in

Global conservation prioritization areas in three dimensions of crocodilian diversity

  • Ackerly, D. D., Schwilk, D. W. & Webb, C. O. Niche evolution and adaptive radiation: Testing the order of trait divergence. Ecology 87, 50–61 (2006).

    Article 

    Google Scholar 

  • Somaweera, R. et al. The ecological importance of crocodylians: Towards evidence-based justification for their conservation. Biol. Rev. Camb. Philos. Soc. 95, 936–959. https://doi.org/10.1111/brv.12594 (2020).

    Article 

    Google Scholar 

  • Swain, S. et al. Anthropogenic influence on the physico-chemical parameters of Dhamra estuary and adjoining coastal water of the Bay of Bengal. Mar. Pollut. Bull. 162, 111826. https://doi.org/10.1016/j.marpolbul.2020.111826 (2021).

    Article 
    CAS 

    Google Scholar 

  • IUCN. IUCN Red List of Threatened Species. Version 2022.1. www.iucnredlist.org (2022).

  • Markich, S. J. & Jeffree, R. A. (eds) The Finnis River. A Natural Laboratory of Mining Impact—Past, Present and Future (Australian Nuclear Science and Technology Organisation, 2002).

    Google Scholar 

  • Vieira, L. M. et al. Mercury and methyl mercury ratios in caimans (Caiman crocodilus yacare) from the Pantanal area, Brazil. J. Environ. Monitor. 13, 280–287. https://doi.org/10.1039/c0em00561d (2011).

    Article 
    CAS 

    Google Scholar 

  • Quintela, F. M. et al. Arsenic, lead and cadmium concentrations in caudal crests of the yacare caiman (Caiman yacare) from Brazilian Pantanal. Sci. Total Environ. 707, 135479. https://doi.org/10.1016/j.scitotenv.2019.135479 (2020).

    Article 
    CAS 

    Google Scholar 

  • Briggs-Gonzalez, V. S., Basille, M., Cherkiss, M. S. & Mazzotti, F. J. American crocodiles (Crocodylus acutus) as restoration bioindicators in the Florida Everglades. PLoS ONE 16, e0250510. https://doi.org/10.1371/journal.pone.0250510 (2021).

    Article 
    CAS 
    PubMed Central 

    Google Scholar 

  • Grigg, G. & Kirshner, D. Biology and Evolution of Crocodylians (CSIRO Publishing, 2015).

    Book 

    Google Scholar 

  • Subalusky, A. L., Fitzgerald, L. A. & Smith, L. L. Ontogenetic niche shifts in the American alligator establish functional connectivity between aquatic systems. Biol. Conserv. 142, 1507–1514 (2009).

    Article 

    Google Scholar 

  • Villamarín, F., Escobedo-Galván, A. H., Siroski, P. & Magnusson, W. E. Geographic distribution, habitat, reproduction, and conservation status of crocodilians in the Americas. In Conservation Genetics of New World Crocodilians (eds Zucoloto, R. B. et al.) (Springer, 2021).

    Google Scholar 

  • Albert, C., Luque, G. M. & Courchamp, F. The twenty most charismatic species. PLoS ONE 13, e0199149. https://doi.org/10.1371/journal.pone.0199149 (2018).

    Article 
    CAS 
    PubMed Central 

    Google Scholar 

  • Verissimo, D., MacMillan, D. C. & Smith, R. J. Toward a systematic approach for identifying conservation flag ships. Conserv. Lett. 4, 1–8. https://doi.org/10.1111/j.1755-263X.2010.00151.x (2011).

    Article 

    Google Scholar 

  • Fleishman, E., Murphy, D. D. & Brussard, P. F. A new method for selection of umbrella species for conservation planning. Ecol. Appl. 10, 569–579 (2000).

    Article 

    Google Scholar 

  • Pressey, R. L., Cabeza, M., Watts, M. E., Cowling, R. M. & Wilson, K. A. Conservation planning in a changing world. Trents Ecol. Evol. 2211, 583–592 (2007).

