More stories

  • in

    J-WAFS: Supporting food and water research across MIT

    MIT’s Abdul Latif Jameel Water and Food Systems Lab (J-WAFS) has transformed the landscape of water and food research at MIT, driving faculty engagement and catalyzing new research and innovation in these critical areas. With philanthropic, corporate, and government support, J-WAFS’ strategic approach spans the entire research life cycle, from support for early-stage research to commercialization grants for more advanced projects.Over the past decade, J-WAFS has invested approximately $25 million in direct research funding to support MIT faculty pursuing transformative research with the potential for significant impact. “Since awarding our first cohort of seed grants in 2015, it’s remarkable to look back and see that over 10 percent of the MIT faculty have benefited from J-WAFS funding,” observes J-WAFS Executive Director Renee J. Robins ’83. “Many of these professors hadn’t worked on water or food challenges before their first J-WAFS grant.” By fostering interdisciplinary collaborations and supporting high-risk, high-reward projects, J-WAFS has amplified the capacity of MIT faculty to pursue groundbreaking research that addresses some of the world’s most pressing challenges facing our water and food systems.Drawing MIT faculty to water and food researchJ-WAFS open calls for proposals enable faculty to explore bold ideas and develop impactful approaches to tackling critical water and food system challenges. Professor Patrick Doyle’s work in water purification exemplifies this impact. “Without J-WAFS, I would have never ventured into the field of water purification,” Doyle reflects. While previously focused on pharmaceutical manufacturing and drug delivery, exposure to J-WAFS-funded peers led him to apply his expertise in soft materials to water purification. “Both the funding and the J-WAFS community led me to be deeply engaged in understanding some of the key challenges in water purification and water security,” he explains.Similarly, Professor Otto Cordero of the Department of Civil and Environmental Engineering (CEE) leveraged J-WAFS funding to pivot his research into aquaculture. Cordero explains that his first J-WAFS seed grant “has been extremely influential for my lab because it allowed me to take a step in a new direction, with no preliminary data in hand.” Cordero’s expertise is in microbial communities. He was previous unfamiliar with aquaculture, but he saw the relevance of microbial communities the health of farmed aquatic organisms.Supporting early-career facultyNew assistant professors at MIT have particularly benefited from J-WAFS funding and support. J-WAFS has played a transformative role in shaping the careers and research trajectories of many new faculty members by encouraging them to explore novel research areas, and in many instances providing their first MIT research grant.Professor Ariel Furst reflects on how pivotal J-WAFS’ investment has been in advancing her research. “This was one of the first grants I received after starting at MIT, and it has truly shaped the development of my group’s research program,” Furst explains. With J-WAFS’ backing, her lab has achieved breakthroughs in chemical detection and remediation technologies for water. “The support of J-WAFS has enabled us to develop the platform funded through this work beyond the initial applications to the general detection of environmental contaminants and degradation of those contaminants,” she elaborates. Karthish Manthiram, now a professor of chemical engineering and chemistry at Caltech, explains how J-WAFS’ early investment enabled him and other young faculty to pursue ambitious ideas. “J-WAFS took a big risk on us,” Manthiram reflects. His research on breaking the nitrogen triple bond to make ammonia for fertilizer was initially met with skepticism. However, J-WAFS’ seed funding allowed his lab to lay the groundwork for breakthroughs that later attracted significant National Science Foundation (NSF) support. “That early funding from J-WAFS has been pivotal to our long-term success,” he notes. These stories underscore the broad impact of J-WAFS’ support for early-career faculty, and its commitment to empowering them to address critical global challenges and innovate boldly.Fueling follow-on funding J-WAFS seed grants enable faculty to explore nascent research areas, but external funding for continued work is usually necessary to achieve the full potential of these novel ideas. “It’s often hard to get funding for early stage or out-of-the-box ideas,” notes J-WAFS Director Professor John H. Lienhard V. “My hope, when I founded J-WAFS in 2014, was that seed grants would allow PIs [principal investigators] to prove out novel ideas so that they would be attractive for follow-on funding. And after 10 years, J-WAFS-funded research projects have brought more than $21 million in subsequent awards to MIT.”Professor Retsef Levi led a seed study on how agricultural supply chains affect food safety, with a team of faculty spanning the MIT schools Engineering and Science as well as the MIT Sloan School of Management. The team parlayed their seed grant research into a multi-million-dollar follow-on initiative. Levi reflects, “The J-WAFS seed funding allowed us to establish the initial credibility of our team, which was key to our success in obtaining large funding from several other agencies.”Dave Des Marais was an assistant professor in the Department of CEE when he received his first J-WAFS seed grant. The funding supported his research on how plant growth and physiology are controlled by genes and interact with the environment. The seed grant helped launch his lab’s work addressing enhancing climate change resilience in agricultural systems. The work led to his Faculty Early Career Development (CAREER) Award from the NSF, a prestigious honor for junior faculty members. Now an associate professor, Des Marais’ ongoing project to further investigate the mechanisms and consequences of genomic and environmental interactions is supported by the five-year, $1,490,000 NSF grant. “J-WAFS providing essential funding to get my new research underway,” comments Des Marais.Stimulating interdisciplinary collaborationDes Marais’ seed grant was also key to developing new collaborations. He explains, “the J-WAFS grant supported me to develop a collaboration with Professor Caroline Uhler in EECS/IDSS [the Department of Electrical Engineering and Computer Science/Institute for Data, Systems, and Society] that really shaped how I think about framing and testing hypotheses. One of the best things about J-WAFS is facilitating unexpected connections among MIT faculty with diverse yet complementary skill sets.”Professors A. John Hart of the Department of Mechanical Engineering and Benedetto Marelli of CEE also launched a new interdisciplinary collaboration with J-WAFS funding. They partnered to join expertise in biomaterials, microfabrication, and manufacturing, to create printed silk-based colorimetric sensors that detect food spoilage. “The J-WAFS Seed Grant provided a unique opportunity for multidisciplinary collaboration,” Hart notes.Professors Stephen Graves in the MIT Sloan School of Management and Bishwapriya Sanyal in the Department of Urban Studies and Planning (DUSP) partnered to pursue new research on agricultural supply chains. With field work in Senegal, their J-WAFS-supported