More stories

  • in

    Research collaboration puts climate-resilient crops in sight

    Any houseplant owner knows that changes in the amount of water or sunlight a plant receives can put it under immense stress. A dying plant brings certain disappointment to anyone with a green thumb. 

    But for farmers who make their living by successfully growing plants, and whose crops may nourish hundreds or thousands of people, the devastation of failing flora is that much greater. As climate change is poised to cause increasingly unpredictable weather patterns globally, crops may be subject to more extreme environmental conditions like droughts, fluctuating temperatures, floods, and wildfire. 

    Climate scientists and food systems researchers worry about the stress climate change may put on crops, and on global food security. In an ambitious interdisciplinary project funded by the Abdul Latif Jameel Water and Food Systems Lab (J-WAFS), David Des Marais, the Gale Assistant Professor in the Department of Civil and Environmental Engineering at MIT, and Caroline Uhler, an associate professor in the MIT Department of Electrical Engineering and Computer Science and the Institute for Data, Systems, and Society, are investigating how plant genes communicate with one another under stress. Their research results can be used to breed plants more resilient to climate change.

    Crops in trouble

    Governing plants’ responses to environmental stress are gene regulatory networks, or GRNs, which guide the development and behaviors of living things. A GRN may be comprised of thousands of genes and proteins that all communicate with one another. GRNs help a particular cell, tissue, or organism respond to environmental changes by signaling certain genes to turn their expression on or off.

    Even seemingly minor or short-term changes in weather patterns can have large effects on crop yield and food security. An environmental trigger, like a lack of water during a crucial phase of plant development, can turn a gene on or off, and is likely to affect many others in the GRN. For example, without water, a gene enabling photosynthesis may switch off. This can create a domino effect, where the genes that rely on those regulating photosynthesis are silenced, and the cycle continues. As a result, when photosynthesis is halted, the plant may experience other detrimental side effects, like no longer being able to reproduce or defend against pathogens. The chain reaction could even kill a plant before it has the chance to be revived by a big rain.

    Des Marais says he wishes there was a way to stop those genes from completely shutting off in such a situation. To do that, scientists would need to better understand how exactly gene networks respond to different environmental triggers. Bringing light to this molecular process is exactly what he aims to do in this collaborative research effort.

    Solving complex problems across disciplines

    Despite their crucial importance, GRNs are difficult to study because of how complex and interconnected they are. Usually, to understand how a particular gene is affecting others, biologists must silence one gene and see how the others in the network respond. 

    For years, scientists have aspired to an algorithm that could synthesize the massive amount of information contained in GRNs to “identify correct regulatory relationships among genes,” according to a 2019 article in the Encyclopedia of Bioinformatics and Computational Biology. 

    “A GRN can be seen as a large causal network, and understanding the effects that silencing one gene has on all other genes requires understanding the causal relationships among the genes,” says Uhler. “These are exactly the kinds of algorithms my group develops.”

    Des Marais and Uhler’s project aims to unravel these complex communication networks and discover how to breed crops that are more resilient to the increased droughts, flooding, and erratic weather patterns that climate change is already causing globally.

    In addition to climate change, by 2050, the world will demand 70 percent more food to feed a booming population. “Food systems challenges cannot be addressed individually in disciplinary or topic area silos,” says Greg Sixt, J-WAFS’ research manager for climate and food systems. “They must be addressed in a systems context that reflects the interconnected nature of the food system.”

    Des Marais’ background is in biology, and Uhler’s in statistics. “Dave’s project with Caroline was essentially experimental,” says Renee J. Robins, J-WAFS’ executive director. “This kind of exploratory research is exactly what the J-WAFS seed grant program is for.”

    Getting inside gene regulatory networks

    Des Marais and Uhler’s work begins in a windowless basement on MIT’s campus, where 300 genetically identical Brachypodium distachyon plants grow in large, temperature-controlled chambers. The plant, which contains more than 30,000 genes, is a good model for studying important cereal crops like wheat, barley, maize, and millet. For three weeks, all plants receive the same temperature, humidity, light, and water. Then, half are slowly tapered off water, simulating drought-like conditions.

