in

Effects of thinning on soil nutrient availability and fungal community composition in a plantation medium-aged pure forest of Picea koraiensis

[adace-ad id="91168"]
  • Yang, B., Pang, X. Y., Hu, B., Bao, W. K. & Tian, G. L. Does thinning-induced gap size result in altered soil microbial community in pine plantation in eastern Tibetan Plateau? Ecol. Evol. 7(9), 2986–2993 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Andrés, B. O., Ricardo, R. P., Raquel, O. & Mirendel, R. Thinning alters the early-decomposition rate and nutrient immobilization-release pattern of foliar litter in Mediterranean oak-pine mixed stands. For. Ecol. Manag. 391, 309–320 (2017).

    Article 

    Google Scholar 

  • Hart, B. T. N., Smith, J. E., Luoma, D. L. & Hatten, J. A. Recovery of ectomycorrhizal fungus communities fifteen years after fuels reduction treatments in ponderosa pine forests of the Blue Mountains, Oregon. For. Ecol. Manag. 422, 11–22 (2018).

    Article 

    Google Scholar 

  • Ge, Z. M. et al. Effects of varying thinning regimes on carbon uptake, total stem wood growth, and timber production in Norway spruce (Picea abies) stands in southern Finland under the changing climate. Ann. For. Sci. 68(2), 371–383 (2011).

    Article 

    Google Scholar 

  • Panayotov, M. et al. Climate extremes during high competition contribute to mortality in unmanaged self-thinning Norway spruce stands in Bulgaria. For. Ecol. Manag. 369, 74–88 (2016).

    Article 

    Google Scholar 

  • Depauw, L. et al. Interactive effects of past land use and recent forest management on the understorey community in temperate oak forests in South Sweden. J. Veg. Sci. 30(5), 917–928 (2019).

    Article 

    Google Scholar 

  • Soalleiro, R. R., Murias, M. B. & Gonzalez, J. G. A. Evaluation through a simulation model of nutrient exports in fast-growing southern European pine stands in relation to thinning intensity and harvesting operations. Ann. For. Sci. 64(4), 375–384 (2007).

    Article 

    Google Scholar 

  • Trentini, C. P. et al. Thinning of loblolly pine plantations in subtropical Argentina: Impact on microclimate and understory vegetation. For. Ecol. Manag. 384, 236–247 (2017).

    Article 

    Google Scholar 

  • Baena, C. W. et al. Thinning and recovery effects on soil properties in two sites of a Mediterranean forest, in Cuenca Mountain (South-eastern of Spain). For. Ecol. Manag. 308, 223–230 (2013).

    Article 

    Google Scholar 

  • He, Z. B. et al. Responses of soil organic carbon, soil respiration, and associated soil properties to long-term thinning in a semi-arid spruce plantation in northwestern China. Land Degrad. Dev. 29(12), 4387–4396 (2018).

    Article 

    Google Scholar 

  • Rambo, T. R. & North, M. P. Canopy microclimate response to pattern and density of thinning in a Sierra Nevada forest. For. Ecol. Manag. 257(2), 435–442 (2009).

    Article 

    Google Scholar 

  • Zhou, L. L. et al. Thinning increases understory diversity and biomass, and improves soil properties without decreasing growth of Chinese fir in southern China. Environ. Sci. Pollut. Res. 23(23), 24135–24150 (2016).

    Article 
    CAS 

    Google Scholar 

  • Collins, C. G., Carey, C. J., Aronson, E. L., Kopp, C. W. & Diez, J. M. Direct and indirect effects of native range expansion on soil microbial community structure and function. J. Ecol. 104(5), 1271–1283 (2016).

    Article 

    Google Scholar 

  • Çömez, A., Tolunay, D. & Güner, ŞT. Litterfall and the effects of thinning and seed cutting on carbon input into the soil in Scots pine stands in Turkey. Eur. J. Forest Res. 138(1), 1–14 (2019).

    Article 

    Google Scholar 

  • Ulvcrona, K. A., Karlsson, K. & Ulvcrona, T. Identifying the biological effects of pre-commercial thinning on diameter growth in young Scots pine stands. Scand. J. For. Res. 29(5), 427–435 (2014).

    Article 

    Google Scholar 

  • Chen, X. L. et al. Soil microbial functional diversity and biomass as affected by different thinning intensities in a Chinese fir plantation. Appl. Soil. Ecol. 92, 35–44 (2015).

    Article 

    Google Scholar 

  • Veselá, P., Vašutová, M., Edwards- Jonášová, M. & Cudlin, P. Soil fungal community in norway spruce forests under bark beetle attack. Forests 10(2), 109 (2019).

    Article 

    Google Scholar 

  • Ardestani, M. M., Jílková, V., Bonkowski, M. & Frouz, J. The effect of arbuscular mycorrhizal fungi Rhizophagus intraradices and soil microbial community on a model plant community in a post-mining soil. Plant Ecol. 220(9), 789–800 (2019).