project brought together international development specialists and operations management experts to study how small firms and government agencies influence access to and uptake of irrigation technology by poorer farmers. “We used J-WAFS to spur a collaboration that would have been improbable without this grant,” they explain. Being part of the J-WAFS community also introduced them to researchers in Professor Amos Winter’s lab in the Department of Mechanical Engineering working on irrigation technologies for low-resource settings. DUSP doctoral candidate Mark Brennan notes, “We got to share our understanding of how irrigation markets and irrigation supply chains work in developing economies, and then we got to contrast that with their understanding of how irrigation system models work.”Timothy Swager, professor of chemistry, and Rohit Karnik, professor of mechanical engineering and J-WAFS associate director, collaborated on a sponsored research project supported by Xylem, Inc. through the J-WAFS Research Affiliate program. The cross-disciplinary research, which targeted the development of ultra-sensitive sensors for toxic PFAS chemicals, was conceived following a series of workshops hosted by J-WAFS. Swager and Karnik were two of the participants, and their involvement led to the collaborative proposal that Xylem funded. “J-WAFS funding allowed us to combine Swager lab’s expertise in sensing with my lab’s expertise in microfluidics to develop a cartridge for field-portable detection of PFAS,” says Karnik. “J-WAFS has enriched my research program in so many ways,” adds Swager, who is now working to commercialize the technology.Driving global collaboration and impactJ-WAFS has also helped MIT faculty establish and advance international collaboration and impactful global research. By funding and supporting projects that connect MIT researchers with international partners, J-WAFS has not only advanced technological solutions, but also strengthened cross-cultural understanding and engagement.Professor Matthew Shoulders leads the inaugural J-WAFS Grand Challenge project. In response to the first J-WAFS call for “Grand Challenge” proposals, Shoulders assembled an interdisciplinary team based at MIT to enhance and provide climate resilience to agriculture by improving the most inefficient aspect of photosynthesis, the notoriously-inefficient carbon dioxide-fixing plant enzyme RuBisCO. J-WAFS funded this high-risk/high-reward project following a competitive process that engaged external reviewers through a several rounds of iterative proposal development. The technical feedback to the team led them to researchers with complementary expertise from the Australian National University. “Our collaborative team of biochemists and synthetic biologists, computational biologists, and chemists is deeply integrated with plant biologists and field trial experts, yielding a robust feedback loop for enzyme engineering,” Shoulders says. “Together, this team will be able to make a concerted effort using the most modern, state-of-the-art techniques to engineer crop RuBisCO with an eye to helping make meaningful gains in securing a stable crop supply, hopefully with accompanying improvements in both food and water security.”Professor Leon Glicksman and Research Engineer Eric Verploegen’s team designed a low-cost cooling chamber to preserve fruits and vegetables harvested by smallholder farmers with no access to cold chain storage. J-WAFS’ guidance motivated the team to prioritize practical considerations informed by local collaborators, ensuring market competitiveness. “As our new idea for a forced-air evaporative cooling chamber was taking shape, we continually checked that our solution was evolving in a direction that would be competitive in terms of cost, performance, and usability to existing commercial alternatives,” explains Verploegen. Following the team’s initial seed grant, the team secured a J-WAFS Solutions commercialization grant, which Verploegen say “further motivated us to establish partnerships with local organizations capable of commercializing the technology earlier in the project than we might have done otherwise.” The team has since shared an open-source design as part of its commercialization strategy to maximize accessibility and impact.Bringing corporate sponsored research opportunities to MIT facultyJ-WAFS also plays a role in driving private partnerships, enabling collaborations that bridge industry and academia. Through its Research Affiliate Program, for example, J-WAFS provides opportunities for faculty to collaborate with industry on sponsored research, helping to convert scientific discoveries into licensable intellectual property (IP) that companies can turn into commercial products and services.J-WAFS introduced professor of mechanical engineering Alex Slocum to a challenge presented by its research affiliate company, Xylem: how to design a more energy-efficient pump for fluctuating flows. With centrifugal pumps consuming an estimated 6 percent of U.S. electricity annually, Slocum and his then-graduate student Hilary Johnson SM ’18, PhD ’22 developed an innovative variable volute mechanism that reduces energy usage. “Xylem envisions this as the first in a new category of adaptive pump geometry,” comments Johnson. The research produced a pump prototype and related IP that Xylem is working on commercializing. Johnson notes that these outcomes “would not have been possible without J-WAFS support and facilitation of the Xylem industry partnership.” Slocum adds, “J-WAFS enabled Hilary to begin her work on pumps, and Xylem sponsored the research to bring her to this point … where she has an opportunity to do far more than the original project called for.”Swager speaks highly of the impact of corporate research sponsorship through J-WAFS on his research and technology translation efforts. His PFAS project with Karnik described above was also supported by Xylem. “Xylem was an excellent sponsor of our research. Their engagement and feedback were instrumental in advancing our PFAS detection technology, now on the path to commercialization,” Swager says.Looking forwardWhat J-WAFS has accomplished is more than a collection of research projects; a decade of impact demonstrates how J-WAFS’ approach has been transformative for many MIT faculty members. As Professor Mathias Kolle puts it, his engagement with J-WAFS “had a significant influence on how we think about our research and its broader impacts.” He adds that it “opened my eyes to the challenges in the field of water and food systems and the many different creative ideas that are explored by MIT.” This thriving ecosystem of innovation, collaboration, and academic growth around water and food research has not only helped faculty build interdisciplinary and international partnerships, but has also led to the commercialization of transformative technologies with real-world applications. C. Cem Taşan, the POSCO Associate Professor of Metallurgy who is leading a J-WAFS Solutions commercialization team that is about to launch a startup company, sums it up by noting, “Without J-WAFS, we wouldn’t be here at all.”  As J-WAFS looks to the future, its continued commitment — supported by the generosity of its donors and partners — builds on a decade of success enabling MIT faculty to advance water and food research that addresses some of the world’s most pressing challenges. More