    Six days into the forced drought, the plants are clearly suffering. Des Marais’ PhD student Jie Yun takes tissues from 50 hydrated and 50 dry plants, freezes them in liquid nitrogen to immediately halt metabolic activity, grinds them up into a fine powder, and chemically separates the genetic material. The genes from all 100 samples are then sequenced at a lab across the street.

    The team is left with a spreadsheet listing the 30,000 genes found in each of the 100 plants at the moment they were frozen, and how many copies there were. Uhler’s PhD student Anastasiya Belyaeva inputs the massive spreadsheet into the computer program she developed and runs her novel algorithm. Within a few hours, the group can see which genes were most active in one condition over another, how the genes were communicating, and which were causing changes in others. 

    The methodology captures important subtleties that could allow researchers to eventually alter gene pathways and breed more resilient crops. “When you expose a plant to drought stress, it’s not like there’s some canonical response,” Des Marais says. “There’s lots of things going on. It’s turning this physiologic process up, this one down, this one didn’t exist before, and now suddenly is turned on.” 

    In addition to Des Marais and Uhler’s research, J-WAFS has funded projects in food and water from researchers in 29 departments across all five MIT schools as well as the MIT Schwarzman College of Computing. J-WAFS seed grants typically fund seven to eight new projects every year.

    “The grants are really aimed at catalyzing new ideas, providing the sort of support [for MIT researchers] to be pushing boundaries, and also bringing in faculty who may have some interesting ideas that they haven’t yet applied to water or food concerns,” Robins says. “It’s an avenue for researchers all over the Institute to apply their ideas to water and food.”

    Alison Gold is a student in MIT’s Graduate Program in Science Writing. More

  • in

    J-WAFS announces 2021 Solutions Grants for commercializing water and food technologies

    The Abdul Latif Jameel Water and Food Systems Lab (J-WAFS) recently announced the 2021 J-WAFS Solutions grant recipients. The J-WAFS Solutions program aims to propel MIT water- and food-related research toward commercialization. Grant recipients receive one year of financial support, as well as mentorship, networking, and guidance from industry experts, to begin their journey into the commercial world — whether that be in the form of bringing innovative products to market or launching cutting-edge startup companies. 

    This year, three projects will receive funding across water, food, and agriculture spaces. The winning projects will advance nascent technologies for off-grid refrigeration, portable water filtration, and dairy waste recycling. Each provides an efficient, accessible solution to the respective challenge being addressed.

    Since the start of the J-WAFS Solutions program in 2015, grants have provided instrumental support in creating a number of key MIT startups that focus on major water and food challenges. A 2015-16 grant helped the team behind Via Separations develop their business plan to massively decarbonize industrial separations processes. Other successful J-WAFS Solutions alumni include researchers who created a low-cost water filter made from tree branches and the team that launched the startup Xibus Systems, which is developing a handheld food safety sensor.

    “New technological advances are being made at MIT every day, and J-WAFS Solutions grants provide critical resources and support for these technologies to make it to market so that they can transform our local and global water and food systems,” says J-WAFS Executive Director Renee Robins. “This year’s grant recipients offer innovative tools that will provide more accessible food storage for smallholder farmers in places like Africa, safer drinking water, and a new approach to recycling food waste,” Robins notes. She adds, “J-WAFS is excited to work with these teams, and we look forward to seeing their impact on the water and food sectors.”

    The J-WAFS Solutions program is implemented in collaboration with Community Jameel, the global philanthropic organization founded by Mohammed Jameel ’78, and is supported by the MIT Venture Mentoring Service and the iCorps New England Regional Innovation Node at MIT.

    Mobile evaporative cooling rooms for vegetable preservation

    Food waste is a persistent problem across food systems supply chains, as 30-50 percent of food produced is lost before it reaches the table. The problem is compounded in areas without access to the refrigeration necessary to store food after it is harvested. Hot and dry climates in particular struggle to preserve food before it reaches consumers. A team led by Daniel Frey, faculty director for research at MIT D-Lab and professor of mechanical engineering, has pioneered a new approach to enable farmers to better preserve their produce and improve access to nutritious food in the community. The team includes Leon Glicksman, professor of building technology and mechanical engineering, and Eric Verploegen, a research engineer in MIT D-Lab.

