More stories

  • in

    Moving past the Iron Age

    MIT graduate student Sydney Rose Johnson has never seen the steel mills in central India. She’s never toured the American Midwest’s hulking steel plants or the mini mills dotting the Mississippi River. But in the past year, she’s become more familiar with steel production than she ever imagined.

    A fourth-year dual degree MBA and PhD candidate in chemical engineering and a graduate research assistant with the MIT Energy Initiative (MITEI) as well as a 2022-23 Shell Energy Fellow, Johnson looks at ways to reduce carbon dioxide (CO2) emissions generated by industrial processes in hard-to-abate industries. Those include steel.

    Almost every aspect of infrastructure and transportation — buildings, bridges, cars, trains, mass transit — contains steel. The manufacture of steel hasn’t changed much since the Iron Age, with some steel plants in the United States and India operating almost continually for more than a century, their massive blast furnaces re-lined periodically with carbon and graphite to keep them going.

    According to the World Economic Forum, steel demand is projected to increase 30 percent by 2050, spurred in part by population growth and economic development in China, India, Africa, and Southeast Asia.

    The steel industry is among the three biggest producers of CO2 worldwide. Every ton of steel produced in 2020 emitted, on average, 1.89 tons of CO2 into the atmosphere — around 8 percent of global CO2 emissions, according to the World Steel Association.

    A combination of technical strategies and financial investments, Johnson notes, will be needed to wrestle that 8 percent figure down to something more planet-friendly.

    Johnson’s thesis focuses on modeling and analyzing ways to decarbonize steel. Using data mined from academic and industry sources, she builds models to calculate emissions, costs, and energy consumption for plant-level production.

    “I optimize steel production pathways using emission goals, industry commitments, and cost,” she says. Based on the projected growth of India’s steel industry, she applies this approach to case studies that predict outcomes for some of the country’s thousand-plus factories, which together have a production capacity of 154 million metric tons of steel. For the United States, she looks at the effect of Inflation Reduction Act (IRA) credits. The 2022 IRA provides incentives that could accelerate the steel industry’s efforts to minimize its carbon emissions.

    Johnson compares emissions and costs across different production pathways, asking questions such as: “If we start today, what would a cost-optimal production scenario look like years from now? How would it change if we added in credits? What would have to happen to cut 2005 levels of emissions in half by 2030?”

    “My goal is to gain an understanding of how current and emerging decarbonization strategies will be integrated into the industry,” Johnson says.

    Grappling with industrial problems

    Growing up in Marietta, Georgia, outside Atlanta, the closest she ever came to a plant of any kind was through her father, a chemical engineer working in logistics and procuring steel for an aerospace company, and during high school, when she spent a semester working alongside chemical engineers tweaking the pH of an anti-foaming agent.

    At Kennesaw Mountain High School, a STEM magnet program in Cobb County, students devote an entire semester of their senior year to an internship and research project.

    Johnson chose to work at Kemira Chemicals, which develops chemical solutions for water-intensive industries with a focus on pulp and paper, water treatment, and energy systems.

    “My goal was to understand why a polymer product was falling out of suspension — essentially, why it was less stable,” she recalls. She learned how to formulate a lab-scale version of the product and conduct tests to measure its viscosity and acidity. Comparing the lab-scale and regular product results revealed that acidity was an important factor. “Through conversations with my mentor, I learned this was connected with the holding conditions, which led to the product being oxidized,” she says. With the anti-foaming agent’s problem identified, steps could be taken to fix it.

    “I learned how to apply problem-solving. I got to learn more about working in an industrial environment by connecting with the team in quality control as well as with R&D and chemical engineers at the plant site,” Johnson says. “This experience confirmed I wanted to pursue engineering in college.”

    As an undergraduate at Stanford University, she learned about the different fields — biotechnology, environmental science, electrochemistry, and energy, among others — open to chemical engineers. “It seemed like a very diverse field and application range,” she says. “I was just so intrigued by the different things I saw people doing and all these different sets of issues.”