  • in

    Creating smart buildings with privacy-first sensors

    Gaining a better understanding of how people move through the spaces where they live and work could make those spaces safer and more sustainable. But no one wants cameras watching them 24/7.Two former Media Lab researchers think they have a solution. Their company, Butlr, offers places like skilled nursing facilities, offices, and senior living communities a way to understand how people are using buildings without compromising privacy. Butlr uses low-resolution thermal sensors and an analytics platform to help detect falls in elderly populations, save energy, and optimize spaces for work.“We have this vision of using the right technology to understand people’s movements and behaviors in space,” says Jiani Zeng SM ’20, who co-founded Butlr with former Media Lab research affiliate Honghao Deng. “So many resources today go toward cameras and AI that take away people’s privacy. We believe we can make our environments safer, healthier, and more sustainable without violating privacy.”To date, the company has sold more than 20,000 of its privacy-preserving sensors to senior living and skilled nursing facilities as well as businesses with large building footprints, including Verizon, Netflix, and Microsoft. In the future, Butlr hopes to enable more dynamic spaces that can understand and respond to the ways people use them.“Space should be like a digital user interface: It should be multi-use and responsive to your needs,” Deng says. “If the office has a big room with people working individually, it should automatically separate into smaller rooms, or lights and temperature should be adjusted to save energy.”Building intelligence, with privacyAs an undergraduate at Tianjin University in China, Deng joined the Media Lab’s City Science Group as a visiting student in 2016. He went on to complete his master’s at Harvard University, but he returned to the Media Lab as a research affiliate and led projects around what he calls responsive architecture: spaces that can understand their users’ needs through non-camera sensors.“My vision of the future of building environments emerged from the Media Lab,” Deng says. “The real world is the largest user interface around us — it’s not the screens. We all live in a three-dimensional world and yet, unlike the digital world, this user interface doesn’t yet understand our needs, let alone the critical situations when someone falls in a room. That could be life-saving.”Zeng came to MIT as a master’s student in the Integrated Design and Management program, which was run jointly out of the MIT Sloan School of Management and the School of Engineering. She also worked as a research assistant at the Media Lab and the Computer Science and Artificial Intelligence Lab (CSAIL).The pair met during a hackathon at the Media Lab and continued collaborating on various projects. During that time, they worked with MIT’s Venture Mentoring Service (VMS) and the MIT I-Corps Program. When they graduated in 2019, they decided to start a company based on the idea of creating smart buildings with privacy-preserving sensors. Crucial early funding came from the Media Lab-affiliated E14 Fund.“I tell every single MIT founder they should have the E14 Fund in their cap table,” Deng says. “They understand what it takes to go from an MIT student to a founder, and to transition from the ‘scientist brain’ to the ‘inventor brain.’ We wouldn’t be where we are today without MIT.”Ray Stata ’57, SM ’58, the founder of Analog Devices, is also an investor in Butlr and serves as Butlr’s board director.“We would love to give back to the MIT community once we become successful entrepreneurs like Ray, whose advice and mentoring has been invaluable,” Deng says.After launching, the founders had to find the right early customers for their real-time sensors, which can discern rough body shapes but no personally identifiable information. They interviewed hundreds of people before starting with owners of office spaces.“People have zero baseline data on what’s happening in their workplace,” Deng says. “That’s especially true since the Covid-19 pandemic made people hybrid, which has opened huge opportunities to cut the energy use of large office spaces. Sometimes, the only people in these buildings are the receptionist and the cleaner.”Butlr’s multiyear, battery-powered sensors can track daily occupancy in each room and give other insights into space utilization that can be used to reduce energy use. For companies with a lot of office space, the opportunities are immense. One Butlr customer has 40 building leases. Deng says optimizing the HVAC controls based on usage could amount to millions of dollars saved.“We can be like the Google Analytics for these spaces without any concerns in terms of privacy,” Deng says.The founders also knew the problem went well beyond office spaces.“In skilled nursing facilities, instead of office spaces it’s individual rooms, all with people who may need the nurse’s help,” Deng says. “But the nurses have no visibility into what’s happening unless they physically enter the room.”Acute care environments and senior living facilities are another key market for Butlr. The company’s platform can detect falls and instances when someone isn’t getting out of bed to alert staff. The system integrates with nurse calling systems to alert staff when something is wrong.The “nerve cells” of the buildingButlr is continuing to develop analytics that give important insights into spaces. For instance, today the platform can use information around movement in elderly populations to help detect problems like urinary tract infections. Butlr also recently started a collaboration with Harvard Medical School’s Beth Israel Deaconess Medical Center and the University of Massachusetts at Amherst’s Artificial Intelligence and Technology Center for Connected Care in Aging and Alzheimer’s Disease. Through the project, Butlr will try to detect changes in movement that could indicate declining cognitive or physical abilities. Those insights could be used to provide aging patients with more supervision.“In the near term we are preventing falls, but the vision is when you look up in any buildings or homes, you’ll see Butlr,” Deng says. “This could allow older adults to age in place with dignity and privacy.”More broadly, Butlr’s founders see their work as an important way to shape the future of AI technology, which is expected to be a growing part of everyone’s lives.“We’re the nerve cells in the building, not the eyes,” Deng says. “That’s the future of AI we believe in: AI that can transform regular rooms into spaces that understand people and can use that understanding to do everything from making efficiency improvements to saving lives in senior care communities. That’s the right way to use this powerful technology.” More

