More stories

  • in

    Ensuring a durable transition

    To fend off the worst impacts of climate change, “we have to decarbonize, and do it even faster,” said William H. Green, director of the MIT Energy Initiative (MITEI) and Hoyt C. Hottel Professor, MIT Department of Chemical Engineering, at MITEI’s Annual Research Conference.“But how the heck do we actually achieve this goal when the United States is in the middle of a divisive election campaign, and globally, we’re facing all kinds of geopolitical conflicts, trade protectionism, weather disasters, increasing demand from developing countries building a middle class, and data centers in countries like the U.S.?”Researchers, government officials, and business leaders convened in Cambridge, Massachusetts, Sept. 25-26 to wrestle with this vexing question at the conference that was themed, “A durable energy transition: How to stay on track in the face of increasing demand and unpredictable obstacles.”“In this room we have a lot of power,” said Green, “if we work together, convey to all of society what we see as real pathways and policies to solve problems, and take collective action.”The critical role of consensus-building in driving the energy transition arose repeatedly in conference sessions, whether the topic involved developing and adopting new technologies, constructing and siting infrastructure, drafting and passing vital energy policies, or attracting and retaining a skilled workforce.Resolving conflictsThere is “blowback and a social cost” in transitioning away from fossil fuels, said Stephen Ansolabehere, the Frank G. Thompson Professor of Government at Harvard University, in a panel on the social barriers to decarbonization. “Companies need to engage differently and recognize the rights of communities,” he said.Nora DeDontney, director of development at Vineyard Offshore, described her company’s two years of outreach and negotiations to bring large cables from ocean-based wind turbines onshore.“Our motto is, ‘community first,’” she said. Her company works to mitigate any impacts towns might feel because of offshore wind infrastructure construction with projects, such as sewer upgrades; provides workforce training to Tribal Nations; and lays out wind turbines in a manner that provides safe and reliable areas for local fisheries.Elsa A. Olivetti, professor in the Department of Materials Science and Engineering at MIT and the lead of the Decarbonization Mission of MIT’s new Climate Project, discussed the urgent need for rapid scale-up of mineral extraction. “Estimates indicate that to electrify the vehicle fleet by 2050, about six new large copper mines need to come on line each year,” she said. To meet the demand for metals in the United States means pushing into Indigenous lands and environmentally sensitive habitats. “The timeline of permitting is not aligned with the temporal acceleration needed,” she said.Larry Susskind, the Ford Professor of Urban and Environmental Planning in the MIT Department of Urban Studies and Planning, is trying to resolve such tensions with universities playing the role of mediators. He is creating renewable energy clinics where students train to participate in emerging disputes over siting. “Talk to people before decisions are made, conduct joint fact finding, so that facilities reduce harms and share the benefits,” he said.Clean energy boom and pressureA relatively recent and unforeseen increase in demand for energy comes from data centers, which are being built by large technology companies for new offerings, such as artificial intelligence.“General energy demand was flat for 20 years — and now, boom,” said Sean James, Microsoft’s senior director of data center research. “It caught utilities flatfooted.” With the expansion of AI, the rush to provision data centers with upwards of 35 gigawatts of new (and mainly renewable) power in the near future, intensifies pressure on big companies to balance the concerns of stakeholders across multiple domains. Google is pursuing 24/7 carbon-free energy by 2030, said Devon Swezey, the company’s senior manager for global energy and climate.“We’re pursuing this by purchasing more and different types of clean energy locally, and accelerating technological innovation such as next-generation geothermal projects,” he said. Pedro Gómez Lopez, strategy and development director, Ferrovial Digital, which designs and constructs data centers, incorporates renewable energy into their projects, which contributes to decarbonization goals and benefits to locales where they are sited. “We can create a new supply of power, taking the heat generated by a data center to residences or industries in neighborhoods through District Heating initiatives,” he said.The Inflation Reduction Act and other legislation has ramped up employment opportunities in clean energy nationwide, touching every region, including those most tied to fossil fuels. “At the start of 2024 there were about 3.5 million clean energy jobs, with ‘red’ states showing the fastest growth in clean energy jobs,” said David S. Miller, managing partner at Clean Energy Ventures. “The majority (58 percent) of new jobs in energy are now in clean energy — that transition has happened. And one-in-16 new jobs nationwide were in clean energy, with clean energy jobs growing more than three times faster than job growth economy-wide”In this rapid expansion, the U.S. Department of Energy (DoE) is prioritizing economically marginalized places, according to Zoe Lipman, lead for good jobs and labor standards in the Office of Energy Jobs at the DoE. “The community benefit process is integrated into our funding,” she said. “We are creating the foundation of a virtuous circle,” encouraging benefits to flow to disadvantaged and energy communities, spurring workforce training partnerships, and promoting well-paid union jobs. “These policies incentivize proactive community and labor engagement, and deliver community benefits, both of which are key to building support for technological change.”Hydrogen opportunity and challengeWhile engagement with stakeholders helps clear the path for implementation of technology and the spread of infrastructure, there remain enormous policy, scientific, and engineering challenges to solve, said multiple conference participants. In a “fireside chat,” Prasanna V. Joshi, vice president of low-carbon-solutions technology at ExxonMobil, and Ernest J. Moniz, professor of physics and special advisor to the president at MIT, discussed efforts to replace natural gas and coal with zero-carbon hydrogen in order to reduce greenhouse gas emissions in such major industries as steel and fertilizer manufacturing.“We have gone into an era of industrial policy,” said Moniz, citing a new DoE program offering incentives to generate demand for hydrogen — more costly than conventional fossil fuels — in end-use applications. “We are going to have to transition from our current approach, which I would call carrots-and-twigs, to ultimately, carrots-and-sticks,” Moniz warned, in order to create “a self-sustaining, major, scalable, affordable hydrogen economy.”To achieve net zero emissions by 2050, ExxonMobil intends to use carbon capture and sequestration in natural gas-based hydrogen and ammonia production. Ammonia can also serve as a zero-carbon fuel. Industry is exploring burning ammonia directly in coal-fired power plants to extend the hydrogen value chain. But there are challenges. “How do you burn 100 percent ammonia?”, asked Joshi. “That’s one of the key technology breakthroughs that’s needed.” Joshi believes that collaboration with MIT’s “ecosystem of breakthrough innovation” will be essential to breaking logjams around the hydrogen and ammonia-based industries.MIT ingenuity essentialThe energy transition is placing very different demands on different regions around the world. Take India, where today per capita power consumption is one of the lowest. But Indians “are an aspirational people … and with increasing urbanization and industrial activity, the growth in power demand is expected to triple by 2050,” said Praveer Sinha, CEO and managing director of the Tata Power Co. Ltd., in his keynote speech. For that nation, which currently relies on coal, the move to clean energy means bringing another 300 gigawatts of zero-carbon capacity online in the next five years. Sinha sees this power coming from wind, solar, and hydro, supplemented by nuclear energy.“India plans to triple nuclear power generation capacity by 2032, and is focusing on advancing small modular reactors,” said Sinha. “The country also needs the rapid deployment of storage solutions to firm up the intermittent power.” The goal is to provide reliable electricity 24/7 to a population living both in large cities and in geographically remote villages, with the help of long-range transmission lines and local microgrids. “India’s energy transition will require innovative and affordable technology solutions, and there is no better place to go than MIT, where you have the best brains, startups, and technology,” he said.These assets were on full display at the conference. Among them a cluster of young businesses, including:the MIT spinout Form Energy, which has developed a 100-hour iron battery as a backstop to renewable energy sources in case of multi-day interruptions;startup Noya that aims for direct air capture of atmospheric CO2 using carbon-based materials;the firm Active Surfaces, with a lightweight material for putting solar photovoltaics in previously inaccessible places;Copernic Catalysts, with new chemistry for making ammonia and sustainable aviation fuel far more inexpensively than current processes; andSesame Sustainability, a software platform spun out of MITEI that gives industries a full financial analysis of the costs and benefits of decarbonization.The pipeline of research talent extended into the undergraduate ranks, with a conference “slam” competition showcasing students’ summer research projects in areas from carbon capture using enzymes to 3D design for the coils used in fusion energy confinement.“MIT students like me are looking to be the next generation of energy leaders, looking for careers where we can apply our engineering skills to tackle exciting climate problems and make a tangible impact,” said Trent Lee, a junior in mechanical engineering researching improvements in lithium-ion energy storage. “We are stoked by the energy transition, because it’s not just the future, but our chance to build it.” More