    Turning up the heat

    At MIT, she turned her attention to how certain industries can offset their detrimental effects on climate.

    “I’m interested in the impact of technology on global communities, the environment, and policy. Energy applications affect every field. My goal as a chemical engineer is to have a broad perspective on problem-solving and to find solutions that benefit as many people, especially those under-resourced, as possible,” says Johnson, who has served on the MIT Chemical Engineering Graduate Student Advisory Board, the MIT Energy and Climate Club, and is involved with diversity and inclusion initiatives.

    The steel industry, Johnson acknowledges, is not what she first imagined when she saw herself working toward mitigating climate change.

    “But now, understanding the role the material has in infrastructure development, combined with its heavy use of coal, has illuminated how the sector, along with other hard-to-abate industries, is important in the climate change conversation,” Johnson says.

    Despite the advanced age of many steel mills, some are quite energy-efficient, she notes. Yet these operations, which produce heat upwards of 3,000 degrees Fahrenheit, are still emission-intensive.

    Steel is made from iron ore, a mixture of iron, oxygen, and other minerals found on virtually every continent, with Brazil and Australia alone exporting millions of metric tons per year. Commonly based on a process dating back to the 19th century, iron is extracted from the ore through smelting — heating the ore with blast furnaces until the metal becomes spongy and its chemical components begin to break down.

    A reducing agent is needed to release the oxygen trapped in the ore, transforming it from its raw form to pure iron. That’s where most emissions come from, Johnson notes.

    “We want to reduce emissions, and we want to make a cleaner and safer environment for everyone,” she says. “It’s not just the CO2 emissions. It’s also sometimes NOx and SOx [nitrogen oxides and sulfur oxides] and air pollution particulate matter at some of these production facilities that can affect people as well.”

    In 2020, the International Energy Agency released a roadmap exploring potential technologies and strategies that would make the iron and steel sector more compatible with the agency’s vision of increased sustainability. Emission reductions can be accomplished with more modern technology, the agency suggests, or by substituting the fuels producing the immense heat needed to process ore. Traditionally, the fuels used for iron reduction have been coal and natural gas. Alternative fuels include clean hydrogen, electricity, and biomass.

    Using the MITEI Sustainable Energy System Analysis Modeling Environment (SESAME), Johnson analyzes various decarbonization strategies. She considers options such as switching fuel for furnaces to hydrogen with a little bit of natural gas or adding carbon-capture devices. The models demonstrate how effective these tactics are likely to be. The answers aren’t always encouraging.

    “Upstream emissions can determine how effective the strategies are,” Johnson says. Charcoal derived from forestry biomass seemed to be a promising alternative fuel, but her models showed that processing the charcoal for use in the blast furnace limited its effectiveness in negating emissions.

    Despite the challenges, “there are definitely ways of moving forward,” Johnson says. “It’s been an intriguing journey in terms of understanding where the industry is at. There’s still a long way to go, but it’s doable.”

    Johnson is heartened by the steel industry’s efforts to recycle scrap into new steel products and incorporate more emission-friendly technologies and practices, some of which result in significantly lower CO2 emissions than conventional production.

    A major issue is that low-carbon steel can be more than 50 percent more costly than conventionally produced steel. “There are costs associated with making the transition, but in the context of the environmental implications, I think it’s well worth it to adopt these technologies,” she says.

    After graduation, Johnson plans to continue to work in the energy field. “I definitely want to use a combination of engineering knowledge and business knowledge to work toward mitigating climate change, potentially in the startup space with clean technology or even in a policy context,” she says. “I’m interested in connecting the private and public sectors to implement measures for improving our environment and benefiting as many people as possible.” More

  • in

    Q&A: A blueprint for sustainable innovation

    Atacama Biomaterials is a startup combining architecture, machine learning, and chemical engineering to create eco-friendly materials with multiple applications. Passionate about sustainable innovation, its co-founder Paloma Gonzalez-Rojas SM ’15, PhD ’21 highlights here how MIT has supported the project through several of its entrepreneurship initiatives, and reflects on the role of design in building a holistic vision for an expanding business.