    Instead of relying on traditional refrigeration with high energy and cost requirements, the team is utilizing forced-air evaporative cooling chambers. Their design, based on retrofitting shipping containers, will provide a lower-cost, better-performing solution enabling farmers to chill their produce without access to power. The research team was previously funded by J-WAFS through two different grants in 2019 to develop the off-grid technology in collaboration with researchers at the University of Nairobi and the Collectives for Integrated Livelihood Initiatives (CInI), Jamshedpur. Now, the cooling rooms are ready for pilot testing, which the MIT team will conduct with rural farmers in Kenya and India. The MIT team will deploy and test the storage chambers through collaborations with two Kenyan social enterprises and a nongovernmental organization in Gujarat, India. 

    Off-grid portable ion concentration polarization desalination unit

    Shrinking aquifers, polluted rivers, and increased drought are making fresh drinking water increasingly scarce, driving the need for improved desalination technologies. The water purifiers market, which was $45 billion in 2019, is expected to grow to $90.1 billion in 2025. However, current products on the market are limited in scope, in that they are designed to treat water that is already relatively low in salinity, and do not account for lead contamination or other technical challenges. A better solution is required to ensure access to clean and safe drinking water in the face of water shortages. 

    A team led by Jongyoon Han, professor of biological engineering and electrical engineering at MIT, has developed a portable desalination unit that utilizes an ion concentration polarization process. The compact and lightweight unit has the ability to remove dissolved and suspended solids from brackish water at a rate of one liter per hour, both in installed and remote field settings. The unit was featured in an award-winning video in the 2021 J-WAFS World Water Day Video Competition: MIT Research for a Water Secure Future. The team plans to develop the next-generation prototype of the desalination unit alongside a mass-production strategy and business model.

    Converting dairy industry waste into food and feed ingredients

    One of the trendiest foods in the last decade, Greek yogurt, has a hidden dark side: acid whey. This low-pH, liquid by-product of yogurt production has been a growing problem for producers, as untreated disposal of the whey can pose environmental risks due to its high organic content and acidic odor.

    With an estimated 3 million tons of acid whey generated in the United States each year, MIT researchers saw an opportunity to turn waste into a valuable resource for our food systems. Led by the Willard Henry Dow Professor in Chemical Engineering, Gregory Stephanopoulos, and Anthony J. Sinskey, professor of microbiology, the researchers are utilizing metabolic engineering to turn acid whey into carotenoids, the yellow and orange organic pigments found naturally in carrots, autumn leaves, and salmon. The team is hoping that these carotenoids can be utilized as food supplements or feed additives to make the most of what otherwise would have been wasted. More

  • in

    Using graphene foam to filter toxins from drinking water

    Some kinds of water pollution, such as algal blooms and plastics that foul rivers, lakes, and marine environments, lie in plain sight. But other contaminants are not so readily apparent, which makes their impact potentially more dangerous. Among these invisible substances is uranium. Leaching into water resources from mining operations, nuclear waste sites, or from natural subterranean deposits, the element can now be found flowing out of taps worldwide.

    In the United States alone, “many areas are affected by uranium contamination, including the High Plains and Central Valley aquifers, which supply drinking water to 6 million people,” says Ahmed Sami Helal, a postdoc in the Department of Nuclear Science and Engineering. This contamination poses a near and present danger. “Even small concentrations are bad for human health,” says Ju Li, the Battelle Energy Alliance Professor of Nuclear Science and Engineering and professor of materials science and engineering.

    Now, a team led by Li has devised a highly efficient method for removing uranium from drinking water. Applying an electric charge to graphene oxide foam, the researchers can capture uranium in solution, which precipitates out as a condensed solid crystal. The foam may be reused up to seven times without losing its electrochemical properties. “Within hours, our process can purify a large quantity of drinking water below the EPA limit for uranium,” says Li.

    A paper describing this work was published in this week Advanced Materials. The two first co-authors are Helal and Chao Wang, a postdoc at MIT during the study, who is now with the School of Materials Science and Engineering at Tongji University, Shanghai. Researchers from Argonne National Laboratory, Taiwan’s National Chiao Tung University, and the University of Tokyo also participated in the research. The Defense Threat Reduction Agency (U.S. Department of Defense) funded later stages of this work.