    Article 

    Google Scholar 

  • Petchey, O. L. & Gaston, K. J. Functional diversity: Back to basics and looking forward. Ecol. Lett. 9, 741–758. https://doi.org/10.1111/j.1461-0248.2006.00924.x (2006).

    Article 

    Google Scholar 

  • Magurran, A. E. Measuring Biological Diversity 2nd edn. (Blackwell Publishing, 2004).

    Google Scholar 

  • Campos, F. S., Lourenço-de-Moraes, R., Llorente, G. A. & Solé, M. Cost-effective conservation of amphibian ecology and evolution. Sci. Adv. 36, e1602929 (2017).

    Article 

    Google Scholar 

  • Dietz, M. S., Belote, R. T., Aplet, G. H. & Aycrigg, J. L. The world’s largest wilderness protection network after 50 years: An assessment of ecological system representation in the US National Wilderness Preservation System. Biol. Conserv. 184, 431–438 (2015).

    Article 

    Google Scholar 

  • UNEP-WCMC, IUCN. Protected Planet Report 2016 (UNEP-WCMC and IUCN, 2016).

    Google Scholar 

  • Jones, K. R. et al. One-third of global protected land is under intense human pressure. Science 360, 788–791. https://doi.org/10.1126/science.aap9565 (2018).

    Article 
    CAS 

    Google Scholar 

  • Rodrigues, A. et al. Effectiveness of the global protected area network in representing species diversity. Nature 428, 640–643. https://doi.org/10.1038/nature02422 (2004).

    Article 
    CAS 

    Google Scholar 

  • Ladle, R. J. & Whittaker, R. J. Conservation Biogeography 301 (Wiley-Blackwell, 2011).

    Book 

    Google Scholar 

  • Dinerstein, E. et al. A “global safety net” to reverse biodiversity loss and stabilize Earth’s climate. Sci. Adv. 6, 2824 (2020).

    Article 

    Google Scholar 

  • Lourenço-de-Moraes, R. et al. No more trouble: An economic strategy to protect taxonomic, functional and phylogenetic diversity of continental turtles. Biol. Conserv. 261, 109241. https://doi.org/10.1016/j.biocon.2021.109241 (2021).

    Article 

    Google Scholar 

  • Brochu, C. A. Phylogenetic relationships of Necrosuchus ionensis Simpson, 1937 and the early history of caimanines. Zool. J. Linn. Soc. 163, 228–256. https://doi.org/10.1111/j.1096-3642.2011.00716.x (2011).

    Article 

    Google Scholar 

  • Buffetaut, E. Systématique, origine et evolution des Gavialidae sud-américains. In Phylógenie et Paléobiogeography: Livre Jubilaire en l´honneur de Robert Hoffstetter (ed. Buffetaut, E.) 127–140 (Géobios, 1982).

    Google Scholar 

  • Griffith, P., Lang, J. W., Turvey, S. T. & Gumbs, R. Data from: Using functional traits to identify conservation priorities for the world’s crocodylians. Zenodo. https://doi.org/10.5281/zenodo.6645415 (2022).

  • Griffith, P., Lang, J. W., Turvey, S. T. & Gumbs, R. Using functional traits to identify conservation priorities for the world’s crocodylians. Funct. Ecol. 37, 112. https://doi.org/10.1111/1365-2435.14140 (2022).

    Article 
    CAS 

    Google Scholar 

  • Milian-Garcia, Y. et al. Evolutionary history of Cuban crocodiles Crocodylus rhombifer and Crocodylus acutus inferred from multilocus markers. J. Exp. Zool. A 315, 358–375. https://doi.org/10.1002/jez.683 (2011).

    Article 

    Google Scholar 

  • Rodrıguez-Soberon, R., Ross, P. & Seal, U. IUCN/SSC Conservation Breeding Specialist Group (2000).