    Q: What role do you see your startup playing in the sustainable materials space?

    A: Atacama Biomaterials is a venture dedicated to advancing sustainable materials through state-of-the-art technology. With my co-founder Jose Tomas Dominguez, we have been working on developing our technology since 2019. We initially started the company in 2020 under another name and received Sandbox funds the next year. In 2021, we went through The Engine’s accelerator, Blueprint, and changed our name to Atacama Biomaterials in 2022 during the MITdesignX program. 

    This technology we have developed allows us to create our own data and material library using artificial intelligence and machine learning, and serves as a platform applicable to various industries horizontally — biofuels, biological drugs, and even mining. Vertically, we produce inexpensive, regionally sourced, and environmentally friendly bio-based polymers and packaging — that is, naturally compostable plastics as a flagship product, along with AI products.

    Q: What motivated you to venture into biomaterials and found Atacama?

    A: I’m from Chile, a country with a beautiful, rich geography and nature where we can see all the problems stemming from industry, waste management, and pollution. We named our company Atacama Biomaterials because the Atacama Desert in Chile — one of the places where you can best see the stars in the world — is becoming a plastic dump, as many other places on Earth. I care deeply about sustainability, and I have an emotional attachment to stop these problems. Considering that manufacturing accounts for 29 percent of global carbon emissions, it is clear that sustainability has a role in how we define technology and entrepreneurship, as well as a socio-economic dimension.

    When I first came to MIT, it was to develop software in the Department of Architecture’s Design and Computation Group, with MIT professors Svafa Gronfeldt as co-advisor and Regina Barzilay as committee member. During my PhD, I studied machine-learning methods simulating pedestrian motion to understand how people move in space. In my work, I would use lots of plastics for 3D printing and I couldn’t stop thinking about sustainability and climate change, so I reached out to material science and mechanical engineering professors to look into biopolymers and degradable bio-based materials. This is how I met my co-founder, as we were both working with MIT Professor Neil Gershenfeld. Together, we were part of one of the first teams in the world to 3D print wood fibers, which is difficult — it’s slow and expensive — and quickly pivoted to sustainable packaging. 

    I then won a fellowship from MCSC [the MIT Climate and Sustainability Consortium], which gave me freedom to explore further, and I eventually got a postdoc in MIT chemical engineering, guided by MIT Professor Gregory Rutledge, a polymer physicist. This was unexpected in my career path. Winning Nucleate Eco Track 2022 and the MITdesignX Innovation Award in 2022 profiled Atacama Biomaterials as one of the rising startups in Boston’s biotechnology and climate-tech scene.

    Q: What is your process to develop new biomaterials?

    A: My PhD research, coupled with my background in material development and molecular dynamics, sparked the realization that principles I studied simulating pedestrian motion could also apply to molecular engineering. This connection may seem unconventional, but for me, it was a natural progression. Early in my career, I developed an intuition for materials, understanding their mechanics and physics.

    Using my experience and skills, and leveraging machine learning as a technology jump, I applied a similar conceptual framework to simulate the trajectories of molecules and find potential applications in biomaterials. Making that parallel and shift was amazing. It allowed me to optimize a state-of-the-art molecular dynamic software to run twice as fast as more traditional technologies through my algorithm presented at the International Conference of Machine Learning this year. This is very important, because this kind of simulation usually takes a week, so narrowing it down to two days has major implications for scientists and industry, in material science, chemical engineering, computer science and related fields. Such work greatly influenced the foundation of Atacama Biomaterials, where we developed our own AI to deploy our materials. In an effort to mitigate the environmental impact of manufacturing, Atacama is targeting a 16.7 percent reduction in carbon dioxide emissions associated with the manufacturing process of its polymers, through the use of renewable energy. 