    Targeting the contaminant

    The project, launched three years ago, began as an effort to find better approaches to environmental cleanup of heavy metals from mining sites. To date, remediation methods for such metals as chromium, cadmium, arsenic, lead, mercury, radium, and uranium have proven limited and expensive. “These techniques are highly sensitive to organics in water, and are poor at separating out the heavy metal contaminants,” explains Helal. “So they involve long operation times, high capital costs, and at the end of extraction, generate more toxic sludge.”

    To the team, uranium seemed a particularly attractive target. Field testing from the U.S. Geological Service and the Environmental Protection Agency (EPA) has revealed unhealthy levels of uranium moving into reservoirs and aquifers from natural rock sources in the northeastern United States, from ponds and pits storing old nuclear weapons and fuel in places like Hanford, Washington, and from mining activities located in many western states. This kind of contamination is prevalent in many other nations as well. An alarming number of these sites show uranium concentrations close to or above the EPA’s recommended ceiling of 30 parts per billion (ppb) — a level linked to kidney damage, cancer risk, and neurobehavioral changes in humans.

    The critical challenge lay in finding a practical remediation process exclusively sensitive to uranium, capable of extracting it from solution without producing toxic residues. And while earlier research showed that electrically charged carbon fiber could filter uranium from water, the results were partial and imprecise.

    Wang managed to crack these problems — based on her investigation of the behavior of graphene foam used for lithium-sulfur batteries. “The physical performance of this foam was unique because of its ability to attract certain chemical species to its surface,” she says. “I thought the ligands in graphene foam would work well with uranium.”

    Simple, efficient, and clean

    The team set to work transforming graphene foam into the equivalent of a uranium magnet. They learned that by sending an electric charge through the foam, splitting water and releasing hydrogen, they could increase the local pH and induce a chemical change that pulled uranium ions out of solution. The researchers found that the uranium would graft itself onto the foam’s surface, where it formed a never-before-seen crystalline uranium hydroxide. On reversal of the electric charge, the mineral, which resembles fish scales, slipped easily off the foam.

    It took hundreds of tries to get the chemical composition and electrolysis just right. “We kept changing the functional chemical groups to get them to work correctly,” says Helal. “And the foam was initially quite fragile, tending to break into pieces, so we needed to make it stronger and more durable,” says Wang.

    This uranium filtration process is simple, efficient, and clean, according to Li: “Each time it’s used, our foam can capture four times its own weight of uranium, and we can achieve an extraction capacity of 4,000 mg per gram, which is a major improvement over other methods,” he says. “We’ve also made a major breakthrough in reusability, because the foam can go through seven cycles without losing its extraction efficiency.” The graphene foam functions as well in seawater, where it reduces uranium concentrations from 3 parts per million to 19.9 ppb, showing that other ions in the brine do not interfere with filtration.

    The team believes its low-cost, effective device could become a new kind of home water filter, fitting on faucets like those of commercial brands. “Some of these filters already have activated carbon, so maybe we could modify these, add low-voltage electricity to filter uranium,” says Li.

    “The uranium extraction this device achieves is very impressive when compared to existing methods,” says Ho Jin Ryu, associate professor of nuclear and quantum engineering at the Korea Advanced Institute of Science and Technology. Ryu, who was not involved in the research, believes that the demonstration of graphene foam reusability is a “significant advance,” and that “the technology of local pH control to enhance uranium deposition will be impactful because the scientific principle can be applied more generally to heavy metal extraction from polluted water.”

    The researchers have already begun investigating broader applications of their method. “There is a science to this, so we can modify our filters to be selective for other heavy metals such as lead, mercury, and cadmium,” says Li. He notes that radium is another significant danger for locales in the United States and elsewhere that lack resources for reliable drinking water infrastructure.

    “In the future, instead of a passive water filter, we could be using a smart filter powered by clean electricity that turns on electrolytic action, which could extract multiple toxic metals, tell you when to regenerate the filter, and give you quality assurance about the water you’re drinking.” More

  • in

    Vapor-collection technology saves water while clearing the air

    About two-fifths of all the water that gets withdrawn from lakes, rivers, and wells in the U.S. is used not for agriculture, drinking, or sanitation, but to cool the power plants that provide electricity from fossil fuels or nuclear power. Over 65 percent of these plants use evaporative cooling, leading to huge white plumes that billow from their cooling towers, which can be a nuisance and, in some cases, even contribute to dangerous driving conditions.