  • Milián-García, Y., Ramos-Targarona, R., Pérez-Fleitas, E., Espinosa-López, G. & Russello, M. A. Genetic evidence of hybridization between the critically endangered Cuban crocodile and the American crocodile: Implications for population history and in situ/ex situ conservation. Heridity 114, 272–280 (2015).

    Article 

    Google Scholar 

  • Pacheco-Sierra, G., Gompert, Z., Dominguez-Laso, J. & Vazquez-Dominguez, E. Genetic and morphological evidence of a geographically widespread hybrid zone between two crocodile species, Crocodylus acutus and Crocodylus moreletii. Mol. Ecol. 25, 3484–3498. https://doi.org/10.1111/mec.13694 (2016).

    Article 

    Google Scholar 

  • Borges, V. S. et al. Evolutionary significant units within populations of Neotropical broad-snouted caimans (Caiman latirostris, Daudin, 1802). J. Herpetol. 52, 282–288 (2018).

    Article 

    Google Scholar 

  • Palmer, M. L. & Mazzoti, F. J. Structure of everglades alligator holes. Wetlands 24, 115–122 (2004).

    Article 

    Google Scholar 

  • Marques, T. S. et al. Intraspecific isotopic niche variation in broad-snouted caiman (Caiman latirostris). Isot. Environ. Health Stud. 49, 325–335 (2013).

    Article 
    CAS 

    Google Scholar 

  • Mascarenhas-Junior, P. B. et al. Conflicts between humans and crocodilians in urban areas across Brazil: A new approach to support management and conservation. Ethnobiol. Conserv. 10, 19. https://doi.org/10.15451/ec2021-12-10.37-1-19 (2021).

    Article 

    Google Scholar 

  • Myers, N., Mittermeier, R. A., Mittermeier, C. G., Fonseca, G. A. & Kent, J. Biodiversity hotspots for conservation priorities. Nature 403, 853–858 (2000).

    Article 
    CAS 

    Google Scholar 

  • Ribeiro, M. C., Metzger, J. P., Martensen, A. C., Ponzoni, F. J. & Hirota, M. M. The Brazilian Atlantic Forest: How much is left, and how is the remaining forest distributed? Implications for conservation. Biol. Conserv. 142, 1141–1153 (2009).

    Article 

    Google Scholar 

  • Filogonio, R., Assis, V. B., Passos, L. F. & Coutinho, M. E. Distribution of populations of broad-snouted caiman (Caiman latirostris, Daudin 1802, Alligatoridae) in the São Francisco River basin, Brazil. Braz. J. Biol. https://doi.org/10.1590/S1519-69842010000500007 (2010).

    Article 

    Google Scholar 

  • Marques, J. F. et al. Fires dynamics in the Pantanal: Impacts of anthropogenic activities and climate change. J. Environ. Manag. 299, 113586. https://doi.org/10.1016/j.jenvman.2021.113586 (2021).

    Article 

    Google Scholar 

  • Mataveli, G. A. V. et al. 2020 Pantanal’s widespread fire: Short- and long-term implications for biodiversity and conservation. Biodivers. Conserv. https://doi.org/10.1007/s10531-021-02243-2 (2021).

    Article 
    PubMed Central 

    Google Scholar 

  • Ripple, W. J. et al. Status and ecological effects of the world’s largest carnivores. Science 343, 124–148 (2014).

    Article 

    Google Scholar 

  • Estes, J. A. et al. Trophic downgrading of planet earth. Science 333, 301–306 (2011).

    Article 
    CAS 

    Google Scholar 

  • Canning, A. & Death, R. Trophic cascade direction and flow determine network flow stability. Ecol. Model. 355, 18–23 (2017).

    Article 

    Google Scholar 

  • Wang, Y. Q., Zhu, W. Q., Huang, L., Zhou, K. Y. & Wang, R. P. Genetic diversity of Chinese alligator (Alligator sinensis) revealed by AFLP analysis: An implication on the management of captive conservation. Biodivers. Conserv. 15, 2945–2955 (2006).