  • in

    Dancing with currents and waves in the Maldives

    Any child who’s spent a morning building sandcastles only to watch the afternoon tide ruin them in minutes knows the ocean always wins.Yet, coastal protection strategies have historically focused on battling the sea — attempting to hold back tides and fighting waves and currents by armoring coastlines with jetties and seawalls and taking sand from the ocean floor to “renourish” beaches. These approaches are temporary fixes, but eventually the sea retakes dredged sand, intense surf breaches seawalls, and jetties may just push erosion to a neighboring beach. The ocean wins.With climate change accelerating sea level rise and coastal erosion, the need for better solutions is urgent. Noting that eight of the world’s 10 largest cities are near a coast, a recent National Oceanic and Atmospheric Administration (NOAA) report pointed to 2023’s record-high global sea level and warned that high tide flooding is now 300 to 900 percent more frequent than it was 50 years ago, threatening homes, businesses, roads and bridges, and a range of public infrastructure, from water supplies to power plants.    Island nations face these threats more acutely than other countries and there’s a critical need for better solutions. MIT’s Self-Assembly Lab is refining an innovative one that demonstrates the value of letting nature take its course — with some human coaxing.The Maldives, an Indian Ocean archipelago of nearly 1,200 islands, has traditionally relied on land reclamation via dredging to replenish its eroding coastlines. Working with the Maldivian climate technology company Invena Private Limited, the Self-Assembly Lab is pursuing technological solutions to coastal erosion that mimic nature by harnessing ocean currents to accumulate sand. The Growing Islands project creates and deploys underwater structures that take advantage of wave energy to promote accumulation of sand in strategic locations — helping to expand islands and rebuild coastlines in sustainable ways that can eventually be scaled to coastal areas around the world. “There’s room for a new perspective on climate adaptation, one that builds with nature and leverages data for equitable decision-making,” says Invena co-founder and CEO Sarah Dole.MIT’s pioneering work was the topic of multiple presentations during the United Nations General Assembly and Climate week in New York City in late September. During the week, Self-Assembly Lab co-founder and director Skylar Tibbits and Maldives Minister of Climate Change, Environment and Energy Thoriq Ibrahim also presented findings of the Growing Islands project at MIT Solve’s Global Challenge Finals in New York.“There’s this interesting story that’s emerging around the dynamics of islands,” says Tibbits, whose U.N.-sponsored panel (“Adaptation Through Innovation: How the Private Sector Could Lead the Way”) was co-hosted by the Government of Maldives and the U.S. Agency for International Development, a Growing Islands project funder. In a recent interview, Tibbits said islands “are almost lifelike in their characteristics. They can adapt and grow and change and fluctuate.” Despite some predictions that the Maldives might be inundated by sea level rise and ravaged by erosion, “maybe these islands are actually more resilient than we thought. And maybe there’s a lot more we can learn from these natural formations of sand … maybe they are a better model for how we adapt in the future for sea level rise and erosion and climate change than our man-made cities.”Building on a series of lab experiments begun in 2017, the MIT Self-Assembly Lab and Invena have been testing the efficacy of submersible structures to expand islands and rebuild coasts in the Maldivian capital of Male since 2019. Since then, researchers have honed the experiments based on initial results that demonstrate the promise of using submersible bladders and other structures to utilize natural currents to encourage strategic accumulation of sand.The work is “boundary-pushing,” says Alex Moen, chief explorer engagement officer at the National Geographic Society, an early funder of the project.“Skylar and his team’s innovative technology reflect the type of forward-thinking, solutions-oriented approaches necessary to address the growing threat of sea level rise and erosion to island nations and coastal regions,” Moen said.Most recently, in August 2024, the team submerged a 60-by-60-meter structure in a lagoon near Male. The structure is six times the size of its predecessor installed in 2019, Tibbits says, adding that while the 2019 island-building experiment was a success, ocean currents in the Maldives change seasonally and it only allowed for accretion of sand in one season.“The idea of this was to make it omnidirectional. We wanted to make it work year-round. In any direction, any season, we should be accumulating sand in the same area,” Tibbits says. “This is our largest experiment so far, and I think it has the best chance to accumulate the most amount of sand, so we’re super excited about that.”The next experiment will focus not on building islands, but on overcoming beach erosion. This project, planned for installation later this fall, is envisioned to not only enlarge a beach but also provide recreational benefits for local residents and enhanced habitat for marine life such as fish and corals.“This will be the first large-scale installment that’s intentionally designed for marine habitats,” Tibbits says.Another key aspect of the Growing Islands project takes place in Tibbits’ lab at MIT, where researchers are improving the ability to predict and track changes in low-lying islands through satellite imagery analysis — a technique that promises to facilitate what is now a labor-intensive process involving land and sea surveys by drones and researchers on foot and at sea.“In the future, we could be monitoring and predicting coastlines around the world — every island, every coastline around the world,” Tibbits says. “Are these islands getting smaller, getting bigger? How fast are they losing ground? No one really knows unless we do it by physically surveying right now and that’s not scalable. We do think we have a solution for that coming.”Also hopefully coming soon is financial support for a Mobile Ocean Innovation Lab, a “floating hub” that would provide small island developing states with advanced technologies to foster coastal and climate resilience, conservation, and renewable energy. Eventually, Tibbits says, it would enable the team to travel “any place around the world and partner with local communities, local innovators, artists, and scientists to help co-develop and deploy some of these technologies in a better way.”Expanding the reach of climate change solutions that collaborate with, rather than oppose, natural forces depends on getting more people, organizations, and governments on board. “There are two challenges,” Tibbits says. “One of them is the legacy and history of what humans have done in the past that constrains what we think we can do in the future. For centuries, we’ve been building hard infrastructure at our coastlines, so we have a lot of knowledge about that. We have companies and practices and expertise, and we have a built-up confidence, or ego, around what’s possible. We need to change that.“The second problem,” he continues, “is the money-speed-convenience problem — or the known-versus-unknown problem. The hard infrastructure, whether that’s groins or seawalls or just dredging … these practices in some ways have a clear cost and timeline, and we are used to operating in that mindset. And nature doesn’t work that way. Things grow, change, and adapt on their on their own timeline.”Teaming up with waves and currents to preserve islands and coastlines requires a mindset shift that’s difficult, but ultimately worthwhile, Tibbits contends.“We need to dance with nature. We’re never going to win if we’re trying to resist it,” he says. “But the best-case scenario is that we can take all the positive attributes in the environment and take all the creative, positive things we can do as humans and work together to create something that’s more than the sum of its parts.” More