    Now, a small company based on technology recently developed at MIT by the Varanasi Research Group is hoping to reduce both the water needs at these plants and the resultant plumes — and to potentially help alleviate water shortages in areas where power plants put pressure on local water systems.

    The technology is surprisingly simple in principle, but developing it to the point where it can now be tested at full scale on industrial plants was a more complex proposition. That required the real-world experience that the company’s founders gained from installing prototype systems, first on MIT’s natural-gas-powered cogeneration plant and then on MIT’s nuclear research reactor.

    In these demanding tests, which involved exposure to not only the heat and vibrations of a working industrial plant but also the rigors of New England winters, the system proved its effectiveness at both eliminating the vapor plume and recapturing water. And, it purified the water in the process, so that it was 100 times cleaner than the incoming cooling water. The system is now being prepared for full-scale tests in a commercial power plant and in a chemical processing plant.

    “Campus as a living laboratory”

    The technology was originally envisioned by professor of mechanical engineering Kripa Varanasi to develop efficient water-recovery systems by capturing water droplets from both natural fog and plumes from power plant cooling towers. The project began as part of doctoral thesis research of Maher Damak PhD ’18, with funding from the MIT Tata Center for Technology and Design, to improve the efficiency of fog-harvesting systems like the ones used in some arid coastal regions as a source of potable water. Those systems, which generally consist of plastic or metal mesh hung vertically in the path of fogbanks, are extremely inefficient, capturing only about 1 to 3 percent of the water droplets that pass through them.

    Varanasi and Damak found that vapor collection could be made much more efficient by first zapping the tiny droplets of water with a beam of electrically charged particles, or ions, to give each droplet a slight electric charge. Then, the stream of droplets passes through a wire mesh, like a window screen, that has an opposite electrical charge. This causes the droplets to be strongly attracted to the mesh, where they fall away due to gravity and can be collected in trays placed below the mesh.

    Lab tests showed the concept worked, and the researchers, joined by Karim Khalil PhD ’18, won the MIT $100K Entrepreneurship Competition in 2018 for the basic concept. The nascent company, which they called Infinite Cooling, with Damak as CEO, Khalil as CTO, and Varanasi as chairperson, immediately went to work setting up a test installation on one of the cooling towers of MIT’s natural-gas-powered Central Utility Plant, with funding from the MIT Office of Sustainability. After experimenting with various configurations, they were able to show that the system could indeed eliminate the plume and produce water of high purity.

    Professor Jacopo Buongiorno in the Department of Nuclear Science and Engineering immediately spotted a good opportunity for collaboration, offering the use of MIT’s Nuclear Reactor Laboratory research facility for further testing of the system with the help of NRL engineer Ed Block. With its 24/7 operation and its higher-temperature vapor emissions, the plant would provide a more stringent real-world test of the system, as well as proving its effectiveness in an actual operating reactor licensed by the Nuclear Regulatory Commission, an important step in “de-risking” the technology so that electric utilities could feel confident in adopting the system.

    After the system was installed above one of the plant’s four cooling towers, testing showed that the water being collected was more than 100 times cleaner than the feedwater coming into the cooling system. It also proved that the installation — which, unlike the earlier version, had its mesh screens mounted vertically, parallel to the vapor stream — had no effect at all on the operation of the plant. Video of the tests dramatically illustrates how as soon as the power is switched on to the collecting mesh, the white plume of vapor immediately disappears completely.

    The high temperature and volume of the vapor plume from the reactor’s cooling towers represented “kind of a worst-case scenario in terms of plumes,” Damak says, “so if we can capture that, we can basically capture anything.”

    Working with MIT’s Nuclear Reactor Laboratory, Varanasi says, “has been quite an important step because it helped us to test it at scale. … It really both validated the water quality and the performance of the system.” The process, he says, “shows the importance of using the campus as a living laboratory. It allows us to do these kinds of experiments at scale, and also showed the ability to sustainably reduce the water footprint of the campus.”