    Article 

    Google Scholar 

  • Sapsford, S. J., Paap, T., Hardy, G. E. S. J. & Burgess, T. I. The “chicken or the egg”: Which comes first, forest tree decline or loss of mycorrhizae? Plant Ecol. 218(9), 1093–1106 (2017).

    Article 

    Google Scholar 

  • Jirout, J., Šimek, M. & Elhottová, D. Inputs of nitrogen and organic matter govern the composition of fungal communities in soil disturbed by overwintering cattle. Soil Biol. Biochem. 43(3), 647–656 (2011).

    Article 
    CAS 

    Google Scholar 

  • Averill, C., Turner, B. L. & Finzi, A. C. Mycorrhiza-mediated competition between plants and decomposers drives soil carbon storage. Nature 505(7484), 543–545 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Iwaoka, C. et al. The impacts of soil fertility and salinity on soil nitrogen dynamics mediated by the soil microbial community beneath the halophytic Shrub Tamarisk. Microb. Ecol. 75(4), 985–996 (2017).

    Article 
    PubMed 

    Google Scholar 

  • Bahnmann, B. et al. Effects of oak, beech and spruce on the distribution and community structure of fungi in litter and soils across a temperate forest. Soil Biol. Biochem. 119, 162–173 (2018).

    Article 
    CAS 

    Google Scholar 

  • Ling, J. J. et al. Genotype by environment interaction analysis of growth of Picea koraiensis families at different sites using BLUP-GGE. New For. 52(1), 113–127 (2021).

    Article 

    Google Scholar 

  • Zhang, J. B., Wang, L. F., Na, X., Zhang, T. T. & San-Ping, A. N. Primary report on introduction of Picea balfouriana and Picea koraiensis in Gansu. J. Gansu For. Sci. Technol. 44(02), 16–19+29 (2019).

    Google Scholar 

  • Yin, L. M. et al. Arbuscular mycorrhizal trees cause a higher carbon to nitrogen ratio of soil organic matter decomposition via rhizosphere priming than ectomycorrhizal trees. Soil Biol. Biochem. 157, 108246 (2021).

    Article 
    CAS 

    Google Scholar 

  • Zhou, L. & Wang, S. L. Effects of mixed tree species on soil nutrients in Picea koraiensis plantations. J. Northeast For. Univ. 47(2), 37–41 (2019).

    MathSciNet 
    CAS 

    Google Scholar 

  • Cabon, A. et al. Thinning increases tree growth by delaying drought-induced growth cessation in a Mediterranean evergreen oak coppice. For. Ecol. Manag. 409, 333–342 (2018).

    Article 

    Google Scholar 

  • Splawinski, T. B. et al. Precommercial thinning of Picea mariana and Pinus banksiana: Impact of treatment timing and competitors on growth response. For. Sci. 63(1), 62–70 (2017).

    Article 

    Google Scholar 

  • Bai, S. H. et al. Effects of forest thinning on soil-plant carbon and nitrogen dynamics. Plant Soil 411(1–2), 437–449 (2016).

    Google Scholar 

  • D’Amato, A. W., Troumbly, S. J., Saunders, M. R., Puettmann, K. J. & Albers, M. A. Growth and survival of Picea glauca following thinning of plantations affected by eastern spruce budworm. North. J. Appl. For. 28(2), 72–78 (2011).

    Article 

    Google Scholar 

  • Olivar, J., Bogino, S., Rathgeber, C., Bonnesoeur, V. & Bravo, F. Thinning has a positive effect on growth dynamics and growth–climate relationships in Aleppo pine (Pinus halepensis) trees of different crown classes. Ann. For. Sci. 71(3), 395–404 (2014).

    Article 

    Google Scholar 

  • Weiskittel, A. R., Kenefic, L. S., Seymour, R. S. & Phillips, L. M. Long-term effects of precommercial thinning on the stem dimensions, form and branch characteristics of red spruce and balsam fir crop trees in Maine, USA. Silva Fennica 43(3), 397–409 (2009).

    Article 

    Google Scholar 

  • Repola, J., Hökkä, H. & Penttilä, T. Thinning intensity and growth of mixed spruce-birch stands on drained peatlands in Finland. Silva Fennica 40(1), 83–99 (2006).

    Article 

    Google Scholar 

  • Misson, L., Vincke, C. & Devillez, F. Frequency responses of radial growth series after different thinning intensities in Norway spruce (Picea abies (L.) Karst.) stands. For. Ecol. Manag. 177(1–3), 51–63 (2003).

    Article 

    Google Scholar 

  • Kim, S., Kim, C., Han, S. H., Lee, S. T. & Son, Y. A multi-site approach toward assessing the effect of thinning on soil carbon contents across temperate pine, oak, and larch forests. For. Ecol. Manag. 424, 62–70 (2018).