  • in

    Translating MIT research into real-world results

    Inventive solutions to some of the world’s most critical problems are being discovered in labs, classrooms, and centers across MIT every day. Many of these solutions move from the lab to the commercial world with the help of over 85 Institute resources that comprise MIT’s robust innovation and entrepreneurship (I&E) ecosystem. The Abdul Latif Jameel Water and Food Systems Lab (J-WAFS) draws on MIT’s wealth of I&E knowledge and experience to help researchers commercialize their breakthrough technologies through the J-WAFS Solutions grant program. By collaborating with I&E programs on campus, J-WAFS prepares MIT researchers for the commercial world, where their novel innovations aim to improve productivity, accessibility, and sustainability of water and food systems, creating economic, environmental, and societal benefits along the way.The J-WAFS Solutions program launched in 2015 with support from Community Jameel, an international organization that advances science and learning for communities to thrive. Since 2015, J-WAFS Solutions has supported 19 projects with one-year grants of up to $150,000, with some projects receiving renewal grants for a second year of support. Solutions projects all address challenges related to water or food. Modeled after the esteemed grant program of MIT’s Deshpande Center for Technological Innovation, and initially administered by Deshpande Center staff, the J-WAFS Solutions program follows a similar approach by supporting projects that have already completed the basic research and proof-of-concept phases. With technologies that are one to three years away from commercialization, grantees work on identifying their potential markets and learn to focus on how their technology can meet the needs of future customers.“Ingenuity thrives at MIT, driving inventions that can be translated into real-world applications for widespread adoption, implantation, and use,” says J-WAFS Director Professor John H. Lienhard V. “But successful commercialization of MIT technology requires engineers to focus on many challenges beyond making the technology work. MIT’s I&E network offers a variety of programs that help researchers develop technology readiness, investigate markets, conduct customer discovery, and initiate product design and development,” Lienhard adds. “With this strong I&E framework, many J-WAFS Solutions teams have established startup companies by the completion of the grant. J-WAFS-supported technologies have had powerful, positive effects on human welfare. Together, the J-WAFS Solutions program and MIT’s I&E ecosystem demonstrate how academic research can evolve into business innovations that make a better world,” Lienhard says.Creating I&E collaborationsIn addition to support for furthering research, J-WAFS Solutions grants allow faculty, students, postdocs, and research staff to learn the fundamentals of how to transform their work into commercial products and companies. As part of the grant requirements, researchers must interact with mentors through MIT Venture Mentoring Service (VMS). VMS connects MIT entrepreneurs with teams of carefully selected professionals who provide free and confidential mentorship, guidance, and other services to help advance ideas into for-profit, for-benefit, or nonprofit ventures. Since 2000, VMS has mentored over 4,600 MIT entrepreneurs across all industries, through a dynamic and accomplished group of nearly 200 mentors who volunteer their time so that others may succeed. The mentors provide impartial and unbiased advice to members of the MIT community, including MIT alumni in the Boston area. J-WAFS Solutions teams have been guided by 21 mentors from numerous companies and nonprofits. Mentors often attend project events and progress meetings throughout the grant period.“Working with VMS has provided me and my organization with a valuable sounding board for a range of topics, big and small,” says Eric Verploegen PhD ’08, former research engineer in MIT’s D-Lab and founder of J-WAFS spinout CoolVeg. Along with professors Leon Glicksman and Daniel Frey, Verploegen received a J-WAFS Solutions grant in 2021 to commercialize cold-storage chambers that use evaporative cooling to help farmers preserve fruits and vegetables in rural off-grid communities. Verploegen started CoolVeg in 2022 to increase access and adoption of open-source, evaporative cooling technologies through collaborations with businesses, research institutions, nongovernmental organizations, and government agencies. “Working as a solo founder at my nonprofit venture, it is always great to have avenues to get feedback on communications approaches, overall strategy, and operational issues that my mentors have experience with,” Verploegen says. Three years after the initial Solutions grant, one of the VMS mentors assigned to the evaporative cooling team still acts as a mentor to Verploegen today.Another Solutions grant requirement is for teams to participate in the Spark program — a free, three-week course that provides an entry point for researchers to explore the potential value of their innovation. Spark is part of the National Science Foundation’s (NSF) Innovation Corps (I-Corps), which is an “immersive, entrepreneurial training program that facilitates the transformation of invention to impact.” In 2018, MIT received an award from the NSF, establishing the New England Regional Innovation Corps Node (NE I-Corps) to deliver I-Corps training to participants across New England. Trainings are open to researchers, engineers, scientists, and others who want to engage in a customer discovery process for their technology. Offered regularly throughout the year, the Spark course helps participants identify markets and explore customer needs in order to understand how their technologies can be positioned competitively in their target markets. They learn to assess barriers to adoption, as well as potential regulatory issues or other challenges to commercialization. NE-I-Corps reports that since its start, over 1,200 researchers from MIT have completed the program and have gone on to launch 175 ventures, raising over $3.3 billion in funding from grants and investors, and creating over 1,800 jobs.Constantinos Katsimpouras, a research scientist in the Department of Chemical Engineering, went through the NE I-Corps Spark program to better understand the customer base for a technology he developed with professors Gregory Stephanopoulos and Anthony Sinskey. The group received a J-WAFS Solutions grant in 2021 for their microbial platform that converts food waste from the dairy industry into valuable products. “As a scientist with no prior experience in entrepreneurship, the program introduced me to important concepts and tools for conducting customer interviews and adopting a new mindset,” notes Katsimpouras. “Most importantly, it encouraged me to get out of the building and engage in interviews with potential customers and stakeholders, providing me with invaluable insights and a deeper understanding of my industry,” he adds. These interviews also helped connect the team with companies willing to provide resources to test and improve their technology — a critical step to the scale-up of any lab invention.In the case of Professor Cem Tasan’s research group in the Department of Materials Science and Engineering, the I-Corps program led them to the J-WAFS Solutions grant, instead of the other way around. Tasan is currently working with postdoc Onur Guvenc on a J-WAFS Solutions project to manufacture formable sheet metal by consolidating steel scrap without melting, thereby reducing water use compared to traditional steel processing. Before applying for the Solutions grant, Guvenc took part in NE I-Corps. Like Katsimpouras, Guvenc benefited from the interaction with industry. “This program required me to step out of the lab and engage with potential customers, allowing me to learn about their immediate challenges and test my initial assumptions about the market,” Guvenc recalls. “My interviews with industry professionals also made me aware of the connection between water consumption and steelmaking processes, which ultimately led to the J-WAFS 2023 Solutions Grant,” says Guvenc.After completing the Spark program, participants may be eligible to apply for the Fusion program, which provides microgrants of up to $1,500 to conduct further customer discovery. The Fusion program is self-paced, requiring teams to conduct 12 additional customer interviews and craft a final presentation summarizing their key learnings. Professor Patrick Doyle’s J-WAFS Solutions team completed the Spark and Fusion programs at MIT. Most recently, their team was accepted to join the NSF I-Corps National program with a $50,000 award. The intensive program requires teams to complete an additional 100 customer discovery interviews over seven weeks. Located in the Department of Chemical Engineering, the Doyle lab is working on a sustainable microparticle hydrogel system to rapidly remove micropollutants from water. The team’s focus has expanded to higher value purifications in amino acid and biopharmaceutical manufacturing applications. Devashish Gokhale PhD ’24 worked with Doyle on much of the underlying science.