    Far-reaching benefits

    Power plant plumes are often considered an eyesore and can lead to local opposition to new power plants because of the potential for obscured views, and even potential traffic hazards when the obscuring plumes blow across roadways. “The ability to eliminate the plumes could be an important benefit, allowing plants to be sited in locations that might otherwise be restricted,” Buongiorno says. At the same time, the system could eliminate a significant amount of water used by the plants and then lost to the sky, potentially alleviating pressure on local water systems, which could be especially helpful in arid regions.

    The system is essentially a distillation process, and the pure water it produces could go into power plant boilers — which are separate from the cooling system — that require high-purity water. That might reduce the need for both fresh water and purification systems for the boilers.

    What’s more, in many arid coastal areas power plants are cooled directly with seawater. This system would essentially add a water desalination capability to the plant, at a fraction of the cost of building a new standalone desalination plant, and at an even smaller fraction of its operating costs since the heat would essentially be provided for free.

    Contamination of water is typically measured by testing its electrical conductivity, which increases with the amount of salts and other contaminants it contains. Water used in power plant cooling systems typically measures 3,000 microsiemens per centimeter, Khalil explains, while the water supply in the City of Cambridge is typically around 500 or 600 microsiemens per centimeter. The water captured by this system, he says, typically measures below 50 microsiemens per centimeter.

    Thanks to the validation provided by the testing on MIT’s plants, the company has now been able to secure arrangements for its first two installations on operating commercial plants, which should begin later this year. One is a 900-megawatt power plant where the system’s clean water production will be a major advantage, and the other is at a chemical manufacturing plant in the Midwest.

    In many locations power plants have to pay for the water they use for cooling, Varanasi says, and the new system is expected to reduce the need for water by up to 20 percent. For a typical power plant, that alone could account for about a million dollars saved in water costs per year, he says.

    “Innovation has been a hallmark of the U.S. commercial industry for more than six decades,” says Maria G. Korsnick, president and CEO of the Nuclear Energy Institute, who was not involved in the research. “As the changing climate impacts every aspect of life, including global water supplies, companies across the supply chain are innovating for solutions. The testing of this innovative technology at MIT provides a valuable basis for its consideration in commercial applications.” More

  • in

    Inaugural fund supports early-stage collaborations between MIT and Jordan

    MIT International Science and Technology Initiatives (MISTI), together with the Abdul Hameed Shoman Foundation (AHSF), the cultural and social responsibility arm of the Arab Bank, recently created a new initiative to support collaboration with the Middle East. The MIT-Jordan Abdul Hameed Shoman Foundation Seed Fund is providing awardees with financial grants up to $30,000 to cover travel, meeting, and workshop expenses, including in-person visits to build cultural and scientific connections between MIT and Jordan. MISTI and AHSF recently celebrated the first round of awardees in a virtual ceremony held in Amman and the United States.

    The new grant is part of the Global Seed Funds (GSF), MISTI’s annual grant program that enables participating teams to collaborate with international peers, either at MIT or abroad, to develop and launch joint research projects. Many of the projects funded lead to additional grant awards and the development of valuable long-term relationships between international researchers and MIT faculty and students.

    Since MIT’s first major collaboration in the Middle East in the 1970s, the Institute has deepened its connection and commitment to the region, expanding to create the MIT-Arab World program. The MIT-Jordan Abdul Hameed Shoman Foundation Seed Fund enables the MIT-Arab World program to move forward on its key objectives: build critical cultural and scientific connections between MIT and the Arab world; develop a cadre of students who have a deep understanding of the Middle East; and bring tangible value to the partners in the region.

    Valentina Qussisiya, CEO of the foundation, shared the importance of collaboration between research institutes to improve and advance scientific research. She highlighted the role of AHSF in supporting science and researchers since 1982, emphasizing, “The partnership with MIT through the MISTI program is part of AHSF commitment toward this role in Jordan and hoped-for future collaborations and the impact of the fund on science in Jordan.”