  • in

    Building resiliency

    Several years ago, the residents of a manufactured-home neighborhood in southeast suburban Houston, not far from the Buffalo Bayou, took a major step in dealing with climate problems: They bought the land under their homes. Then they installed better drainage and developed strategies to share expertise and tools for home repairs. The result? The neighborhood made it through Hurricane Harvey in 2017 and a winter freeze in 2021 without major damage.The neighborhood is part of a U.S. movement toward the Resident Owned Community (ROC) model for manufactured home parks. Many people in manufactured homes — mobile homes — do not own the land under them. But if the residents of a manufactured-home park can form an ROC, they can take action to adapt to climate risks — and ease the threat of eviction. With an ROC, manufactured-home residents can be there to stay.That speaks to a larger issue: In cities, lower-income residents are often especially vulnerable to natural hazards, such as flooding, extreme heat, and wildfire. But efforts aimed at helping cities as a whole withstand these disasters can lead to interventions that displace already-disadvantaged residents — by turning a low-lying neighborhood into a storm buffer, for instance.“The global climate crisis has very differential effects on cities, and neighborhoods within cities,” says Lawrence Vale, a professor of urban studies at MIT and co-author of a new book on the subject, “The Equitably Resilient City,” published by the MIT Press and co-authored with Zachary B. Lamb PhD ’18, an assistant professor at the University of California at Berkeley.In the book, the scholars delve into 12 case studies from around the globe which, they believe, have it both ways: Low- and middle-income communities have driven climate progress through tangible built projects, while also keeping people from being displaced, and indeed helping them participate in local governance and neighborhood decision-making.“We can either dive into despair about climate issues, or think they’re solvable and ask what it takes to succeed in a more equitable way,” says Vale, who is the Ford Professor of Urban Design and Planning at MIT. “This book is asking how people look at problems more holistically — to show how environmental impacts are integrated with their livelihoods, with feeling they can have security from displacement, and feeling they’re not going to be displaced, with being empowered to share in the governance where they live.”As Lamb notes, “Pursuing equitable urban climate adaptation requires both changes in the physical built environment of cities and innovations in institutions and governance practices to address deep-seated causes of inequality.”Twelve projects, four elementsResearch for “The Equitably Resilient City” began with exploration of about 200 potential cases, and ultimately focused on 12 projects from around the globe, including the U.S., Brazil, Thailand, and France. Vale and Lamb, coordinating with locally-based research teams, visited these diverse sites and conducted interviews in nine languages.All 12 projects work on multiple levels at once: They are steps toward environmental progress that also help local communities in civic and economic terms. The book uses the acronym LEGS (“livelihood, environment, governance, and security”) to encapsulate this need to make equitable progress on four different fronts.“Doing one of those things well is worth recognition, and doing all of them well is exciting,” Vale says. “It’s important to understand not just what these communities did, but how they did it and whose views were involved. These 12 cases are not a random sample. The book looks for people who are partially succeeding at difficult things in difficult circumstances.”One case study is set in São Paolo, Brazil, where low-income residents of a hilly favela benefitted from new housing in the area on undeveloped land that is less prone to slides. In San Juan, Puerto Rico, residents of low-lying neighborhoods abutting a water channel formed a durable set of community groups to create a fairer solution to flooding: Although the channel needed to be re-widened, the local coalition insisted on limiting displacement, supporting local livelihoods and improving environmental conditions and public space.“There is a backlash to older practices,” Vale says, referring to the large-scale urban planning and infrastructure projects of the mid-20th century, which often ignored community input. “People saw what happened during the urban renewal era and said, ‘You’re not going to do that to us again.’”Indeed, one through-line in “The Equitably Resilient City” is that cities, like all places, can be contested political terrain. Often, solid solutions emerge when local groups organize, advocate for new solutions, and eventually gain enough traction to enact them.“Every one of our examples and cases has probably 15 or 20 years of activity behind it, as well as engagements with a much deeper history,” Vale says. “They’re all rooted in a very often troubled [political] context. And yet these are places that have made progress possible.”Think locally, adapt anywhereAnother motif of “The Equitably Resilient City” is that local progress matters greatly, for a few reasons — including the value of having communities develop projects that meet their own needs, based on their input. Vale and Lamb are interested in projects even if they are very small-scale, and devote one chapter of the book to the Paris OASIS program, which has developed a series of cleverly designed, heavily tree-dotted school playgrounds across Paris. These projects provide environmental education opportunities and help mitigate flooding and urban heat while adding CO2-harnessing greenery to the cityscape.An individual park, by itself, can only do so much, but the concept behind it can be adopted by anyone.“This book is mostly centered on local projects rather than national schemes,” Vale says. “The hope is they serve as an inspiration for people to adapt to their own situations.”After all, the urban geography and governance of places such as Paris or São Paulo will differ widely. But efforts to make improvements to public open space or to well-located inexpensive housing stock applies in cities across the world.Similarly, the authors devote a chapter to work in the Cully neighborhood in Portland, Oregon, where community leaders have instituted a raft of urban environmental improvements while creating and preserving more affordable housing. The idea in the Cully area, as in all these cases, is to make places more resistant to climate change while enhancing them as good places to live for those already there.“Climate adaptation is going to mobilize enormous public and private resources to reshape cities across the globe,” Lamb notes. “These cases suggest pathways where those resources can make cities both more resilient in the face of climate change and more equitable. In fact, these projects show how making cities more equitable can be part of making them more resilient.”Other scholars have praised the book. Eric Klinenberg, director of New York University’s Institute for Public Knowledge has called it “at once scholarly, constructive, and uplifting, a reminder that better, more just cities remain within our reach.”Vale also teaches some of the book’s concepts in his classes, finding that MIT students, wherever they are from, enjoy the idea of thinking creatively about climate resilience.“At MIT, students want to find ways of applying technical skills to urgent global challenges,” Vale says. “I do think there are many opportunities, especially at a time of climate crisis. We try to highlight some of the solutions that are out there. Give us an opportunity, and we’ll show you what a place can be.” More

  • in

    Study shows how households can cut energy costs

    Many people around the globe are living in energy poverty, meaning they spend at least 8 percent of their annual household income on energy. Addressing this problem is not simple, but an experiment by MIT researchers shows that giving people better data about their energy use, plus some coaching on the subject, can lead them to substantially reduce their consumption and costs.The experiment, based in Amsterdam, resulted in households cutting their energy expenses in half, on aggregate — a savings big enough to move three-quarters of them out of energy poverty.“Our energy coaching project as a whole showed a 75 percent success rate at alleviating energy poverty,” says Joseph Llewellyn, a researcher with MIT’s Senseable City Lab and co-author of a newly published paper detailing the experiment’s results.“Energy poverty afflicts families all over the world. With empirical evidence on which policies work, governments could focus their efforts more effectively,” says Fábio Duarte, associate director of MIT’s Senseable City Lab, and another co-author of the paper.The paper, “Assessing the impact of energy coaching with smart technology interventions to alleviate energy poverty,” appears today in Nature Scientific Reports.The authors are Llewellyn, who is also a researcher at the Amsterdam Institute for Advanced Metropolitan Solutions (AMS) and the KTH Royal Institute of Technology in Stockholm; Titus Venverloo, a research fellow at the MIT Senseable City Lab and AMS; Fábio Duarte, who is also a principal researcher MIT’s Senseable City Lab; Carlo Ratti, director of the Senseable City Lab; Cecilia Katzeff; Fredrik Johansson; and Daniel Pargman of the KTH Royal Institute of Technology.The researchers developed the study after engaging with city officials in Amsterdam. In the Netherlands, about 550,000 households, or 7 percent of the population, are considered to be in energy poverty; in the European Union, that figure is about 50 million. In the U.S., separate research has shown that about three in 10 households report trouble paying energy bills.To conduct the experiment, the researchers ran two versions of an energy coaching intervention. In one version, 67 households received one report on their energy usage, along with coaching about how to increase energy efficiency. In the other version, 50 households received those things as well as a smart device giving them real-time updates on their energy consumption. (All households also received some modest energy-savings improvements at the outset, such as additional insulation.)Across the two groups, homes typically reduced monthly consumption of electricity by 33 percent and gas by 42 percent. They lowered their bills by 53 percent, on aggregate, and the percentage of income they spent on energy dropped from 10.1 percent to 5.3 percent.What were these households doing differently? Some of the biggest behavioral changes included things such as only heating rooms that were in use and unplugging devices not being used. Both of those changes save energy, but their benefits were not always understood by residents before they received energy coaching.“The range of energy literacy was quite wide from one home to the next,” Llewellyn says. “And when I went somewhere as an energy coach, it was never to moralize about energy use. I never said, ‘Oh, you’re using way too much.’ It was always working on it with the households, depending on what people need for their homes.”Intriguingly, the homes receiving the small devices that displayed real-time energy data only tended to use them for three or four weeks following a coaching visit. After that, people seemed to lose interest in very frequent monitoring of their energy use. And yet, a few weeks of consulting the devices tended to be long enough to get people to change their habits in a lasting way.“Our research shows that smart devices need to be accompanied by a close understanding of what drives families to change their behaviors,” Venverloo says.As the researchers acknowledge, working with consumers to reduce their energy consumption is just one way to help people escape energy poverty. Other “structural” factors that can help include lower energy prices and more energy-efficient buildings.On the latter note, the current paper has given rise to a new experiment Llewellyn is developing with Amsterdam officials, to examine the benefits of retrofitting residental buildings to lower energy costs. In that case, local policymakers are trying to work out how to fund the retrofitting in such a way that landlords do not simply pass those costs on to tenants.“We don’t want a household to save money on their energy bills if it also means the rent increases, because then we’ve just displaced expenses from one item to another,” Llewellyn says.Households can also invest in products like better insulation themselves, for windows or heating components, although for low-income households, finding the money to pay for such things may not be trivial. That is especially the case, Llewellyn suggests, because energy costs can seem “invisible,” and a lower priority, than feeding and clothing a family.“It’s a big upfront cost for a household that does not have 100 Euros to spend,” Llewellyn says. Compared to paying for other necessities, he notes, “Energy is often the thing that tends to fall last on their list. Energy is always going to be this invisible thing that hides behind the walls, and it’s not easy to change that.”  More