“Our platform technology could potentially be used for selective separations in very diverse market segments, ranging from individual consumers to large industries and government bodies with varied use-cases,” Gokhale explains. He goes on to say, “The I-Corps Spark program added significant value by providing me with an effective framework to approach this problem … I was assigned a mentor who provided critical feedback, teaching me how to formulate effective questions and identify promising opportunities.” Gokhale says that by the end of Spark, the team was able to identify the best target markets for their products. He also says that the program provided valuable seminars on topics like intellectual property, which was helpful in subsequent discussions the team had with MIT’s Technology Licensing Office.Another member of Doyle’s team, Arjav Shah, a recent PhD from MIT’s Department of Chemical Engineering and a current MBA candidate at the MIT Sloan School of Management, is spearheading the team’s commercialization plans. Shah attended Fusion last fall and hopes to lead efforts to incorporate a startup company called hydroGel.  “I admire the hypothesis-driven approach of the I-Corps program,” says Shah. “It has enabled us to identify our customers’ biggest pain points, which will hopefully lead us to finding a product-market fit.” He adds “based on our learnings from the program, we have been able to pivot to impact-driven, higher-value applications in the food processing and biopharmaceutical industries.” Postdoc Luca Mazzaferro will lead the technical team at hydroGel alongside Shah.In a different project, Qinmin Zheng, a postdoc in the Department of Civil and Environmental Engineering, is working with Professor Andrew Whittle and Lecturer Fábio Duarte. Zheng plans to take the Fusion course this fall to advance their J-WAFS Solutions project that aims to commercialize a novel sensor to quantify the relative abundance of major algal species and provide early detection of harmful algal blooms. After completing Spark, Zheng says he’s “excited to participate in the Fusion program, and potentially the National I-Corps program, to further explore market opportunities and minimize risks in our future product development.”Economic and societal benefitsCommercializing technologies developed at MIT is one of the ways J-WAFS helps ensure that MIT research advances will have real-world impacts in water and food systems. Since its inception, the J-WAFS Solutions program has awarded 28 grants (including renewals), which have supported 19 projects that address a wide range of global water and food challenges. The program has distributed over $4 million to 24 professors, 11 research staff, 15 postdocs, and 30 students across MIT. Nearly half of all J-WAFS Solutions projects have resulted in spinout companies or commercialized products, including eight companies to date plus two open-source technologies.Nona Technologies is an example of a J-WAFS spinout that is helping the world by developing new approaches to produce freshwater for drinking. Desalination — the process of removing salts from seawater — typically requires a large-scale technology called reverse osmosis. But Nona created a desalination device that can work in remote off-grid locations. By separating salt and bacteria from water using electric current through a process called ion concentration polarization (ICP), their technology also reduces overall energy consumption. The novel method was developed by Jongyoon Han, professor of electrical engineering and biological engineering, and research scientist Junghyo Yoon. Along with Bruce Crawford, a Sloan MBA alum, Han and Yoon created Nona Technologies to bring their lightweight, energy-efficient desalination technology to the market.“My feeling early on was that once you have technology, commercialization will take care of itself,” admits Crawford. The team completed both the Spark and Fusion programs and quickly realized that much more work would be required. “Even in our first 24 interviews, we learned that the two first markets we envisioned would not be viable in the near term, and we also got our first hints at the beachhead we ultimately selected,” says Crawford. Nona Technologies has since won MIT’s $100K Entrepreneurship Competition, received media attention from outlets like Newsweek and Fortune, and hired a team that continues to further the technology for deployment in resource-limited areas where clean drinking water may be scarce. Food-borne diseases sicken millions of people worldwide each year, but J-WAFS researchers are addressing this issue by integrating molecular engineering, nanotechnology, and artificial intelligence to revolutionize food pathogen testing. Professors Tim Swager and Alexander Klibanov, of the Department of Chemistry, were awarded one of the first J-WAFS Solutions grants for their sensor that targets food safety pathogens. The sensor uses specialized droplets that behave like a dynamic lens, changing in the presence of target bacteria in order to detect dangerous bacterial contamination in food. In 2018, Swager launched Xibus Systems Inc. to bring the sensor to market and advance food safety for greater public health, sustainability, and economic security.“Our involvement with the J-WAFS Solutions Program has been vital,” says Swager. “It has provided us with a bridge between the academic world and the business world and allowed us to perform more detailed work to create a usable application,” he adds. In 2022, Xibus developed a product called XiSafe, which enables the detection of contaminants like salmonella and listeria faster and with higher sensitivity than other food testing products. The innovation could save food processors billions of dollars worldwide and prevent thousands of food-borne fatalities annually.J-WAFS Solutions companies have raised nearly $66 million in venture capital and other funding. Just this past June, J-WAFS spinout SiTration announced that it raised an $11.8 million seed round. Jeffrey Grossman, a professor in MIT’s Department of Materials Science and Engineering, was another early J-WAFS Solutions grantee for his work on low-cost energy-efficient filters for desalination. The project enabled the development of nanoporous membranes and resulted in two spinout companies, Via Separations and SiTration. SiTration was co-founded by Brendan Smith PhD ’18, who was a part of the original J-WAFS team. Smith is CEO of the company and has overseen the advancement of the membrane technology, which has gone on to reduce cost and resource consumption in industrial wastewater treatment, advanced manufacturing, and resource extraction of materials such as lithium, cobalt, and nickel from recycled electric vehicle batteries. The company also recently announced that it is working with the mining company Rio Tinto to handle harmful wastewater generated at mines.But it’s not just J-WAFS spinout companies that are producing real-world results. Products like the ECC Vial — a portable, low-cost method for E. coli detection in water — have been brought to the market and helped thousands of people. The test kit was developed by MIT D-Lab Lecturer Susan Murcott and Professor Jeffrey Ravel of the MIT History Section. The duo received a J-WAFS Solutions grant in 2018 to promote safely managed drinking water and improved public health in Nepal, where it is difficult to identify which wells are contaminated by E. coli. By the end of their grant period, the team had manufactured approximately 3,200 units, of which 2,350 were distributed — enough to help 12,000 people in Nepal. The researchers also trained local Nepalese on best manufacturing practices.“It’s very important, in my life experience, to follow your dream and to serve others,” says Murcott. Economic success is important to the health of any venture, whether it’s a company or a product, but equally important is the social impact — a philosophy that J-WAFS research strives to uphold. “Do something because it’s worth doing and because it changes people’s lives and saves lives,” Murcott adds.As J-WAFS prepares to celebrate its 10th anniversary this year, we look forward to continued collaboration with MIT’s many I&E programs to advance knowledge and develop solutions that will have tangible effects on the world’s water and food systems.Learn more about the J-WAFS Solutions program and about innovation and entrepreneurship at MIT. More