    Article 

    Google Scholar 

  • Zhai, T. et al. Effects of population bottleneck and balancing selection on the chinese alligator are revealed by locus-specific characterization of MHC genes. Sci. Rep. 7, 5549. https://doi.org/10.1038/s41598-017-05640-2 (2017).

    Article 
    CAS 
    PubMed Central 

    Google Scholar 

  • Sharma, S. P. et al. Microsatellite analysis reveals low genetic diversity in managed populations of the critically endangered gharial (Gavialis gangeticus) in India. Sci. Rep. https://doi.org/10.1038/s41598-021-85201-w (2021).

    Article 
    PubMed Central 

    Google Scholar 

  • Nair, T. & Krishna, Y. C. Vertebrate fauna of the Chambal River basin, with emphasis on the National Chambal Sanctuary, India. J. Threat. Taxa 5, 3620–3641 (2013).

    Article 

    Google Scholar 

  • Sharma, R. & Singh, L. Status of mugger crocodile (Crocodylus palustris) in National Chambal Sanctuary after thirty years and its implications on conservation of Gharial (Gavialis gangeticus). Zoo’s Print 30, 9–16 (2015).

    Google Scholar 

  • Sinhg, H. & Rao, R. Status, threats and conservation challenges to key aquatic fauna (crocodile and dolphin) in National Chambal Sanctuary, India. Aquat. Ecosyst. Health Manag. 20, 59–70 (2017).

    Article 

    Google Scholar 

  • UNEP-WCMC, IUCN. Protected Planet: The World Database on Protected Areas (WDPA) (UNEP-WCMC, IUCN, 2021).

    Google Scholar 

  • Smolensky, N. L., Hurtado, L. A. & Fitzgerald, L. A. DNA barcoding of Cameroon samples enhances our knowledge on the distributional limits of putative species of Osteolaemus (African dwarf crocodiles). Conserv. Genet. 16, 235–240. https://doi.org/10.1007/s10592-014-0639-3 (2014).

    Article 
    CAS 

    Google Scholar 

  • Shirley, M. H., Villanova, V. L., Vliet, K. A. & Austin, J. D. Genetic barcoding facilitates captive and wild management of three cryptic African crocodile species complexes. Anim. Conserv. 18, 322–330 (2015).

    Article 

    Google Scholar 

  • Shirley, M. H., Carr, A. N., Nestler, J. H., Vliet, K. A. & Brochu, C. A. Systematic revision of the living African Slender-snouted Crocodiles (Mecistops Gray, 1844). Zootaxa 4504, 151–193. https://doi.org/10.11646/zootaxa.4504.2.1 (2018).

    Article 

    Google Scholar 

  • Murray, C. M., Russo, P., Zorrilla, A. & McMahan, C. D. Divergent morphology among populations of the New Guinea crocodile, Crocodylus novaeguineae (Schmidt, 1928): Diagnosis of an independent lineage and description of a new species. Copeia 107, 517–523. https://doi.org/10.1643/CG-19-240 (2019).

    Article 

    Google Scholar 

  • Hekkala, E. H. et al. An ancient icon reveals new mysteries: Mummy DNA resurrects a cryptic species within the Nile crocodile. Mol. Ecol. 20, 4199–4215 (2011).

    Article 
    CAS 

    Google Scholar 

  • Mobaraki, A. et al. Conservation status of the mugger crocodile Crocodylus palustris: Establishing a task force for a poster species of climate change. Crocodile Specialist Group Newslett. 40(3), 12–20 (2021).

    Google Scholar 

  • Cunningham, S. W., Shirley, M. H. & Hekkala, E. R. Fine scale patterns of genetic partitioning in the rediscovered African crocodile, Crocodylus suchus (Saint-Hilaire 1807). PeerJ 12, e1901 (2016).

    Article 

    Google Scholar 

  • Platt, S. G. et al. Siamese Crocodile Crocodylus siamensis. In Crocodiles. Status Survey and Conservation Action Plan 4th edn (eds Manolis, S. C. & Stevenson, C.) (Crocodile Specialist Group, 2019).