  • in

    Minimizing the carbon footprint of bridges and other structures

    Awed as a young child by the majesty of the Golden Gate Bridge in San Francisco, civil engineer and MIT Morningside Academy for Design (MAD) Fellow Zane Schemmer has retained his fascination with bridges: what they look like, why they work, and how they’re designed and built.He weighed the choice between architecture and engineering when heading off to college, but, motivated by the why and how of structural engineering, selected the latter. Now he incorporates design as an iterative process in the writing of algorithms that perfectly balance the forces involved in discrete portions of a structure to create an overall design that optimizes function, minimizes carbon footprint, and still produces a manufacturable result.While this may sound like an obvious goal in structural design, it’s not. It’s new. It’s a more holistic way of looking at the design process that can optimize even down to the materials, angles, and number of elements in the nodes or joints that connect the larger components of a building, bridge, tower, etc.According to Schemmer, there hasn’t been much progress on optimizing structural design to minimize embodied carbon, and the work that exists often results in designs that are “too complex to be built in real life,” he says. The embodied carbon of a structure is the total carbon dioxide emissions of its life cycle: from the extraction or manufacture of its materials to their transport and use and through the demolition of the structure and disposal of the materials. Schemmer, who works with Josephine V. Carstensen, the Gilbert W. Winslow Career Development Associate Professor of Civil and Environmental Engineering at MIT, is focusing on the portion of that cycle that runs through construction.In September, at the IASS 2024 symposium “Redefining the Art of Structural Design in Zurich,” Schemmer and Carstensen presented their work on Discrete Topology Optimization algorithms that are able to minimize the embodied carbon in a bridge or other structure by up to 20 percent. This comes through materials selection that considers not only a material’s appearance and its ability to get the job done, but also the ease of procurement, its proximity to the building site, and the carbon embodied in its manufacture and transport.“The real novelty of our algorithm is its ability to consider multiple materials in a highly constrained solution space to produce manufacturable designs with a user-specified force flow,” Schemmer says. “Real-life problems are complex and often have many constraints associated with them. In traditional formulations, it can be difficult to have a long list of complicated constraints. Our goal is to incorporate these constraints to make it easier to take our designs out of the computer and create them in real life.”Take, for instance, a steel tower, which could be a “super lightweight, efficient design solution,” Schemmer explains. Because steel is so strong, you don’t need as much of it compared to concrete or timber to build a big building. But steel is also very carbon-intensive to produce and transport. Shipping it across the country or especially from a different continent can sharply increase its embodied carbon price tag. Schemmer’s topology optimization will replace some of the steel with timber elements or decrease the amount of steel in other elements to create a hybrid structure that will function effectively and minimize the carbon footprint. “This is why using the same steel in two different parts of the world can lead to two different optimized designs,” he explains.Schemmer, who grew up in the mountains of Utah, earned a BS and MS in civil and environmental engineering from University of California at Berkeley, where his graduate work focused on seismic design. He describes that education as providing a “very traditional, super-strong engineering background that tackled some of the toughest engineering problems,” along with knowledge of structural engineering’s traditions and current methods.But at MIT, he says, a lot of the work he sees “looks at removing the constraints of current societal conventions of doing things, and asks how could we do things if it was in a more ideal form; what are we looking at then? Which I think is really cool,” he says. “But I think sometimes too, there’s a jump between the most-perfect version of something and where we are now, that there needs to be a bridge between those two. And I feel like my education helps me see that bridge.”The bridge he’s referring to is the topology optimization algorithms that make good designs better in terms of decreased global warming potential.“That’s where the optimization algorithm comes in,” Schemmer says. “In contrast to a standard structure designed in the past, the algorithm can take the same design space and come up with a much more efficient material usage that still meets all the structural requirements, be up to code, and have everything we want from a safety standpoint.”That’s also where the MAD Design Fellowship comes in. The program provides yearlong fellowships with full financial support to graduate students from all across the Institute who network with each other, with the MAD faculty, and with outside speakers who use design in new ways in a surprising variety of fields. This helps the fellows gain a better understanding of how to use iterative design in their own work.“Usually people think of their own work like, ‘Oh, I had this background. I’ve been looking at this one way for a very long time.’ And when you look at it from an outside perspective, I think it opens your mind to be like, ‘Oh my God. I never would have thought about doing this that way. Maybe I should try that.’ And then we can move to new ideas, new inspiration for better work,” Schemmer says.He chose civil and structural engineering over architecture some seven years ago, but says that “100 years ago, I don’t think architecture and structural engineering were two separate professions. I think there was an understanding of how things looked and how things worked, and it was merged together. Maybe from an efficiency standpoint, it’s better to have things done separately. But I think there’s something to be said for having knowledge about how the whole system works, potentially more intermingling between the free-form architectural design and the mathematical design of a civil engineer. Merging it back together, I think, has a lot of benefits.”Which brings us back to the Golden Gate Bridge, Schemmer’s longtime favorite. You can still hear that excited 3-year-old in his voice when he talks about it.“It’s so iconic,” he says. “It’s connecting these two spits of land that just rise straight up out of the ocean. There’s this fog that comes in and out a lot of days. It’s a really magical place, from the size of the cable strands and everything. It’s just, ‘Wow.’ People built this over 100 years ago, before the existence of a lot of the computational tools that we have now. So, all the math, everything in the design, was all done by hand and from the mind. Nothing was computerized, which I think is crazy to think about.”As Schemmer continues work on his doctoral degree at MIT, the MAD fellowship will expose him to many more awe-inspiring ideas in other fields, leading him to incorporate some of these in some way with his engineering knowledge to design better ways of building bridges and other structures. More