    The new fund, open to both Jordanian and MIT faculty, is available to those pursuing research in the following fields: environmental engineering; water resource management; lean and modern technologies; automation; nanotechnology; entrepreneurship; nuclear engineering; materials engineering; energy and thermal engineering; biomedical engineering, prostheses, computational neuroscience, and technology; social and management sciences; urban studies and planning; science, technology, and society; innovation in education; Arabic language automation; and food security and sustainable agriculture.

    Philip S. Khoury, faculty director of MISTI’s MIT-Arab World program and Ford International Professor of History and associate provost at MIT, explained that the winning projects all deal with critical issues that will benefit both MIT and Jordan, both on- and off-campus. “Beyond the actual faculty collaboration, these projects will bring much value to the hands-on education of MIT and Jordanian students and their capacity to get to know one another as future leaders in science and technology,” he says.

    This year, the MIT-Jordan Abdul Hameed Shoman Foundation Seed Fund received numerous high-quality proposals. Applications were reviewed by MIT and Jordanian faculty and selected by a committee of MIT faculty. There were six winning projects in the inaugural round:

    Low-Cost Renewable-Powered Electrodialysis Desalination and Drip Irrigation: Amos Winter (MIT principal investigator) and Samer Talozi (international collaborator)

    iPSC and CRISPR Gene Editing to Study Rare Diseases: Ernest Fraenkel (MIT principal investigator) and Nidaa Ababneh (international collaborator)

    Use of Distributed Low-Cost Sensor Networks for Air Quality Monitoring in Amann: Jesse Kroll (MIT principal investigator) and Tareq Hussein (international collaborator)

    Radiation Effects on Medical Devices Made by 3D Printing: Ju Li (MIT principal investigator) and Belal Gharaibeh (international collaborator)

    Superprotonic Conductivity in Metal-Organic Frameworks for Proton-Exchange Membrane Fuel Cells: Mircea Dinca (MIT principal investigator) and Kyle Cordova (international collaborator)

    Mapping Urban Air Quality Using Mobile Low-cost Sensors and Geospatial Techniques: Sarah Williams (MIT principal investigator) and Khaled Hazaymeh (international collaborator)

    The goal of these funded projects is for researchers and their students to form meaningful professional partnerships across cultures and leave a lasting impact upon the scientific communities in Jordan and at MIT.

    “[The fund will] enhance the future career prospects of emerging scholars from both countries,” said awardee Professor Kyle Cordova, executive director for scientific research at Royal Scientific Society and assistant to Her Royal Highness Princess Sumaya bint El Hassan for scientific affairs. “Our young scholars will gain a unique perspective of the influence of different cultures on scientific investigation that will help them to function effectively in a multidisciplinary and multicultural environment.” More

  • in

    A new way to detect the SARS-CoV-2 Alpha variant in wastewater

    Researchers from the Antimicrobial Resistance (AMR) interdisciplinary research group at the Singapore-MIT Alliance for Research and Technology (SMART), MIT’s research enterprise in Singapore, alongside collaborators from Biobot Analytics, Nanyang Technological University (NTU), and MIT, have successfully developed an innovative, open-source molecular detection method that is able to detect and quantify the B.1.1.7 (Alpha) variant of SARS-CoV-2. The breakthrough paves the way for rapid, inexpensive surveillance of other SARS-CoV-2 variants in wastewater.

    As the world continues to battle and contain Covid-19, the recent identification of SARS-CoV-2 variants with higher transmissibility and increased severity has made developing convenient variant tracking methods essential. Currently, identified variants include the B.1.17 (Alpha) variant first identified in the United Kingdom and the B.1.617.2 (Delta) variant first detected in India.

    Wastewater surveillance has emerged as a critical public health tool to safely and efficiently track the SARS-CoV-2 pandemic in a non-intrusive manner, providing complementary information that enables health authorities to acquire actionable community-level information. Most recently, viral fragments of SARS-CoV-2 were detected in housing estates in Singapore through a proactive wastewater surveillance program. This information, alongside surveillance testing, allowed Singapore’s Ministry of Health to swiftly respond, isolate, and conduct swab tests as part of precautionary measures.

    However, detecting variants through wastewater surveillance is less commonplace due to challenges in existing technology. Next-generation sequencing for wastewater surveillance is time-consuming and expensive. Tests also lack the sensitivity required to detect low variant abundances in dilute and mixed wastewater samples due to inconsistent and/or low sequencing coverage.