    Another thing is that I was trained as an architect in Chile, and my degree had a design component. I think design allows me to understand problems at a very high level, and how things interconnect. It contributed to developing a holistic vision for Atacama, because it allowed me to jump from one technology or discipline to another and understand broader applications on a conceptual level. Our design approach also meant that sustainability came to the center of our work from the very beginning, not just a plus or an added cost.

    Q: What was the role of MITdesignX in Atacama’s development?

    A: I have known Svafa Grönfeldt, MITdesignX’s faculty director, for almost six years. She was the co-advisor of my PhD, and we had a mentor-mentee relationship. I admire the fact that she created a space for people interested in business and entrepreneurship to grow within the Department of Architecture. She and Executive Director Gilad Rosenzweig gave us fantastic advice, and we received significant support from mentors. For example, Daniel Tsai helped us with intellectual property, including a crucial patent for Atacama. And we’re still in touch with the rest of the cohort. I really like this “design your company” approach, which I find quite unique, because it gives us the opportunity to reflect on who we want to be as designers, technologists, and entrepreneurs. Studying user insights also allowed us to understand the broad applicability of our research, and align our vision with market demands, ultimately shaping Atacama into a company with a holistic perspective on sustainable material development.

    Q: How does Atacama approach scaling, and what are the immediate next steps for the company?

    A: When I think about accomplishing our vision, I feel really inspired by my 3-year-old daughter. I want her to experience a world with trees and wildlife when she’s 100 years old, and I hope Atacama will contribute to such a future.

    Going back to the designer’s perspective, we designed the whole process holistically, from feedstock to material development, incorporating AI and advanced manufacturing. Having proved that there is a demand for the materials we are developing, and having tested our products, manufacturing process, and technology in critical environments, we are now ready to scale. Our level of technology-readiness is comparable to the one used by NASA (level 4).

    We have proof of concept: a biodegradable and recyclable packaging material which is cost- and energy-efficient as a clean energy enabler in large-scale manufacturing. We have received pre-seed funding, and are sustainably scaling by taking advantage of available resources around the world, like repurposing machinery from the paper industry. As presented in the MIT Industrial Liaison and STEX Program’s recent Sustainability Conference, unlike our competitors, we have cost-parity with current packaging materials, as well as low-energy processes. And we also proved the demand for our products, which was an important milestone. Our next steps involve strategically expanding our manufacturing capabilities and research facilities and we are currently evaluating building a factory in Chile and establishing an R&D lab plus a manufacturing plant in the U.S. More

  • in

    A new way to swiftly eliminate micropollutants from water

    “Zwitterionic” might not be a word you come across every day, but for Professor Patrick Doyle of the MIT Department of Chemical Engineering, it’s a word that’s central to the technology his group is developing to remove micropollutants from water. Derived from the German word “zwitter,” meaning “hybrid,” “zwitterionic” molecules are those with an equal number of positive and negative charges.

    Devashish Gokhale, a PhD student in Doyle’s lab, uses the example of a magnet to describe zwitterionic materials. “On a magnet, you have a north pole and a south pole that stick to each other, and on a zwitterionic molecule, you have a positive charge and a negative charge which stick to each other in a similar way.” Because many inorganic micropollutants and some organic micropollutants are themselves charged, Doyle and his team have been investigating how to deploy zwitterionic molecules to capture micropollutants in water. 

    In a new paper in Nature Water, Doyle, Gokhale, and undergraduate student Andre Hamelberg explain how they use zwitterionic hydrogels to sustainably capture both organic and inorganic micropollutants from water with minimal operational complexity. In the past, zwitterionic molecules have been used as coatings on membranes for water treatment because of their non-fouling properties. But in the Doyle group’s system, zwitterionic molecules are used to form the scaffold material, or backbone within the hydrogel — a porous three-dimensional network of polymer chains that contains a significant amount of water. “Zwitterionic molecules have very strong attraction to water compared to other materials which are used to make hydrogels or polymers,” says Gokhale. What’s more, the positive and negative charges on zwitterionic molecules cause the hydrogels to have lower compressibility than what has been commonly observed in hydrogels. This makes for significantly more swollen, robust, and porous hydrogels, which is important for the scale up of the hydrogel-based system for water treatment.

