in

Moist heat stress extremes in India enhanced by irrigation

  • 1.

    Im, E. S., Pal, J. S. & Eltahir, E. A. B. Deadly heat waves projected in the densely populated agricultural regions of South Asia. Sci. Adv. 3, e1603322 (2017).

    Article  Google Scholar 

  • 2.

    Mazdiyasni, O. et al. Increasing probability of mortality during Indian heat waves. Sci. Adv. 3, 1–6 (2017).

    Article  Google Scholar 

  • 3.

    Mishra, V., Mukherjee, S., Kumar, R. & Stone, D. A. Heat wave exposure in India in current, 1.5 °C, and 2.0 °C worlds. Environ. Res. Lett. https://doi.org/10.1088/1748-9326/aa9388 (2017).

  • 4.

    Coffel, E. D., Horton, R. M. & de Sherbinin, A. Temperature and humidity based projections of a rapid rise in global heat stress exposure during the 21st century. Environ. Res. Lett. 13, 014001 (2017).

    Article  Google Scholar 

  • 5.

    King, A. D. et al. Emergence of heat extremes attributable to anthropogenic influences. Geophys. Res. Lett. 43, 3438–3443 (2016).

    Article  Google Scholar 

  • 6.

    Knutson, T. R. & Ploshay, J. J. Detection of anthropogenic influence on a summertime heat stress index. Clim. Change 138, 25–39 (2016).

    Article  Google Scholar 

  • 7.

    Matthews, T. K. R., Wilby, R. L. & Murphy, C. Communicating the deadly consequences of global warming for human heat stress. Proc. Natl Acad. Sci. USA 114, 3861–3866 (2017).

    Article  Google Scholar 

  • 8.

    Kjellstrom, T. et al. Heat, human performance, and occupational health: a key issue for the assessment of global climate change impacts. Annu. Rev. Public Health 37, 97–112 (2016).

    Article  Google Scholar 

  • 9.

    Sherwood, S. C. How important is humidity in heat stress? J. Geophys. Res. Atmos. 123, 11808–11810 (2018).

    Article  Google Scholar 

  • 10.

    Horton, R. M., Mankin, J. S., Lesk, C., Coffel, E. & Raymond, C. A review of recent advances in research on extreme heat events. Curr. Clim. Change Rep. 2, 242–259 (2016).

    Article  Google Scholar 

  • 11.

    Buzan, J. R., Oleson, K. & Huber, M. Implementation and comparison of a suite of heat stress metrics within the Community Land Model version 4.5. Geosci. Model Dev. 8, 151–170 (2015).

    Article  Google Scholar 

  • 12.

    Kang, S. & Eltahir, E. A. B. North China Plain threatened by deadly heatwaves due to climate change and irrigation. Nat. Commun. 9, 2894 (2018).

    Article  Google Scholar 

  • 13.

    Shankar, P. V., Kulkarni, H. & Krishnan, S. India’s groundwater challenge and the way forward. Econ. Political Wkly 46, 37–45 (2011).

    Google Scholar 

  • 14.

    Amarasinghe, U. A., Shah, T. & Anand, B. K. India’s water supply and demand from 2025-2050: business-as-usual scenario and issues. In Proc. Workshop on Analyses of Hydrological, Social and Ecological Issues of the National River Linking Project (eds Amarasinghe, U. A. & Sharma, B. R.) 23–61 (IWMI, 2007).

  • 15.

    Ambika, A. K., Wardlow, B. & Mishra, V. Remotely sensed high resolution irrigated area mapping in India for 2000 to 2015. Sci. Data 3, 160118 (2016).

    Article  Google Scholar 

  • 16.

    Cook, B. I., Puma, M. J. & Krakauer, N. Y. Irrigation induced surface cooling in the context of modern and increased greenhouse gas forcing. Clim. Dyn. 37, 1587–1600 (2011).

    Article  Google Scholar 

  • 17.

    Thiery, W. et al. Present-day irrigation mitigates heat extremes. J. Geophys. Res. Atmos. 122, 1403–1422 (2017).

    Article  Google Scholar 

  • 18.

    Boucher, O., Myhre, G. & Myhre, A. Direct human influence of irrigation on atmospheric water vapour and climate. Clim. Dyn. 22, 597–603 (2004).

    Article  Google Scholar 

  • 19.

    Lobell, D. et al. Regional differences in the influence of irrigation on climate. J. Clim. 22, 2248–2255 (2009).

    Article  Google Scholar 

  • 20.

    Kumar, R. et al. Dominant control of agriculture and irrigation on urban heat island in India. Sci. Rep. 7, 14054 (2017).

    Article  Google Scholar 

  • 21.