    The method developed by the researchers is uniquely tailored to address these challenges and expands the utility of wastewater surveillance beyond testing for SARS-CoV-2, toward tracking the spread of SARS-CoV-2 variants of concern.

    Wei Lin Lee, research scientist at SMART AMR and first author on the paper adds, “This is especially important in countries battling SARS-CoV-2 variants. Wastewater surveillance will help find out the true proportion and spread of the variants in the local communities. Our method is sensitive enough to detect variants in highly diluted SARS-CoV-2 concentrations typically seen in wastewater samples, and produces reliable results even for samples which contain multiple SARS-CoV-2 lineages.”

    Led by Janelle Thompson, NTU associate professor, and Eric Alm, MIT professor and SMART AMR principal investigator, the team’s study, “Quantitative SARS-CoV-2 Alpha variant B.1.1.7 Tracking in Wastewater by Allele-Specific RT-qPCR” has been published in Environmental Science & Technology Letters. The research explains the innovative, open-source molecular detection method based on allele-specific RT-qPCR that detects and quantifies the B.1.1.7 (Alpha) variant. The developed assay, tested and validated in wastewater samples across 19 communities in the United States, is able to reliably detect and quantify low levels of the B.1.1.7 (Alpha) variant with low cross-reactivity, and at variant proportions down to 1 percent in a background of mixed SARS-CoV-2 viruses.

    Targeting spike protein mutations that are highly predictive of the B.1.1.7 (Alpha) variant, the method can be implemented using commercially available RT-qPCR protocols. Unlike commercially available products that use proprietary primers and probes for wastewater surveillance, the paper details the open-source method and its development that can be freely used by other organizations and research institutes for their work on wastewater surveillance of SARS-CoV-2 and its variants.

    The breakthrough by the research team in Singapore is currently used by Biobot Analytics, an MIT startup and global leader in wastewater epidemiology headquartered in Cambridge, Massachusetts, serving states and localities throughout the United States. Using the method, Biobot Analytics is able to accept and analyze wastewater samples for the B.1.1.7 (Alpha) variant and plans to add additional variants to its analysis as methods are developed. For example, the SMART AMR team is currently developing specific assays that will be able to detect and quantify the B.1.617.2 (Delta) variant, which has recently been identified as a variant of concern by the World Health Organization.

    “Using the team’s innovative method, we have been able to monitor the B.1.1.7 (Alpha) variant in local populations in the U.S. — empowering leaders with information about Covid-19 trends in their communities and allowing them to make considered recommendations and changes to control measures,” says Mariana Matus PhD ’18, Biobot Analytics CEO and co-founder.

    “This method can be rapidly adapted to detect new variants of concern beyond B.1.1.7,” adds MIT’s Alm. “Our partnership with Biobot Analytics has translated our research into real-world impact beyond the shores of Singapore and aid in the detection of Covid-19 and its variants, serving as an early warning system and guidance for policymakers as they trace infection clusters and consider suitable public health measures.”

    The research is carried out by SMART and supported by the National Research Foundation (NRF) Singapore under its Campus for Research Excellence And Technological Enterprise (CREATE) program.

    SMART was established by MIT in partnership with the National Research Foundation of Singapore (NRF) in 2007. SMART is the first entity in CREATE developed by NRF. SMART serves as an intellectual and innovation hub for research interactions between MIT and Singapore, undertaking cutting-edge research projects in areas of interest to both Singapore and MIT. SMART currently comprises an Innovation Center and five IRGs: AMR, Critical Analytics for Manufacturing Personalized-Medicine, Disruptive and Sustainable Technologies for Agricultural Precision, Future Urban Mobility, and Low Energy Electronic Systems.

    The AMR interdisciplinary research group is a translational research and entrepreneurship program that tackles the growing threat of antimicrobial resistance. By leveraging talent and convergent technologies across Singapore and MIT, AMR aims to develop multiple innovative and disruptive approaches to identify, respond to, and treat drug-resistant microbial infections. Through strong scientific and clinical collaborations, its goal is to provide transformative, holistic solutions for Singapore and the world. More