  • in

    In a unique research collaboration, students make the case for less e-waste

    Brought together as part of the Social and Ethical Responsibilities of Computing (SERC) initiative within the MIT Schwarzman College of Computing, a community of students known as SERC Scholars is collaborating to examine the most urgent problems humans face in the digital landscape.Each semester, students from all levels from across MIT are invited to join a different topical working group led by a SERC postdoctoral associate. Each group delves into a specific issue — such as surveillance or data ownership — culminating in a final project presented at the end of the term.Typically, students complete the program with hands-on experience conducting research in a new cross-disciplinary field. However, one group of undergraduate and graduate students recently had the unique opportunity to enhance their resume by becoming published authors of a case study about the environmental and climate justice implications of the electronics hardware life cycle.Although it’s not uncommon for graduate students to co-author case studies, it’s unusual for undergraduates to earn this opportunity — and for their audience to be other undergraduates around the world.“Our team was insanely interdisciplinary,” says Anastasia Dunca, a junior studying computer science and one of the co-authors. “I joined the SERC Scholars Program because I liked the idea of being part of a cohort from across MIT working on a project that utilized all of our skillsets. It also helps [undergraduates] learn the ins and outs of computing ethics research.”Case study co-author Jasmin Liu, an MBA student in the MIT Sloan School of Management, sees the program as a platform to learn about the intersection of technology, society, and ethics: “I met team members spanning computer science, urban planning, to art/culture/technology. I was excited to work with a diverse team because I know complex problems must be approached with many different perspectives. Combining my background in humanities and business with the expertise of others allowed us to be more innovative and comprehensive.”Christopher Rabe, a former SERC postdoc who facilitated the group, says, “I let the students take the lead on identifying the topic and conducting the research.” His goal for the group was to challenge students across disciplines to develop a working definition of climate justice.From mining to e-wasteThe SERC Scholars’ case study, “From Mining to E-waste: The Environmental and Climate Justice Implications of the Electronics Hardware Life Cycle,” was published by the MIT Case Studies in Social and Ethical Responsibilities of Computing.The ongoing case studies series, which releases new issues twice a year on an open-source platform, is enabling undergraduate instructors worldwide to incorporate research-based education materials on computing ethics into their existing class syllabi.This particular case study broke down the electronics life cycle from mining to manufacturing, usage, and disposal. It offered an in-depth look at how this cycle promotes inequity in the Global South. Mining for the average of 60 minerals that power everyday devices lead to illegal deforestation, compromising air quality in the Amazon, and triggering armed conflict in Congo. Manufacturing leads to proven health risks for both formal and informal workers, some of whom are child laborers.Life cycle assessment and circular economy are proposed as mechanisms for analyzing environmental and climate justice issues in the electronics life cycle. Rather than posing solutions, the case study offers readers entry points for further discussion and for assessing their own individual responsibility as producers of e-waste.Crufting and crafting a case studyDunca joined Rabe’s working group, intrigued by the invitation to conduct a rigorous literature review examining issues like data center resource and energy use, manufacturing waste, ethical issues with AI, and climate change. Rabe quickly realized that a common thread among all participants was an interest in understanding and reducing e-waste and its impact on the environment.“I came in with the idea of us co-authoring a case study,” Rabe said. However, the writing-intensive process was initially daunting to those students who were used to conducting applied research. Once Rabe created sub-groups with discrete tasks, the steps for researching, writing, and iterating a case study became more approachable.For Ellie Bultena, an undergraduate student studying linguistics and philosophy and a contributor to the study, that meant conducting field research on the loading dock of MIT’s Stata Center, where students and faculty go “crufting” through piles of clunky printers, broken computers, and used lab equipment discarded by the Institute’s labs, departments, and individual users.Although not a formally sanctioned activity on-campus, “crufting” is the act of gleaning usable parts from these junk piles to be repurposed into new equipment or art. Bultena’s respondents, who opted to be anonymous, said that MIT could do better when it comes to the amount of e-waste generated and suggested that formal strategies could be implemented to encourage community members to repair equipment more easily or recycle more formally.Rabe, now an education program director at the MIT Environmental Solutions Initiative, is hopeful that through the Zero-Carbon Campus Initiative, which commits MIT to eliminating all direct emissions by 2050, MIT will ultimately become a model for other higher education institutions.Although the group lacked the time and resources to travel to communities in the Global South that they profiled in their case study, members leaned into exhaustive secondary research, collecting data on how some countries are irresponsibly dumping e-waste. In contrast, others have developed alternative solutions that can be duplicated elsewhere and scaled.“We source materials, manufacture them, and then throw them away,” Lelia Hampton says. A PhD candidate in electrical engineering and computer science and another co-author, Hampton jumped at the opportunity to serve in a writing role, bringing together the sub-groups research findings. “I’d never written a case study, and it was exciting. Now I want to write 10 more.”The content directly informed Hampton’s dissertation research, which “looks at applying machine learning to climate justice issues such as urban heat islands.” She said that writing a case study that is accessible to general audiences upskilled her for the non-profit organization she’s determined to start. “It’s going to provide communities with free resources and data needed to understand how they are impacted by climate change and begin to advocate against injustice,” Hampton explains.Dunca, Liu, Rabe, Bultena, and Hampton are joined on the case study by fellow authors Mrinalini Singha, a graduate student in the Art, Culture, and Technology program; Sungmoon Lim, a graduate student in urban studies and planning and EECS; Lauren Higgins, an undergraduate majoring in political science; and Madeline Schlegal, a Northeastern University co-op student.Taking the case study to classrooms around the worldAlthough PhD candidates have contributed to previous case studies in the series, this publication is the first to be co-authored with MIT undergraduates. Like any other peer-reviewed journal, before publication, the SERC Scholars’ case study was anonymously reviewed by senior scholars drawn from various fields.The series editor, David Kaiser, also served as one of SERC’s inaugural associate deans and helped shape the program. “The case studies, by design, are short, easy to read, and don’t take up lots of time,” Kaiser explained. “They are gateways for students to explore, and instructors can cover a topic that has likely already been on their mind.” This semester, Kaiser, the Germeshausen Professor of the History of Science and a professor of physics, is teaching STS.004 (Intersections: Science, Technology, and the World), an undergraduate introduction to the field of science, technology, and society. The last month of the semester has been dedicated wholly to SERC case studies, one of which is: “From Mining to E-Waste.”Hampton was visibly moved to hear that the case study is being used at MIT but also by some of the 250,000 visitors to the SERC platform, many of whom are based in the Global South and directly impacted by the issues she and her cohort researched. “Many students are focused on climate, whether through computer science, data science, or mechanical engineering. I hope that this case study educates them on environmental and climate aspects of e-waste and computing.” More