    Google Scholar 

  • Arcgis Software v. Version 10.1 (2011).

  • Lourenço-de-Moraes, R. et al. Functional traits explain amphibian distribution in the Brazilian Atlantic Forest. J. Biogeogr. 47, 275–287 (2020).

    Article 

    Google Scholar 

  • Pavoine, S., Vallet, J., Dufour, A. B., Gachet, S. & Daniel, H. On the challenge of treating various types of variables: Application for improving the measurement of functional diversity. Oikos 118, 391–402. https://doi.org/10.1111/j.1600-0706.2008.16668.x (2009).

    Article 

    Google Scholar 

  • Colston, T. J., Kulkarni, P., Jetz, W. & Pyron, R. A. Phylogenetic and spatial distribution of evolutionary diversification, isolation, and threat in turtles and crocodilians (non-avian archosauromorphs). BMC Evol. Biol. 20(1), 1–16 (2020).

    Article 

    Google Scholar 

  • R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2022).

  • Faith, D. P. Conservation evaluation and phylogenetic diversity. Biol. Conserv. 61, 1–10 (1992).

    Article 

    Google Scholar 

  • Pio, D. V. et al. Spatial predictions of phylogenetic diversity in conservation decision making. Conserv. Biol. 256, 1229–1239 (2011).

    Article 

    Google Scholar 

  • Rodrigues, A. S. L. & Gaston, K. J. Maximising phylogenetic diversity in the selection of networks of conservation areas. Biol. Conserv. 105, 103–111 (2002).

    Article 

    Google Scholar 

  • Safi, K. et al. Understanding global patterns of mammalian functional and phylogenetic diversity. Philos. Trans. R. Soc. B 366, 2536–2544 (2011).

    Article 

    Google Scholar 

  • Trindade-Filho, J., Carvalho, R. A., Brito, D. & Loyola, R. D. How does the inclusion of data deficient species change conservation priorities for amphibians in the Atlantic Forest?. Biodivers. Conserv. 21, 2709–2718 (2012).

    Article 

    Google Scholar 

  • Devictor, V. et al. Spatial mismatch and congruence between taxonomic, phylogenetic and functional diversity: The need for integrative conservation strategies in a changing world. Ecol. Lett. 13, 1030–1040 (2010).

    Google Scholar 

  • Swenson, N. G. Functional and Phylogenetic Ecology in R (Springer, 2014).

    Book 
    MATH 

    Google Scholar 

  • Mouchet, M., Villéger, S., Mason, N. W. H. & Mouillo, D. Functional diversity measures: An overview of their redundancy and their ability to discriminate community assembly rules. Funct. Ecol. 24, 867–876 (2010).

    Article 

    Google Scholar 

  • Chaplin-Kramer, R. et al. Global modeling of nature’s contributions to people. Science 366, 255–258 (2019).

    Article 
    CAS 

    Google Scholar 

  • Sharp, R. et al. InVEST 3.10.2.post28+ug.ga4e401c.d20220324 User’s Guide (The Natural Capital Project, Stanford University, University of Minnesota, The Nature Conservancy, and World Wildlife Fund, 2020).

    Google Scholar 

  • Lourenço-de-Moraes, R. et al. Climate change will decrease the range size of snake species under negligible protection in the Brazilian Atlantic Forest hotspot. Sci. Rep. 9, 8523. https://doi.org/10.1038/s41598-019-44732-z (2019).

    Article 
    CAS 
    PubMed Central 

    Google Scholar 

  • Sánchez-Fernandez, D. & Abellán, P. Using null models to identify underrepresented species in protected areas: A case study using European amphibians and reptiles. Biol. Conserv. 184, 290–299 (2015).

    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    Soil, leaf and fruit nutrient data for pear orchards located in the Circum-Bohai Bay and Loess Plateau regions

    Adjusting time-of-day and depth of fishing provides an economically viable solution to seabird bycatch in an albacore tuna longline fishery