  • in

    Where flood policy helps most — and where it could do more

    Flooding, including the devastation caused recently by Hurricane Helene, is responsible for $5 billion in annual damages in the U.S. That’s more than any other type of weather-related extreme event.To address the problem, the federal government instituted a program in 1990 that helps reduce flood insurance costs in communities enacting measures to better handle flooding. If, say, a town preserves open space as a buffer against coastal flooding, or develops better stormwater management, area policy owners get discounts on their premiums. Studies show the program works well: It has reduced overall flood damage in participating communities.However, a new study led by an MIT researcher shows that the effects of the program differ greatly from place to place. For instance, higher-population communities, which likely have more means to introduce flood defenses, benefit more than smaller communities, to the tune of about $4,000 per insured household.“When we evaluate it, the effects of the same policy vary widely among different types of communities,” says study co-author Lidia Cano Pecharromán, a PhD candidate in MIT’s Department of Urban Studies and Planning.Referring to climate and environmental justice concerns, she adds: “It’s important to understand not just if a policy is effective, but who is benefitting, so that we can make necessary adjustments and reach all the targets we want to reach.”The paper, “Exposing Disparities in Flood Adaptation for Equitable Future Interventions in the USA,” is published today in Nature Communications. The authors are Cano Pecharromán and ChangHoon Hahn, an associate research scholar at Princeton University.Able to afford helpThe program in question was developed by the Federal Emergency Management Agency (FEMA), which has a division, the Flood Insurance Mitigation Administration, focusing on this issue. In 1990, FEMA initiated the National Flood Insurance Program’s Community Rating System, which incentivizes communities to enact measures that help prevent or reduce flooding.Communities can engage in a broad set of related activities, including floodplain mapping, preservation of open spaces, stormwater management activities, creating flood warning systems, or even developing public information and participation programs. In exchange, area residents receive a discount on their flood insurance premium rates.To conduct the study, the researchers examined 2.5 million flood insurance claims filed with FEMA since then. They also examined U.S. Census Bureau data to analyze demographic and economic data about communities, and incorporated flood risk data from the First Street Foundation.By comparing over 1,500 communities in the FEMA program, the researchers were able to quantify its different relative effects — depending on community characteristics such as population, race, income or flood risk. For instance, higher-income communities seem better able to make more flood-control and mitigation investments, earning better FEMA ratings and, ultimately, enacting more effective measures.“You see some positive effects for low-income communities, but as the risks go up, these disappear, while only high-income communities continue seeing these positive effects,” says Cano Pecharromán. “They are likely able to afford measures that handle a higher risk indices for flooding.”Similarly, the researchers found, communities with higher overall levels of education fare better from the flood-insurance program, with about $2,000 more in savings per individual policy than communities with lower levels of education. One way or another, communities with more assets in the first place — size, wealth, education — are better able to deploy or hire the civic and technical expertise necessary to enact more best practices against flood damage.And even among lower-income communities in the program, communities with less population diversity see greater effectiveness from their flood program activities, realizing a gain of about $6,000 per household compared to communities where racial and ethnic minorities are predominant.“These are substantial effects, and we should consider these things when making decisions and reviewing if our climate adaptation policies work,” Cano Pecharromán says.An even larger number of communities is not in the FEMA program at all. The study identified 14,729 unique U.S. communities with flood issues. Many of those are likely lacking the capacity to engage on flooding issues the way even the lower-ranked communities within the FEMA program have at least taken some action so far.“If we are able to consider all the communities that are not in the program because they can’t afford to do the basics, we would likely see that the effects are even larger among different communities,” Cano Pecharromán says.Getting communities startedTo make the program more effective for more people, Cano Pecharromán suggests that the federal government should consider how to help communities enact flood-control and mitigation measures in the first place.“When we set out these kinds of policies, we need to consider how certain types of communities might need help with implementation,” she says.Methodologically, the researchers arrived at their conclusions using an advanced statistical approach that Hahn, who is an astrophysicist by training, has applied to the study of dark energy and galaxies. Instead of finding one “average treatment effect” of the FEMA program across all participating communities, they quantified the program’s impact while subdividing the set of participating set of communities according to their characteristics.“We are able to calculate the causal effect of [the program], not as an average, which can hide these inequalities, but at every given level of the specific characteristic of communities we’re looking at, different levels of income, different levels of education, and more,” Cano Pecharromán says.Government officials have seen Cano Pecharromán present the preliminary findings at meetings, and expressed interest in the results. Currently, she is also working on a follow-up study, which aims to pinpoint which types of local flood-mitigation programs provide the biggest benefits for local communities.Support for the research was provided, in part, by the La Caixa Foundation, the MIT Martin Family Society of Fellows for Sustainability, and the AI Accelerator program of the Schmidt Futures Foundation. More

  • in

    Study evaluates impacts of summer heat in U.S. prison environments

    When summer temperatures spike, so does our vulnerability to heat-related illness or even death. For the most part, people can take measures to reduce their heat exposure by opening a window, turning up the air conditioning, or simply getting a glass of water. But for people who are incarcerated, freedom to take such measures is often not an option. Prison populations therefore are especially vulnerable to heat exposure, due to their conditions of confinement.A new study by MIT researchers examines summertime heat exposure in prisons across the United States and identifies characteristics within prison facilities that can further contribute to a population’s vulnerability to summer heat.The study’s authors used high-spatial-resolution air temperature data to determine the daily average outdoor temperature for each of 1,614 prisons in the U.S., for every summer between the years 1990 and 2023. They found that the prisons that are exposed to the most extreme heat are located in the southwestern U.S., while prisons with the biggest changes in summertime heat, compared to the historical record, are in the Pacific Northwest, the Northeast, and parts of the Midwest.Those findings are not entirely unique to prisons, as any non-prison facility or community in the same geographic locations would be exposed to similar outdoor air temperatures. But the team also looked at characteristics specific to prison facilities that could further exacerbate an incarcerated person’s vulnerability to heat exposure. They identified nine such facility-level characteristics, such as highly restricted movement, poor staffing, and inadequate mental health treatment. People living and working in prisons with any one of these characteristics may experience compounded risk to summertime heat. The team also looked at the demographics of 1,260 prisons in their study and found that the prisons with higher heat exposure on average also had higher proportions of non-white and Hispanic populations. The study, appearing today in the journal GeoHealth, provides policymakers and community leaders with ways to estimate, and take steps to address, a prison population’s heat risk, which they anticipate could worsen with climate change.“This isn’t a problem because of climate change. It’s becoming a worse problem because of climate change,” says study lead author Ufuoma Ovienmhada SM ’20, PhD ’24, a graduate of the MIT Media Lab, who recently completed her doctorate in MIT’s Department of Aeronautics and Astronautics (AeroAstro). “A lot of these prisons were not built to be comfortable or humane in the first place. Climate change is just aggravating the fact that prisons are not designed to enable incarcerated populations to moderate their own exposure to environmental risk factors such as extreme heat.”The study’s co-authors include Danielle Wood, MIT associate professor of media arts and sciences, and of AeroAstro; and Brent Minchew, MIT associate professor of geophysics in the Department of Earth, Atmospheric and Planetary Sciences; along with Ahmed Diongue ’24, Mia Hines-Shanks of Grinnell College, and Michael Krisch of Columbia University.Environmental intersectionsThe new study is an extension of work carried out at the Media Lab, where Wood leads the Space Enabled research group. The group aims to advance social and environmental justice issues through the use of satellite data and other space-enabled technologies.The group’s motivation to look at heat exposure in prisons came in 2020 when, as co-president of MIT’s Black Graduate Student Union, Ovienmhada took part in community organizing efforts following the murder of George Floyd by Minneapolis police.“We started to do more organizing on campus around policing and reimagining public safety. Through that lens I learned more about police and prisons as interconnected systems, and came across this intersection between prisons and environmental hazards,” says Ovienmhada, who is leading an effort to map the various environmental hazards that prisons, jails, and detention centers face. “In terms of environmental hazards, extreme heat causes some of the most acute impacts for incarcerated people.”She, Wood, and their colleagues set out to use Earth observation data to characterize U.S. prison populations’ vulnerability, or their risk of experiencing negative impacts, from heat.The team first looked through a database maintained by the U.S. Department of Homeland Security that lists the location and boundaries of carceral facilities in the U.S. From the database’s more than 6,000 prisons, jails, and detention centers, the researchers highlighted 1,614 prison-specific facilities, which together incarcerate nearly 1.4 million people, and employ about 337,000 staff.They then looked to Daymet, a detailed weather and climate database that tracks daily temperatures across the United States, at a 1-kilometer resolution. For each of the 1,614 prison locations, they mapped the daily outdoor temperature, for every summer between the years 1990 to 2023, noting that the majority of current state and federal correctional facilities in the U.S. were built by 1990.The team also obtained U.S. Census data on each facility’s demographic and facility-level characteristics, such as prison labor activities and conditions of confinement. One limitation of the study that the researchers acknowledge is a lack of information regarding a prison’s climate control.“There’s no comprehensive public resource where you can look up whether a facility has air conditioning,” Ovienmhada notes. “Even in facilities with air conditioning, incarcerated people may not have regular access to those cooling systems, so our measurements of outdoor air temperature may not be far off from reality.”Heat factorsFrom their analysis, the researchers found that more than 98 percent of all prisons in the U.S. experienced at least 10 days in the summer that were hotter than every previous summer, on average, for a given location. Their analysis also revealed the most heat-exposed prisons, and the prisons that experienced the highest temperatures on average, were mostly in the Southwestern U.S. The researchers note that with the exception of New Mexico, the Southwest is a region where there are no universal air conditioning regulations in state-operated prisons.“States run their own prison systems, and there is no uniformity of data collection or policy regarding air conditioning,” says Wood, who notes that there is some information on cooling systems in some states and individual prison facilities, but the data is sparse overall, and too inconsistent to include in the group’s nationwide study.While the researchers could not incorporate air conditioning data, they did consider other facility-level factors that could worsen the effects that outdoor heat triggers. They looked through the scientific literature on heat, health impacts, and prison conditions, and focused on 17 measurable facility-level variables that contribute to heat-related health problems. These include factors such as overcrowding and understaffing.“We know that whenever you’re in a room that has a lot of people, it’s going to feel hotter, even if there’s air conditioning in that environment,” Ovienmhada says. “Also, staffing is a huge factor. Facilities that don’t have air conditioning but still try to do heat risk-mitigation procedures might rely on staff to distribute ice or water every few hours. If that facility is understaffed or has neglectful staff, that may increase people’s susceptibility to hot days.”The study found that prisons with any of nine of the 17 variables showed statistically significant greater heat exposures than the prisons without those variables. Additionally, if a prison exhibits any one of the nine variables, this could worsen people’s heat risk through the combination of elevated heat exposure and vulnerability. The variables, they say, could help state regulators and activists identify prisons to prioritize for heat interventions.“The prison population is aging, and even if you’re not in a ‘hot state,’ every state has responsibility to respond,” Wood emphasizes. “For instance, areas in the Northwest, where you might expect to be temperate overall, have experienced a number of days in recent years of increasing heat risk. A few days out of the year can still be dangerous, particularly for a population with reduced agency to regulate their own exposure to heat.”This work was supported, in part, by NASA, the MIT Media Lab, and MIT’s Institute for Data, Systems and Society’s Research Initiative on Combatting Systemic Racism. More