  • in

    Enabling a circular economy in the built environment

    The amount of waste generated by the construction sector underscores an urgent need for embracing circularity — a sustainable model that aims to minimize waste and maximize material efficiency through recovery and reuse — in the built environment: 600 million tons of construction and demolition waste was produced in the United States alone in 2018, with 820 million tons reported in the European Union, and an excess of 2 billion tons annually in China.This significant resource loss embedded in our current industrial ecosystem marks a linear economy that operates on a “take-make-dispose” model of construction; in contrast, the “make-use-reuse” approach of a circular economy offers an important opportunity to reduce environmental impacts.A team of MIT researchers has begun to assess what may be needed to spur widespread circular transition within the built environment in a new open-access study that aims to understand stakeholders’ current perceptions of circularity and quantify their willingness to pay.“This paper acts as an initial endeavor into understanding what the industry may be motivated by, and how integration of stakeholder motivations could lead to greater adoption,” says lead author Juliana Berglund-Brown, PhD student in the Department of Architecture at MIT.Considering stakeholders’ perceptionsThree different stakeholder groups from North America, Europe, and Asia — material suppliers, design and construction teams, and real estate developers — were surveyed by the research team that also comprises Akrisht Pandey ’23; Fabio Duarte, associate director of the MIT Senseable City Lab; Raquel Ganitsky, fellow in the Sustainable Real Estate Development Action Program; Randolph Kirchain, co-director of MIT Concrete Sustainability Hub; and Siqi Zheng, the STL Champion Professor of Urban and Real Estate Sustainability at Department of Urban Studies and Planning.Despite growing awareness of reuse practice among construction industry stakeholders, circular practices have yet to be implemented at scale — attributable to many factors that influence the intersection of construction needs with government regulations and the economic interests of real estate developers.The study notes that perceived barriers to circular adoption differ based on industry role, with lack of both client interest and standardized structural assessment methods identified as the primary concern of design and construction teams, while the largest deterrents for material suppliers are logistics complexity, and supply uncertainty. Real estate developers, on the other hand, are chiefly concerned with higher costs and structural assessment. Yet encouragingly, respondents expressed willingness to absorb higher costs, with developers indicating readiness to pay an average of 9.6 percent higher construction costs for a minimum 52.9 percent reduction in embodied carbon — and all stakeholders highly favor the potential of incentives like tax exemptions to aid with cost premiums.Next steps to encourage circularityThe findings highlight the need for further conversation between design teams and developers, as well as for additional exploration into potential solutions to practical challenges. “The thing about circularity is that there is opportunity for a lot of value creation, and subsequently profit,” says Berglund-Brown. “If people are motivated by cost, let’s provide a cost incentive, or establish strategies that have one.”When it comes to motivating reasons to adopt circularity practices, the study also found trends emerging by industry role. Future net-zero goals influence developers as well as design and construction teams, with government regulation the third-most frequently named reason across all respondent types.“The construction industry needs a market driver to embrace circularity,” says Berglund-Brown, “Be it carrots or sticks, stakeholders require incentives for adoption.”The effect of policy to motivate change cannot be understated, with major strides being made in low operational carbon building design after policy restricting emissions was introduced, such as Local Law 97 in New York City and the Building Emissions Reduction and Disclosure Ordinance in Boston. These pieces of policy, and their results, can serve as models for embodied carbon reduction policy elsewhere.Berglund-Brown suggests that municipalities might initiate ordinances requiring buildings to be deconstructed, which would allow components to be reused, curbing demolition methods that result in waste rather than salvage. Top-down ordinances could be one way to trigger a supply chain shift toward reprocessing building materials that are typically deemed “end-of-life.”The study also identifies other challenges to the implementation of circularity at scale, including risk associated with how to reuse materials in new buildings, and disrupting status quo design practices.“Understanding the best way to motivate transition despite uncertainty is where our work comes in,” says Berglund-Brown. “Beyond that, researchers can continue to do a lot to alleviate risk — like developing standards for reuse.”Innovations that challenge the status quoDisrupting the status quo is not unusual for MIT researchers; other visionary work in construction circularity pioneered at MIT includes “a smart kit of parts” called Pixelframe. This system for modular concrete reuse allows building elements to be disassembled and rebuilt several times, aiding deconstruction and reuse while maintaining material efficiency and versatility.Developed by MIT Climate and Sustainability Consortium Associate Director Caitlin Mueller’s research team, Pixelframe is designed to accommodate a wide range of applications from housing to warehouses, with each piece of interlocking precast concrete modules, called Pixels, assigned a material passport to enable tracking through its many life cycles.Mueller’s work demonstrates that circularity can work technically and logistically at the scale of the built environment — by designing specifically for disassembly, configuration, versatility, and upfront carbon and cost efficiency.“This can be built today. This is building code-compliant today,” said Mueller of Pixelframe in a keynote speech at the recent MCSC Annual Symposium, which saw industry representatives and members of the MIT community coming together to discuss scalable solutions to climate and sustainability problems. “We currently have the potential for high-impact carbon reduction as a compelling alternative to the business-as-usual construction methods we are used to.”Pixelframe was recently awarded a grant by the Massachusetts Clean Energy Center (MassCEC) to pursue commercialization, an important next step toward integrating innovations like this into a circular economy in practice. “It’s MassCEC’s job to make sure that these climate leaders have the resources they need to turn their technologies into successful businesses that make a difference around the world,” said MassCEC CEO Emily Reichart, in a press release.Additional support for circular innovation has emerged thanks to a historic piece of climate legislation from the Biden administration. The Environmental Protection Agency recently awarded a federal grant on the topic of advancing steel reuse to Berglund-Brown — whose PhD thesis focuses on scaling the reuse of structural heavy-section steel — and John Ochsendorf, the Class of 1942 Professor of Civil and Environmental Engineering and Architecture at MIT.“There is a lot of exciting upcoming work on this topic,” says Berglund-Brown. “To any practitioners reading this who are interested in getting involved — please reach out.”The study is supported in part by the MIT Climate and Sustainability Consortium. More

  • in

    MIT delegation mainstreams biodiversity conservation at the UN Biodiversity Convention, COP16

