., Van Noordwijk, A. J., Tinbergen, J. M. & Lessells, C. M. Warmer springs lead to mistimed reproduction in great tits (Parus major). Proc. R. Soc. B 265, 1867–1870. https://doi.org/10.1098/rspb.1998.0514 (1998).

    Article 
    PubMed Central 

    Google Scholar 

  • 86.

    Hunt, R., Sauna, Z. E., Ambudkar, S. V., Gottesman, M. M. & Kimchi-Sarfaty, C. Silent (Synonymous) SNPs: Should we care about them? In Single Nucleotide Polymorphisms Methods in Molecular Biology (Methods and Protocols) Vol. 578 (ed. Komar, A.) (Humana Press, 2009). https://doi.org/10.1007/978-1-60327-411-1_2.

    Chapter 

    Google Scholar 

  • 87.

    Grunst, A.S., Grunst, M.L. & Staes, N., Bert, T., Pinxten, R., Eens, M. Data for: Serotonin Transporter (SERT) Polymorphisms, Personality and Problem-Solving in Urban Great Tits. (Dryad Digital Repository, 2021).


  • Source: Ecology - nature.com

    J-PAL North America announces five new partnerships with state and local governments

    Machine-learning algorithms for forecast-informed reservoir operation (FIRO) to reduce flood damages