  • in

    Liftoff: The Climate Project at MIT takes flight

    The leaders of The Climate Project at MIT met with community members at a campus forum on Monday, helping to kick off the Institute’s major new effort to accelerate and scale up climate change solutions.“The Climate Project is a whole-of-MIT mobilization,” MIT President Sally Kornbluth said in her opening remarks. “It’s designed to focus the Institute’s talent and resources so that we can achieve much more, faster, in terms of real-world impact, from mitigation to adaptation.”The event, “Climate Project at MIT: Launching the Missions,” drew a capacity crowd to MIT’s Samberg Center.While the Climate Project has a number of facets, a central component of the effort consists of its six “missions,” broad areas where MIT researchers will seek to identify gaps in the global climate response that MIT can help fill, and then launch and execute research and innovation projects aimed at those areas. Each mission is led by campus faculty, and Monday’s event represented the first public conversation between the mission directors and the larger campus community.“Today’s event is an important milestone,” said Richard Lester, MIT’s interim vice president for climate and the Japan Steel Industry Professor of Nuclear Science and Engineering, who led the Climate Project’s formation. He praised Kornbluth’s sustained focus on climate change as a leading priority for MIT.“The reason we’re all here is because of her leadership and vision for MIT,” Lester said. “We’re also here because the MIT community — our faculty, our staff, our students — has made it abundantly clear that it wants to do more, much more, to help solve this great problem.”The mission directors themselves emphasized the need for deep community involvement in the project — and that the Climate Project is designed to facilitate researcher-driven enterprise across campus.“There’s a tremendous amount of urgency,” said Elsa Olivetti PhD ’07, director of the Decarbonizing Energy and Industry mission, during an onstage discussion. “We all need to do everything we can, and roll up our sleeves and get it done.” Olivetti, the Jerry McAfee Professor in Engineering, has been a professor of materials science and engineering at the Institute since 2014.“What’s exciting about this is the chance of MIT really meeting its potential,” said Jesse Kroll, co-director of the mission for Restoring the Atmosphere, Protecting the Land and Oceans. Kroll is the Peter de Florez Professor in MIT’s Department of Civil and Environmental Engineering, a professor of chemical engineering, and the director of the Ralph M. Parsons Laboratory.MIT, Kroll noted, features “so much amazing work going on in all these different aspects of the problem. Science, engineering, social science … we put it all together and there is huge potential, a huge opportunity for us to make a difference.”MIT has pledged an initial $75 million to the Climate Project, including $25 million from the MIT Sloan School of Management for a complementary effort, the MIT Climate Policy Center. However, the Institute is anticipating that it will also build new connections with outside partners, whose role in implementing and scaling Climate Project solutions will be critical.Monday’s event included a keynote talk from Brian Deese, currently the MIT Innovation and Climate Impact Fellow and the former director of the White House National Economic Council in the Biden administration.“The magnitude of the risks associated with climate change are extraordinary,” Deese said. However, he added, “these are solvable issues. In fact, the energy transition globally will be the greatest economic opportunity in human history. … It has the potential to actually lift people out of poverty, it has the potential to drive international cooperation, it has the potential to drive innovation and improve lives — if we get this right.”Deese’s remarks centered on a call for the U.S. to develop a current-day climate equivalent of the Marshall Plan, the U.S. initiative to provide aid to Western Europe after World War II. He also suggested three characteristics of successful climate projects, noting that many would be interdisciplinary in nature and would “engage with policy early in the design process” to become feasible.In addition to those features, Deese said, people need to “start and end with very high ambition” when working on climate solutions. He added: “The good thing about MIT and our community is that we, you, have done this before. We’ve got examples where MIT has taken something that seemed completely improbable and made it possible, and I believe that part of what is required of this collective effort is to keep that kind of audacious thinking at the top of our mind.” The MIT mission directors all participated in an onstage discussion moderated by Somini Sengupta, the international climate reporter on the climate team of The New York Times. Sengupta asked the group about a wide range of topics, from their roles and motivations to the political constraints on global climate progress, and more.Andrew Babbin, co-director of the mission for Restoring the Atmosphere, Protecting the Land and Oceans, defined part of the task of the MIT missions as “identifying where those gaps of knowledge are and filling them rapidly,” something he believes is “largely not doable in the conventional way,” based on small-scale research projects. Instead, suggested Babbin, who is the Cecil and Ida Green Career Development Professor in MIT’s Program in Atmospheres, Oceans, and Climate, the collective input of research and innovation communities could help zero in on undervalued approaches to climate action.Some innovative concepts, the mission directors noted, can be tried out on the MIT campus, in an effort to demonstrate how a more sustainable infrastructure and systems can operate at scale.“That is absolutely crucial,” said Christoph Reinhart, director of the Building and Adapting Healthy, Resilient Cities mission, expressing the need to have the campus reach net-zero emissions. Reinhart is the Alan and Terri Spoon Professor of Architecture and Climate and director of MIT’s Building Technology Program in the School of Architecture and Planning.In response to queries from Sengupta, the mission directors affirmed that the Climate Project needs to develop solutions that can work in different societies around the world, while acknowledging that there are many political hurdles to worldwide climate action.“Any kind of quality engaged projects that we’ve done with communities, it’s taken years to build trust. … How you scale that without compromising is the challenge I’m faced with,” said Miho Mazereeuw, director of the Empowering Frontline Communities mission, an associate professor of architecture and urbanism, and director of MIT’s Urban Risk Lab.“I think we will impact different communities in different parts of the world in different ways,” said Benedetto Marelli, an associate professor in MIT’s Department of Civil and Environmental Engineering, adding that it would be important to “work with local communities [and] engage stakeholders, and at the same time, use local brains to solve the problem.” The mission he directs, Wild Cards, is centered on identifying unconventional solutions that are high risk and also high reward.Any climate program “has to be politically feasible, it has to be in separate nations’ self-interest,” said Christopher Knittel, mission director for Inventing New Policy Approaches. In an ever-shifting political world, he added, that means people must “think about not just the policy but the resiliency of the policy.” Knittel is the George P. Shultz Professor and professor of applied economics at the MIT Sloan School of Management, director of the MIT Climate Policy Center, and associate dean for Climate and Sustainability.In all, MIT has more than 300 faculty and senior researchers who, along with their students and staff, are already working on climate issues.Kornbluth, for her part, referred to MIT’s first-year students while discussing the larger motivations for taking concerted action to address the challenges of climate change. It might be easy for younger people to despair over the world’s climate trajectory, she noted, but the best response to that includes seeking new avenues for climate progress.“I understand their anxiety and concern,” Kornbluth said. “But I have no doubt at all that together, we can make a difference. I believe that we have a special obligation to the new students and their entire generation to do everything we can to create a positive change. The most powerful antidote to defeat and despair is collection action.” More