    The early stages of this research were supported by a seed grant from MIT’s Abdul Latif Jameel Water and Food Systems Lab (J-WAFS). Doyle’s group is now pursuing commercialization of the platform for both at-home use and industrial scale applications, with support from a J-WAFS Solutions grant.

    Seeking a sustainable solution

    Micropollutants are chemically diverse materials that can be harmful to human health and the environment, even though they are typically found at low concentrations (micrograms to milligrams per liter) relative to conventional contaminants. Micropollutants can be organic or inorganic and can be naturally-occurring or synthetic. Organic micropollutants are mostly carbon-based molecules and include pesticides and per- and polyfluoroalkyl substances (PFAS), known as “forever chemicals.” Inorganic micropollutants, such as heavy metals like lead and arsenic, tend to be smaller than organic micropollutants. Unfortunately, both organic and inorganic micropollutants are pervasive in the environment.

    Many micropollutants come from industrial processes, but the effects of human-induced climate change are also contributing to the environmental spread of micropollutants. Gokhale explains that, in California, for example, fires burn plastic electrical cables and leech micropollutants into natural ecosystems. Doyle adds that “outside of climate change, things like pandemics can spike the number of organic micropollutants in the environment due to high concentrations of pharmaceuticals in wastewater.”

    It’s no surprise then, that over the past few years micropollutants have become more and more of a concern. These chemicals have garnered attention in the media and led to “significant change in the environmental engineering and regulatory landscape” says Gokhale. In March 2023, the U.S. Environmental Protection Agency (EPA) proposed a strict, federal standard that would regulate six different PFAS chemicals in drinking water. Just last October, the EPA proposed banning the micropollutant trichloroethylene, a cancer-causing chemical that can be found in brake cleaners and other consumer products. And as recently as November, the EPA proposed that water utilities nationwide be required to replace all of their lead pipes to protect the public from lead exposure. Internationally, Gokhale notes the Oslo Paris Convention, whose mission is to protect the marine environment of the northeast Atlantic Ocean, including phasing out the discharge of offshore chemicals from the oil and gas industries. 

    With each new, necessary regulation to protect the safety of our water resources, the need for effective water treatment processes grows. Compounding this challenge is the need to make water treatment processes that are sustainable and energy-efficient. 

    The benchmark method to treat micropollutants in water is activated carbon. However, making filters with activated carbon is energy-intensive, requiring very high temperatures in large, centralized facilities. Gokhale says approximately “four kilograms of coal are needed to make one kilogram of activated carbon, so you lose a significant amount of carbon dioxide to the environment.” According to the World Economic Forum, global water and wastewater treatment accounts for 5 percent of annual emissions. In the U.S. alone, the EPA reports that drinking water and wastewater systems account for over 45 million tons of greenhouse gas emissions annually.

    “We need to develop methods which have smaller climate footprints than methods which are being used industrially today,” says Gokhale.

    Supporting a “high-risk” project

    In September 2019, Doyle and his lab embarked on an initial project to develop a microparticle-based platform to remove a broad range of micropollutants from water. Doyle’s group had been using hydrogels in pharmaceutical processing to formulate drug molecules into pill format. When he learned about the J-WAFS seed grant opportunity for early-stage research in water and food systems, Doyle realized his pharmaceutical work with hydrogels could be applied to environmental issues like water treatment. “I would never have gotten funding for this project if I went to the NSF [National Science Foundation], because they would just say, ‘you’re not a water person.’ But the J-WAFS seed grant offered a way for a high-risk, high-reward kind of project,” Doyle says.