    Article 

    Google Scholar 

  • Gliksman, D. et al. Litter decomposition in Mediterranean pine forests is enhanced by reduced canopy cover. Plant Soil 422(1–2), 317–329 (2018).

    Article 
    CAS 

    Google Scholar 

  • Achat, D. L., Fortin, M., Landmann, G., Ringeval, B. & Augusto, L. Forest soil carbon is threatened by intensive biomass harvesting. Sci. Rep. 5, 15991 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Jurgensen, M. F. et al. Impacts of timber harvesting on soil organic matter, nitrogen, productivity, and health of inland northwest forests. For. Sci. 43(2), 234–251 (1997).

    Google Scholar 

  • Blanco, J. A., Imbert, J. B. & Castillo, F. J. Thinning affects nutrient resorption and nutrient-use efficiency in two Pinus sylvestris stands in the pyrenees. Ecol. Appl. 19(3), 682–698 (2009).

    Article 
    PubMed 

    Google Scholar 

  • Steer, J. & Harris, J. A. Shifts in the microbial community in rhizosphere and non-rhizosphere soils during the growth of Agrostis stolonifera. Soil Biol. Biochem. 32(6), 869–878 (2000).

    Article 
    CAS 

    Google Scholar 

  • Coulombe, D., Sirois, L. & Paré, D. Effect of harvest gap formation and thinning on soil nitrogen cycling at the boreal–temperate interface. Can. J. For. Res. 47(3), 308–318 (2017).

    Article 
    CAS 

    Google Scholar 

  • Hagerman, S. M., Jones, M. D., Bradfield, G. E. & SMSakakibara, S. M. Ectomycorrhizal colonization of Picea engelmannii × Picea glauca seedlings planted across cut blocks of different sizes. Can. J. For. Res. 29(12), 1856–1870 (1999).

    Article 

    Google Scholar 

  • Ogo, S., Yamanaka, T., Akama, K., Nagakura, J. & Yamaji, K. Influence of ectomycorrhizal colonization on cesium uptake by Pinus densiflora seedlings. Mycobiology 46(4), 388–395 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sebastiana, M. et al. Ectomycorrhizal inoculation with Pisolithus tinctorius reduces stress induced by drought in cork oak. Mycorrhiza 28(3), 247–258 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Jurgensen, M., Tarpey, R., Pickens, J., Kolka, R. & Palik, B. Long-term effect of silvicultural thinnings on soil carbon and nitrogen pools. Soil Sci. Soc. Am. J. 76(4), 1418–1425 (2012).

    Article 
    CAS 

    Google Scholar 

  • Mosca, E., Montecchio, L., Barion, G., Dal Cortivo, C. & Vamerali, T. Combined effects of thinning and decline on fine root dynamics in a Quercus robur L. forest adjoining the Italian Pre-Alps. Ann. Bot. 119(7), 1235–1246 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Li, X. & Christie, P. Changes in soil solution Zn and pH and uptake of Zn by arbuscular mycorrhizal red clover in Zn-contaminated soil. Chemosphere 42(2), 201–207 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Hawkes, C. V. et al. Fungal community responses to precipitation. Glob. Change Biol. 17(4), 1637–1645 (2011).

    Article 

    Google Scholar 

  • McGuire, K. L., Fierer, N., Bateman, C., Treseder, K. K. & Turner, B. L. Fungal community composition in Neotropical rain forests: The influence of tree diversity and precipitation. Microb. Ecol. 63(4), 804–812 (2012).

    Article 
    PubMed 

    Google Scholar 

  • Allison, S. D., Hanson, C. A. & Treseder, K. K. Nitrogen fertilization reduces diversity and alters community structure of active fungi in boreal ecosystems. Soil Biol. Biochem. 39(8), 1878–1887 (2007).

    Article 
    CAS 

    Google Scholar 

  • Van Wyk, D. A. B., Adeleke, R., Rhode, O. H. J., Bezuidenhout, C. C. & Mienie, C. Ecological guild and enzyme activities of rhizosphere soil microbial communities associated with Bt-maize cultivation under field conditions in North West Province of South Africa. J. Basic Microbiol. 57(9), 781–792 (2017).

    Article 
    PubMed 

    Google Scholar 

  • Zhao, C. C. et al. Soil microbial community composition and respiration along an experimental precipitation gradient in a semiarid steppe. Sci. Rep. https://doi.org/10.1038/srep24317 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kowalchuk, G. A., Buma, D. S. & Boer, W. D. Peter GLK & van Veen JA (2002) Effects of above-ground plant species composition and diversity on the diversity of soil-borne microorganisms. Antonie Van Leeuwenhoek 81(1–4), 509 (2002).

    Article 
    PubMed 

    Google Scholar 


  • Source: Ecology - nature.com

    Soil, leaf and fruit nutrient data for pear orchards located in the Circum-Bohai Bay and Loess Plateau regions

    Adjusting time-of-day and depth of fishing provides an economically viable solution to seabird bycatch in an albacore tuna longline fishery