  • in

    Tracking emissions to help companies reduce their environmental footprint

    Amidst a global wave of corporate pledges to decarbonize or reach net-zero emissions, a system for verifying actual greenhouse gas reductions has never been more important. Context Labs, founded by former MIT Sloan Fellow and serial entrepreneur Dan Harple SM ’13, is rising to meet that challenge with an analytics platform that brings more transparency to emissions data.The company’s platform adds context to data from sources like equipment sensors and satellites, provides third-party verification, and records all that information on a blockchain. Context Labs also provides an interactive view of emissions across every aspect of a company’s operations, allowing leaders to pinpoint the dirtiest parts of their business.“There’s an old adage: Unless you measure something, you can’t change it,” says Harple, who is the firm’s CEO. “I think of what we’re doing as an AI-driven digital lens into what’s happening across organizations. Our goal is to help the planet get better, faster.”Context Labs is already working with some of the largest energy companies in the world — including EQT, Williams Companies, and Coterra Energy — to verify emissions reductions. A partnership with Microsoft, announced at last year’s COP28 United Nations climate summit, allows any organization on Microsoft’s Azure cloud to integrate their sensor data into Context Lab’s platform to get a granular view of their environmental impact.Harple says the progress enables more informed sustainability initiatives at scale. He also sees the work as a way to combat overly vague statements about sustainable practices that don’t lead to actual emissions reductions, or what’s known as “greenwashing.”“Just producing data isn’t good enough, and our customers realize that, because they know even if they have good intentions to reduce emissions, no one is going to believe them,” Harple says. “One way to think about our platform is as antigreenwashing insurance, because if you get attacked for your emissions, we unbundle the data like it’s in shrink-wrap and roll it back through time on the blockchain. You can click on it and see exactly where and how it was measured, monitored, timestamped, its serial number, everything. It’s really the gold standard of proof.”An unconventional master’sHarple came to MIT as a serial founder whose companies had pioneered several foundational internet technologies, including real-time video streaming technology still used in applications like Zoom and Netflix, as well as some of the core technology for the popular Chinese microblogging website Weibo.Harple’s introduction to MIT started with a paper he wrote for his venture capital contacts in the U.S. to make the case for investment in the Netherlands, where he was living with his family. The paper caught the attention of MIT Professor Stuart Madnick, the John Norris Maguire Professor of Information Technology at the MIT Sloan School of Management, who suggested Harple come to MIT as a Sloan Fellow to further develop his ideas about what makes a strong innovation ecosystem.Having successfully founded and exited multiple companies, Harple was not a typical MIT student when he began the Sloan Fellows program in 2011. At one point, he held a summit at MIT for a group of leading Dutch entrepreneurs and government officials that included tours of major labs and a meeting with former MIT President L. Rafael Reif.“Everyone was super enamored with MIT, and that kicked off what became a course that I started at MIT called REAL, Regional Entrepreneurial Acceleration Lab,” Harple says. REAL was eventually absorbed by what is now REAP — the Regional Entrepreneurship Acceleration Program, which has worked with communities around the world.Harple describes REAL as a framework vehicle to put his theories on supporting innovation into action. Over his time at MIT, which also included collaborating with the Media Lab, he systematized those theories into what he calls pentalytics, which is a way to measure and predict the resilience of innovation ecosystems.“My sense was MIT should be analytical and data-driven,” Harple says. “The thesis I wrote was a framework for AI-driven network graph analytics. So, you can model things using analytics, and you can use AI to do predictive analytics to see where the innovation ecosystem is going to thrive.”Once Harple’s pentalytics theory was established, he wanted to put it to the test with a company. His initial idea for Context Labs was to build a verification platform to combat fake news, deepfakes, and other misinformation on the internet. Around 2018, Harple met climate investor Jeremy Grantham, who he says helped him realize the most important data are about the planet. Harple began to believe that U.S. Environmental Protection Agency (EPA) emissions estimates for things like driving a car or operating an oil rig were just that — estimates — and left room for improvement.“Our approach was very MIT-ish,” Harple says. “We said, ‘Let’s, measure it and let’s monitor it, and then let’s contextualize that data so you can never go back and say they faked it. I think there’s a lot of fakery that’s happened, and that’s why the voluntary carbon markets cratered in the last year. Our view is they cratered because the data wasn’t empirical enough.”Context Labs’ solution starts with a technology platform it calls Immutably that continuously combines disparate data streams, encrypts that information, and records it on a blockchain. Immutably also verifies the information with one or more third parties. (Context Labs has partnered with the global accounting firm KPMG.)On top of Immutably, Context Labs has built applications, including a product called Decarbonization-as-a-Service (DaaS), which uses Immutably’s data to give companies a digital twin of their entire operations. Customers can use DaaS to explore the emissions of their assets and create a certificate of verified CO2-equivalent emissions, which can be used in carbon credit markets.Putting emissions data into contextContext Labs is working with oil and gas companies, utilities, data centers, and large industrial operators, some using the platform to analyze more than 3 billion data points each day. For instance, EQT, the largest natural gas producer in the U.S., uses Context Labs to verify its lower-emission products and create carbon credits. Other customers include the nonprofits Rocky Mountain Institute and the Environmental Defense Fund.“I often get asked how big the total addressable market is,” Harple says. “My view is it’s the largest market in history. Why? Because every country needs a decarbonization plan, along with instrumentation and a digital platform to execute, as does every company.”With its headquarters in Kendall Square in Cambridge, Massachusetts, Context Labs is also serving as a test for Harple’s pentalytics theory for innovation ecosystems. It also has operations in Houston and Amsterdam.“This company is a living lab for pentalytics,” Harple says. “I believe Kendall Square 1.0 was factory buildings, Kendall Square 2.0 is biotech, and Kendall Square 3.0 will be climate tech.” More