    In March 2022, Doyle, Gokhale, and MIT undergraduate Ian Chen published findings from the seed grant work, describing their use of micelles within hydrogels for water treatment. Micelles are spherical structures that form when molecules called surfactants (found in things like soap), come in contact with water or other liquids. The team was able to synthesize micelle-laden hydrogel particles that soak up micropollutants from water like a sponge. Unlike activated carbon, the hydrogel particle system is made from environmentally friendly materials. Furthermore, the system’s materials are made at room temperature, making them exceedingly more sustainable than activated carbon.

    Building off the success of the seed grant, Doyle and his team were awarded a J-WAFS Solutions grant in September 2022 to help move their technology from the lab to the market. With this support, the researchers have been able to build, test, and refine pilot-scale prototypes of their hydrogel platform. System iterations during the solutions grant period have included the use of the zwitterionic molecules, a novel advancement from the seed grant work.  

    Rapid elimination of micropollutants is of special importance in commercial water treatment processes, where there is a limited amount of time water can spend inside the operational filtration unit. This is referred to as contact time, explains Gokhale. In municipal-scale or industrial-scale water treatment systems, contact times are usually less than 20 minutes and can be as short as five minutes. 

    “But as people have been trying to target these emerging micropollutants of concern, they realized they can’t get to sufficiently low concentrations on the same time scales as conventional contaminants,” Gokhale says. “Most technologies focus only on specific molecules or specific classes of molecules. So, you have whole technologies which are focusing only on PFAS, and then you have other technologies for lead and metals. When you start thinking about removing all of these contaminants from water, you end up with designs which have a very large number of unit operations. And that’s an issue because you have plants which are in the middle of large cities, and they don’t necessarily have space to expand to increase their contact times to efficiently remove multiple micropollutants,” he adds.

    Since zwitterionic molecules possess unique properties that confer high porosity, the researchers have been able to engineer a system for quicker uptake of micropollutants from water. Tests show that the hydrogels can eliminate six chemically diverse micropollutants at least 10 times faster than commercial activated carbon. The system is also compatible with a diverse set of materials, making it multifunctional. Micropollutants can bind to many different sites within the hydrogel platform: organic micropollutants bind to the micelles or surfactants while inorganic micropollutants bind to the zwitterionic molecules. Micelles, surfactants, zwitterionic molecules, and other chelating agents can be swapped in and out to essentially tune the system with different functionalities based on the profile of the water being treated. This kind of “plug-and-play” addition of various functional agents does not require a change in the design or synthesis of the hydrogel platform, and adding more functionalities does not take away from existing functionality. In this way, the zwitterionic-based system can rapidly remove multiple contaminants at lower concentrations in a single step, without the need for large, industrial units or capital expenditure. 

    Perhaps most importantly, the particles in the Doyle group’s system can be regenerated and used over and over again. By simply soaking the particles in an ethanol bath, they can be washed of micropollutants for indefinite use without loss of efficacy. When activated carbon is used for water treatment, the activated carbon itself becomes contaminated with micropollutants and must be treated as toxic chemical waste and disposed of in special landfills. Over time, micropollutants in landfills will reenter the ecosystem, perpetuating the problem.

    Arjav Shah, a PhD-MBA candidate in MIT’s Department of Chemical Engineering and the MIT Sloan School of Management, respectively, recently joined the team to lead commercialization efforts. The team has found that the zwitterionic hydrogels could be used in several real-world contexts, ranging from large-scale industrial packed beds to small-scale, portable, off-grid applications — for example, in tablets that could clean water in a canteen — and they have begun piloting the technology through a number of commercialization programs at MIT and in the greater Boston area.

    The combined strengths of each member of the team continue to drive the project forward in impactful ways, including undergraduate students like Andre Hamelberg, the third author on the Nature Water paper. Hamelberg is a participant in MIT’s Undergraduate Research Opportunities Program (UROP). Gokhale, who is also a J-WAFS Fellow, provides training and mentorship to Hamelberg and other UROP students in the lab.