    Mueller, N. D. et al. Cooling of US Midwest summer temperature extremes from cropland intensification. Nat. Clim. Change 6, 317–322 (2015).

    Article  Google Scholar 

  • 22.

    Asoka, A., Gleeson, T., Wada, Y. & Mishra, V. Relative contribution of monsoon precipitation and pumping to changes in groundwater storage in India. Nat. Geosci. 10, 109–117 (2017).

    Article  Google Scholar 

  • 23.

    Azhar, G. S. et al. Heat-related mortality in India: excess all-cause mortality associated with the 2010 Ahmedabad heat wave. PLoS ONE 9, e91831 (2014).

    Article  Google Scholar 

  • 24.

    Marcella, M. P. & Eltahir, E. A. B. Introducing an irrigation scheme to a regional climate model: a case study over West Africa. J. Clim. 27, 5708–5723 (2014).

    Article  Google Scholar 

  • 25.

    Puma, M. J. & Cook, B. I. Effects of irrigation on global climate during the 20th century. J. Geophys. Res. Atmos. 115, D16120 (2010).

    Article  Google Scholar 

  • 26.

    Willett, K. M. & Sherwood, S. Exceedance of heat index thresholds for 15 regions under a warming climate using the wet-bulb globe temperature. Int. J. Climatol. https://doi.org/10.1002/joc.2257 (2012).

  • 27.

    Sherwood, S. C. & Huber, M. An adaptability limit to climate change due to heat stress. Proc. Natl Acad. Sci. USA 107, 9552–9555 (2010).

    Article  Google Scholar 

  • 28.

    Byrne, M. P. & O’Gorman, P. A. Trends in continental temperature and humidity directly linked to ocean warming. Proc. Natl Acad. Sci. USA 115, 4863–4868 (2018).

    Article  Google Scholar 

  • 29.

    Willett, K. M., Gillett, N. P., Jones, P. D. & Thorne, P. W. Attribution of observed surface humidity changes to human influence. Nature 449, 710–712 (2007).

    Article  Google Scholar 

  • 30.

    Bollasina, M. & Nigam, S. The summertime ‘heat’ low over Pakistan/northwestern India: evolution and origin. Clim. Dyn. 37, 957–970 (2011).

    Article  Google Scholar 

  • 31.

    Gentine, P., Holtslag, A. A. M., D’Andrea, F. & Ek, M. Surface and atmospheric controls on the onset of moist convection over land. J. Hydrometeorol. 14, 1443–1462 (2013).

    Article  Google Scholar 

  • 32.

    Kang, S. & Eltahir, E. A. B. Impact of irrigation on regional climate over eastern China. Geophys. Res. Lett. 46, 5499–5505 (2019).

    Article  Google Scholar 

  • 33.

    Kueppers, L. M., Snyder, M. A. & Sloan, L. C. Irrigation cooling effect: regional climate forcing by land-use change. Geophys. Res. Lett. 34, L03703 (2007).

    Article  Google Scholar 

  • 34.

    Alter, R. E., Im, E. S. & Eltahir, E. A. B. Rainfall consistently enhanced around the Gezira Scheme in East Africa due to irrigation. Nat. Geosci. 8, 763–767 (2015).

    Article  Google Scholar 

  • 35.

    Im, E. S. & Kang, S. & Eltahir, E. A. B. Projections of rising heat stress over the western Maritime Continent from dynamically downscaled climate simulations. Glob. Planet. Change https://doi.org/10.1016/j.gloplacha.2018.02.01 (2018).

  • 36.

    Sacks, W. J., Cook, B. I., Buenning, N., Levis, S. & Helkowski, J. H. Effects of global irrigation on the near-surface climate. Clim. Dyn. 33, 159–175 (2009).

    Article  Google Scholar 

  • 37.

    Dileepkumar, R., Achutarao, K. & Arulalan, T. Human influence on sub-regional surface air temperature change over India. Sci. Rep. 8, 8967 (2018).

    Article  Google Scholar 

  • 38.

    Seneviratne, S. I. et al. Land radiative management as contributor to regional-scale climate adaptation and mitigation. Nat. Geosci. 11, 88–96 (2018).

    Article  Google Scholar 

  • 39.

    Sharma, A. et al. Green and cool roofs to mitigate urban heat island effects in the Chicago metropolitan area: evaluation with a regional climate model. Environ. Res. Lett. 11, 064004 (2016).

    Article  Google Scholar 

  • 40.

    Georgescu, M., Moustaoui, M., Mahalov, A. & Dudhia, J. An alternative explanation of the semiarid urban area ‘oasis effect’. J. Geophys. Res. Atmos. https://doi.org/10.1029/2011JD016720 (2011).

  • 41.