    For the first time, MIT sent an organized engagement to the global Conference of the Parties for the Convention on Biological Diversity, which this year was held Oct. 21 to Nov. 1 in Cali, Colombia.The 10 delegates to COP16 included faculty, researchers, and students from the MIT Environmental Solutions Initiative (ESI), the Department of Electrical Engineering and Computer Science (EECS), the Computer Science and Artificial Intelligence Laboratory (CSAIL), the Department of Urban Studies and Planning (DUSP), the Institute for Data, Systems, and Society (IDSS), and the Center for Sustainability Science and Strategy.In previous years, MIT faculty had participated sporadically in the discussions. This organized engagement, led by the ESI, is significant because it brought representatives from many of the groups working on biodiversity across the Institute; showcased the breadth of MIT’s research in more than 15 events including panels, roundtables, and keynote presentations across the Blue and Green Zones of the conference (with the Blue Zone representing the primary venue for the official negotiations and discussions and the Green Zone representing public events); and created an experiential learning opportunity for students who followed specific topics in the negotiations and throughout side events.The conference also gathered attendees from governments, nongovernmental organizations, businesses, other academic institutions, and practitioners focused on stopping global biodiversity loss and advancing the 23 goals of the Kunming-Montreal Global Biodiversity Framework (KMGBF), an international agreement adopted in 2022 to guide global efforts to protect and restore biodiversity through 2030.MIT’s involvement was particularly pronounced when addressing goals related to building coalitions of sub-national governments (targets 11, 12, 14); technology and AI for biodiversity conservation (targets 20 and 21); shaping equitable markets (targets 3, 11, and 19); and informing an action plan for Afro-descendant communities (targets 3, 10, and 22).Building coalitions of sub-national governmentsThe ESI’s Natural Climate Solutions (NCS) Program was able to support two separate coalitions of Latin American cities, namely the Coalition of Cities Against Illicit Economies in the Biogeographic Chocó Region and the Colombian Amazonian Cities coalition, who successfully signed declarations to advance specific targets of the KMGBF (the aforementioned targets 11, 12, 14).This was accomplished through roundtables and discussions where team members — including Marcela Angel, research program director at the MIT ESI; Angelica Mayolo, ESI Martin Luther King Fellow 2023-25; and Silvia Duque and Hannah Leung, MIT Master’s in City Planning students — presented a set of multi-scale actions including transnational strategies, recommendations to strengthen local and regional institutions, and community-based actions to promote the conservation of the Biogeographic Chocó as an ecological corridor.“There is an urgent need to deepen the relationship between academia and local governments of cities located in biodiversity hotspots,” said Angel. “Given the scale and unique conditions of Amazonian cities, pilot research projects present an opportunity to test and generate a proof of concept. These could generate catalytic information needed to scale up climate adaptation and conservation efforts in socially and ecologically sensitive contexts.”ESI’s research also provided key inputs for the creation of the Fund for the Biogeographic Chocó Region, a multi-donor fund launched within the framework of COP16 by a coalition composed of Colombia, Ecuador, Panamá, and Costa Rica. The fund aims to support biodiversity conservation, ecosystem restoration, climate change mitigation and adaptation, and sustainable development efforts across the region.Technology and AI for biodiversity conservationData, technology, and artificial intelligence are playing an increasing role in how we understand biodiversity and ecosystem change globally. Professor Sara Beery’s research group at MIT focuses on this intersection, developing AI methods that enable species and environmental monitoring at previously unprecedented spatial, temporal, and taxonomic scales.During the International Union of Biological Diversity Science-Policy Forum, the high-level COP16 segment focused on outlining recommendations from scientific and academic community, Beery spoke on a panel alongside María Cecilia Londoño, scientific information manager of the Humboldt Institute and co-chair of the Global Biodiversity Observations Network, and Josh Tewksbury, director of the Smithsonian Tropical Research Institute, among others, about how these technological advancements will help humanity achieve our biodiversity targets. The panel emphasized that AI innovation was needed, but with emphasis on direct human-AI partnership, AI capacity building, and the need for data and AI policy to ensure equity of access and benefit from these technologies.As a direct outcome of the session, for the first time, AI was emphasized in the statement on behalf of science and academia delivered by Hernando Garcia, director of the Humboldt Institute, and David Skorton, secretary general of the Smithsonian Institute, to the high-level segment of the COP16.That statement read, “To effectively address current and future challenges, urgent action is required in equity, governance, valuation, infrastructure, decolonization and policy frameworks around biodiversity data and artificial intelligence.”Beery also organized a panel at the GEOBON pavilion in the Blue Zone on Scaling Biodiversity Monitoring with AI, which brought together global leaders from AI research, infrastructure development, capacity and community building, and policy and regulation. The panel was initiated and experts selected from the participants at the recent Aspen Global Change Institute Workshop on Overcoming Barriers to Impact in AI for Biodiversity, co-organized by Beery.Shaping equitable marketsIn a side event co-hosted by the ESI with CAF-Development Bank of Latin America, researchers from ESI’s Natural Climate Solutions Program — including Marcela Angel; Angelica Mayolo; Jimena Muzio, ESI research associate; and Martin Perez Lara, ESI research affiliate and director for Forest Climate Solutions Impact and Monitoring at World Wide Fund for Nature of the U.S. — presented results of a study titled “Voluntary Carbon Markets for Social Impact: Comprehensive Assessment of the Role of Indigenous Peoples and Local Communities (IPLC) in Carbon Forestry Projects in Colombia.” The report highlighted the structural barriers that hinder effective participation of IPLC, and proposed a conceptual framework to assess IPLC engagement in voluntary carbon markets.Communicating these findings is important because the global carbon market has experienced a credibility crisis since 2023, influenced by critical assessments in academic literature, journalism questioning the quality of mitigation results, and persistent concerns about the engagement of private actors with IPLC. Nonetheless, carbon forestry projects have expanded rapidly in Indigenous, Afro-descendant, and local communities’ territories, and there is a need to assess the relationships between private actors and IPLC and to propose pathways for equitable participation. 

    Panelists pose at the equitable markets side event at the Latin American Pavilion in the Blue Zone.

    Previous item
    Next item

    The research presentation and subsequent panel with representatives of the association for Carbon Project Developers in Colombia Asocarbono, Fondo Acción, and CAF further discussed recommendations for all actors in the value chain of carbon certificates — including those focused on promoting equitable benefit-sharing and safeguarding compliance, increased accountability, enhanced governance structures, strengthened institutionality, and regulatory frameworks  — necessary to create an inclusive and transparent market.Informing an action plan for Afro-descendant communitiesThe Afro-Interamerican Forum on Climate Change (AIFCC), an international network working to highlight the critical role of Afro-descendant peoples in global climate action, was also present at COP16.At the Afro Summit, Mayolo presented key recommendations prepared collectively by the members of AIFCC to the technical secretariat of the Convention on Biological Diversity (CBD). The recommendations emphasize:creating financial tools for conservation and supporting Afro-descendant land rights;including a credit guarantee fund for countries that recognize Afro-descendant collective land titling and research on their contributions to biodiversity conservation;calling for increased representation of Afro-descendant communities in international policy forums;capacity-building for local governments; andstrategies for inclusive growth in green business and energy transition.These actions aim to promote inclusive and sustainable development for Afro-descendant populations.“Attending COP16 with a large group from MIT contributing knowledge and informed perspectives at 15 separate events was a privilege and honor,” says MIT ESI Director John E. Fernández. “This demonstrates the value of the ESI as a powerful research and convening body at MIT. Science is telling us unequivocally that climate change and biodiversity loss are the two greatest challenges that we face as a species and a planet. MIT has the capacity, expertise, and passion to address not only the former, but also the latter, and the ESI is committed to facilitating the very best contributions across the institute for the critical years that are ahead of us.”A fuller overview of the conference is available via The MIT Environmental Solutions Initiative’s Primer of COP16. More