    “We see this as an educational opportunity,” says Gokhale, noting that the UROP students learn science and chemical engineering through the research they conduct in the lab. The J-WAFS project has also been “a way of getting undergrads interested in water treatment and the more sustainable aspects of chemical engineering,” Gokhale says. He adds that it’s “one of the few projects which goes all the way from designing specific chemistries to building small filters and units and scaling them up and commercializing them. It’s a really good learning opportunity for the undergrads and we’re always excited to have them work with us.”

    In four years, the technology has been able to grow from an initial idea to a technology with scalable, real-world applications, making it an exemplar J-WAFS project. The fruitful collaboration between J-WAFS and the Doyle lab serves as inspiration for any MIT faculty who may want to apply their research to water or food systems projects.

    “The J-WAFS project serves as a way to demystify what a chemical engineer does,” says Doyle. “I think that there’s an old idea of chemical engineering as working in just oil and gas. But modern chemical engineering is focused on things which make life and the environment better.” More

  • in

    MIT students win Beth Israel Deaconess Medical Center sustainability award

    MIT senior Anna Kwon and sophomore Nicole Doering have been recognized by Beth Israel Deaconess Medical Center (BIDMC) for their work as interns last summer. Both students received Jane Matlaw Environmental Champion Awards, which honor leaders and innovators who have catalyzed changes that align with BIDMC’s sustainability goals and foster a healthier future for staff and patients.

    The awards, which were established 25 years ago, had previously only been given to individuals and teams within BIDMC. “This year, given the significant leadership and alignment with our public commitments that Nicole and Anna had over the summer, our Sustainability Award Review Committee determined that we would include a student category of our awards for both a high school student and undergraduates as well,” says Avery Palardy, the climate and sustainability director at BIDMC.

    Kwon and Doering worked at BIDMC through the Social Impact Internship Program, one of many experiential learning opportunities offered by MIT’s Priscilla King Gray Center for Public Service. The program provides funded internships to students interested in working with government agencies, nonprofits, and social ventures.

    Both students conducted work that will help BIDMC meet two commitments to the Department of Health and Human Services Health Sector Climate Pledge: to develop a climate resilience plan for continuous operations by the end of 2023, and to conduct an inventory of its supply chain emissions by the end of 2024.

    “It was fun — a new challenge for me,” says Kwon, who is majoring in electrical engineering and computer science. “I have never done research in sustainability before. I was able to dive into the field of health care from a new angle, deepening my understanding of the complexities of environmental issues within health care.” Her internship involved performing data analysis related to carbon emissions. In addition, she developed actionable recommendations for conducting a comprehensive supply chain inventory.

    “Anna demonstrated unwavering diligence and attention to detail throughout her work to conduct a greenhouse gas inventory of our supply chain,” says Palardy. “She showcased exceptional skills in market research as she investigated best practices and emerging technologies to ensure that we stay at the forefront of sustainable practices. Her keen insights and forward-thinking approach have equipped us with valuable information for shaping our path forward on our sustainability goals.”

    Doering, a chemical engineering major, guided several departments in an internal assessment of best practices, vulnerabilities, and future directions to integrate climate resilience into the medical center’s operations. She has continued to work this fall to help finalize the climate resilience plan, and she has also been analyzing food procurement data to identify ways to reduce BIDMC’s Scope 3 emissions.

    Climate resilience isn’t an area of sustainability that Doering had considered before, but the internship experience has inspired her to continue pursuing other sustainability roles in the future. “I’m so thankful for all I’ve learned from BIDMC, so I’m really glad that my work was helpful to them. It is an honor that they trusted me to work with them on something that will have such a wonderful impact on our community,” she says.