    Zipper, S. C., Schatz, J., Kucharik, C. J. & Loheide, S. P. Urban heat island-induced increases in evapotranspirative demand. Geophys. Res. Lett. https://doi.org/10.1002/2016GL072190 (2017).

  • 42.

    Siebert, S., Henrich, V., Frenken, K. & Burke, J. Update of the Digital Global Map of Irrigation Areas to Version 5 (FAO, 2013); https://doi.org/10.13140/2.1.2660.6728

  • 43.

    Mann, H. B. Nonparametric tests against trend. Econometrica 13, 245–259 (1945).

    Article  Google Scholar 

  • 44.

    Sen, P. K. Estimates of the regression coefficient based on Kendall’s Tau. J. Am. Stat. Assoc. 63, 1379–1389 (1968).

    Article  Google Scholar 

  • 45.

    Srivastava, A. K., Rajeevan, M. & Kshirsagar, S. R. Development of a high resolution daily gridded temperature data set (1969–2005) for the Indian region. Atmos. Sci. Lett. 10, 249–254.

  • 46.

    Dee, D. P. et al. The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q. J. R. Meteorol. Soc. 137, 553–597 (2011).

    Article  Google Scholar 

  • 47.

    Haldane, J. S. The influence of high air temperatures No. I. J. Hyg. (Lond.) 5, 494–513 (1905).

    Google Scholar 

  • 48.

    Davies-Jones, R. An efficient and accurate method for computing the wet-bulb temperature along pseudoadiabats. Mon. Weather Rev. 136, 2764–2785 (2008).

    Article  Google Scholar 

  • 49.

    Steadman, R. G. The assessment of sultriness. Part I. A temperature–humidity index based on human physiology and clothing science. J. Appl. Meteorol. 18, 861–873 (1979).

    Article  Google Scholar 

  • 50.

    Brooke Anderson, G., Bell, M. L. & Peng, R. D. Methods to calculate the heat index as an exposure metric in environmental health research. Environ. Health Perspect. 121, 1111–1119 (2013).

    Article  Google Scholar 

  • 51.

    Skamarock, C. et al. A Description of the Advanced Research WRF Model Version 4 (NCAR, 2019); https://doi.org/10.5065/1DFH-6P97

  • 52.

    Mitchell, K. et al. Noah Land Surface Model (LSM) User’s Guide (NCAR, 2005).

  • 53.

    Iacono, M. J. Radiative forcing by long-lived greenhouse gases: calculations with the AER radiative transfer models. J. Geophys. Res. Atmos. https://doi.org/10.1029/2008JD009944 (2008).

  • 54.

    Janzic, Z. I. The step-mountain eta coordinate model: further developments of the convection, viscous sublayer, and turbulence closure schemes. Mon. Weather Rev. 122, 927–945 (1994).

    Article  Google Scholar 

  • 55.

    Kain, J. S. & Kain, J. The Kain–Fritsch convective parameterization: an update. J. Appl. Meteorol. 43, 170–181 (2004).

    Article  Google Scholar 

  • 56.

    Qian, Y., Huang, M., Yang, B. & Berg, L. K. A modeling study of irrigation effects on surface fluxes and land–air–cloud interactions in the Southern Great Plains. J. Hydrometeorol. 14, 700–721 (2013).

    Article  Google Scholar 

  • 57.

    Siebert, S. et al. Development and validation of the global map of irrigation areas. Hydrol. Earth Syst. Sci. 9, 535–547 (2005).

    Article  Google Scholar 

  • 58.

    Rienecker, M. M. et al. MERRA: NASA’s modern-era retrospective analysis for research and applications. J. Clim. 24, 3624–3648 (2011).

    Article  Google Scholar 

  • 59.

    Durre, I. & Yin, X. Enhanced radiosonde data for studies of vertical structure. Bull. Am. Meteorol. Soc. 89, 1257–1262 (2008).

    Article  Google Scholar 

  • 60.

    Seidel, D. J., Ao, C. O. & Li, K. Estimating climatological planetary boundary layer heights from radiosonde observations: comparison of methods and uncertainty analysis. J. Geophys. Res. Atmos. 115, D16113 (2010).

    Article  Google Scholar 

  • 61.

    Basha, G. & Ratnam, M. V. Identification of atmospheric boundary layer height over a tropical station using high-resolution radiosonde refractivity profiles: comparison with GPS radio occupation measurements. J. Geophys. Res. Atmos. 114, D161010 (2009).

    Article  Google Scholar 


  • Source: Resources - nature.com

    Universities should lead the way on climate action, MIT panelists say

    Stressor-induced ecdysis and thecate cyst formation in the armoured dinoflagellates Prorocentrum cordatum