  • in

    Q&A: “As long as you have a future, you can still change it”

    Tristan Brown is the S.C. Fang Chinese Language and Culture Career Development Professor at MIT. He specializes in law, science, environment and religion of late imperial China, a period running from the 16th through early 20th centuries.In this Q&A, Brown discusses how his areas of historical research can be useful for examining today’s pressing environmental challenges. This is part of an ongoing series exploring how the MIT School of Humanities, Arts, and Social Sciences is addressing the climate crisis.Q: Why does this era of Chinese history resonate so much for you? How is it relevant to contemporary times and challenges?A: China has always been interesting to historians because it has a long-recorded history, with data showing how people have coped with environmental and climate changes over the centuries. We have tons of records of various kinds of ecological issues, environmental crises, and the associated outbreaks of calamities, famine, epidemics, and warfare. Historians of China have a lot to offer ongoing conversations about climate.More specifically, I research conflicts over land and resources that erupted when China was undergoing huge environmental, economic, demographic, and political pressures, and the role that feng shui played as local communities and the state tried to mediate those conflicts. [Feng shui is an ancient Chinese practice combining cosmology, spatial aesthetics, and measurement to divine the right balance between the natural and built environment.] Ultimately, the Qing (1644-1912) state was unable to manage these conflicts, and feng shui–based attempts to make decisions about conserving or exploiting certain areas blew up by the end of the 19th century in the face of pressures to industrialize. This is the subject of my first book, “Laws of the Land: Fengshui and the State in Qing Dynasty China.”Q: Can you give a sense of how feng shui was used to determine outcomes in environmental cases?A: We tend to think of feng shui as a popular design mechanism today. While this isn’t completely inaccurate, there was much more to it than that in Chinese history, when it evolved over many centuries. Specifically, there are lots of insights in feng shui that reflect the ways in which people recorded the natural world, explained how components in the environment related to one another, and understood why and how bad things happened. There is an interesting concept in feng shui that your environment affects your health,and specifically your children’s (i.e., descendants and progeny) health. That concept is found across premodern feng shui literature and is one of fundamental principles of the whole knowledge system.During the period I research, the Qing, the primary fuel energy sources in China came from timber and coal. There were legal cases where communities argued against efforts to mine a local mountain, saying that it could injure the feng shui (i.e., undermine the cosmological balance of natural forces and spatial integrity) of a mountain and hurt the fortunes of an entire region. People were suspicious of coal mining in their communities. They had seen or heard about mines collapsing and flooded mine shafts, they had watched runoff ruin good farmland, causing crops to fail, and even perhaps children to fall ill. Coal mining disturbed the human-earth connection, and thus the relationship between people and nature. People invoked feng shui to express an idea that the extraction of rocks and minerals from the land can have detrimental effects on living communities. Whether out of a sincere community-based concern or out of a more self-interested NIMBYism, feng shui was the primary discourse invoked in these cases.Not all efforts to conserve areas from mining succeeded, especially as foreign imperialism encroached on China, threatening government and local control over the economy. It became gradually clear to China’s elites that the country had to industrialize to survive, and this involved the difficult and even violent process of taking people from farm work and bringing them to cities, building railways, cutting millions of trees, and mining coal to power it all.Q: This makes it seem as if the Chinese swept away feng shui whenever it presented a hurdle, putting the country on the path to coal dependence, pollution, and a carbon-emitting future.A: Feng shui has not disappeared in China, but there’s no doubt about it that development in the form of industrialization took precedence in the 20th century, when it became officially labelled a “superstition” on the national stage. When I first went to China in 2007, city air was so polluted I couldn’t see the horizon. I was 18 years old and the air in some northern cities like Shijiazhuang honestly felt scary. I’ve returned many times since then, of course, and there has been great improvement in air quality, because the government made it a priority.Feng shui is a future-oriented knowledge, concerned with identifying events that have happened in the past that are related to things happening today, and using that information to influence future events. As Richard Smith of Rice University argues, Chinese have used history to order the past, ritual to order the present, and divination to order the future. Consider, for instance, Xiong’an, a new development area outside of Beijing that is physically marking the era of Xi Jinping’s tenure as paramount leader. As soon as the site was selected, people in China started talking about its feng shui, both out of potential environmental concerns and as a subtle form of political commentary. MIT’s own Sol Andrew Stokols in the Department of Urban Studies and Planning (DUSP) has a fantastic new dissertation examining that new area.In short, the feng shui masters of old said there will be floods and droughts and bad stuff happening in the future if a course correction isn’t made. But at the same time, in feng shui there’s never a situation that is hopeless; there is no lost cause. So, there is optimism in the knowledge and rhetoric of feng shui that I think might be applicable as time goes on with climate change. As long as you have a future, you can still change it. Q: In 2023, you were awarded one of the first grants of MIT’s Climate Nucleus, the faculty committee charged with seeing through the Institute’s climate action plan over the decade. What have you been up to courtesy of this fund?A: Well, it all started years ago, when I started thinking about great number of mountains in China associated with Buddhism or Daoism that have become national parks in recent decades. Some of these mountains host trees and plant species that are not found in any other part of China. For my grant, I wanted to find out how these mountains have managed to incubate such rare species for the last 2,000 years. And it’s not as simple as just saying, well, Buddhism, right? Because there are plenty of Buddhist mountains that have not fared as well ecologically. The religious landscape is part of the answer, but there’s also all the messiness of material history that surrounds such a mountain.With this grant, I am bringing together a group of scholars of religion, historians, as well as engineers working in conservation ecology, and we’re trying to figure out what makes some of these places religiously and environmentally distinctive. People come to the project with different approaches. My MIT colleague Serguei Saavedra in the Department of Civil and Environmental Engineering uses new models in system ecology to measure the resilience of environments under various stresses. My colleague in religious studies, Or Porath at Tel Aviv University, is asking when and how Asian religions have centered — or ignored — animals and animal welfare. Another collaboration with MIT’s Siqi Zheng in DUSP and Wen-Chi Liao at the National University of Singapore is looking at how we can use artificial intelligence, machine learning, and classical feng shui manuals to teach computers how to analyze the value of a property’s feng shui in Sinophone communities around the world. There’s a lot going on!Q: How do you bring China’s unique environmental history and law into your classroom, and make it immediate and relevant to the world students face today?A: History is always part of the answer. I mean, whether it’s for an economist, a political scientist, or an architect, history matters. Likewise, when you’re confronting climate change and all these struggles regarding the environment and various crises involving ecosystems, it’s always a good idea to look at how human beings in the past dealt with similar crises. It doesn’t give you a prediction on what would happen in the future, but it gives you some range of possibilities, many of which may at first appear counterintuitive or surprising.That’s exactly what the humanities do. My job is to make MIT undergraduates care about a people who are no longer alive, who walked the earth a thousand years ago, who confronted terrible times of conflict and hunger. Sometimes these people left behind a written record about their world, and sometimes they didn’t. But we try to hear them out regardless. I want students to develop empathy for these strangers and wonder what it would be like to walk in their shoes. Every one of those people is someone’s ancestor, and they very well could have been your ancestor.In my class 21H.186 (Nature and Environment in China), we look at the historical precedents that might be useful for today’s environmental challenges, ranging from urban pollution or domestic recycling systems. The fact we’re still here to ask historical questions is itself significant. When we feel despair about climate change, we can ask, “How did individuals endure the changed course of the Yellow River or the Little Ice Age?” Even when it is recording tragedies, history can be understood as an enduring form of hope.  More