    “The impact of Nicole’s contributions cannot be overstated,” notes Palardy. “From planning and organizing crucial focus groups to crafting our climate resilience plan, she played a pivotal role in shaping our climate resilience strategies for the better. I’m so grateful for the collaborative spirit, passion, and leadership that she brought to our team. She helped to drive innovation in health-care climate resilience that is necessary for us to ensure this continues to be a priority.” More

  • in

    Celebrating five years of MIT.nano

    There is vast opportunity for nanoscale innovation to transform the world in positive ways — expressed MIT.nano Director Vladimir Bulović as he posed two questions to attendees at the start of the inaugural Nano Summit: “Where are we heading? And what is the next big thing we can develop?”

    “The answer to that puts into perspective our main purpose — and that is to change the world,” Bulović, the Fariborz Maseeh Professor of Emerging Technologies, told an audience of more than 325 in-person and 150 virtual participants gathered for an exploration of nano-related research at MIT and a celebration of MIT.nano’s fifth anniversary.

    Over a decade ago, MIT embarked on a massive project for the ultra-small — building an advanced facility to support research at the nanoscale. Construction of MIT.nano in the heart of MIT’s campus, a process compared to assembling a ship in a bottle, began in 2015, and the facility launched in October 2018.

    Fast forward five years: MIT.nano now contains nearly 170 tools and instruments serving more than 1,200 trained researchers. These individuals come from over 300 principal investigator labs, representing more than 50 MIT departments, labs, and centers. The facility also serves external users from industry, other academic institutions, and over 130 startup and multinational companies.

    A cross section of these faculty and researchers joined industry partners and MIT community members to kick off the first Nano Summit, which is expected to become an annual flagship event for MIT.nano and its industry consortium. Held on Oct. 24, the inaugural conference was co-hosted by the MIT Industrial Liaison Program.

    Six topical sessions highlighted recent developments in quantum science and engineering, materials, advanced electronics, energy, biology, and immersive data technology. The Nano Summit also featured startup ventures and an art exhibition.

    Watch the videos here.

    Seeing and manipulating at the nanoscale — and beyond

    “We need to develop new ways of building the next generation of materials,” said Frances Ross, the TDK Professor in Materials Science and Engineering (DMSE). “We need to use electron microscopy to help us understand not only what the structure is after it’s built, but how it came to be. I think the next few years in this piece of the nano realm are going to be really amazing.”

    Speakers in the session “The Next Materials Revolution,” chaired by MIT.nano co-director for Characterization.nano and associate professor in DMSE James LeBeau, highlighted areas in which cutting-edge microscopy provides insights into the behavior of functional materials at the nanoscale, from anti-ferroelectrics to thin-film photovoltaics and 2D materials. They shared images and videos collected using the instruments in MIT.nano’s characterization suites, which were specifically designed and constructed to minimize mechanical-vibrational and electro-magnetic interference.

    Later, in the “Biology and Human Health” session chaired by Boris Magasanik Professor of Biology Thomas Schwartz, biologists echoed the materials scientists, stressing the importance of the ultra-quiet, low-vibration environment in Characterization.nano to obtain high-resolution images of biological structures.

    “Why is MIT.nano important for us?” asked Schwartz. “An important element of biology is to understand the structure of biology macromolecules. We want to get to an atomic resolution of these structures. CryoEM (cryo-electron microscopy) is an excellent method for this. In order to enable the resolution revolution, we had to get these instruments to MIT. For that, MIT.nano was fantastic.”

    Seychelle Vos, the Robert A. Swanson (1969) Career Development Professor of Life Sciences, shared CryoEM images from her lab’s work, followed by biology Associate Professor Joey Davis who spoke about image processing. When asked about the next stage for CryoEM, Davis said he’s most excited about in-situ tomography, noting that there are new instruments being designed that will improve the current labor-intensive process.

    To chart the future of energy, chemistry associate professor Yogi Surendranath is also using MIT.nano to see what is happening at the nanoscale in his research to use renewable electricity to change carbon dioxide into fuel.

    “MIT.nano has played an immense role, not only in facilitating our ability to make nanostructures, but also to understand nanostructures through advanced imaging capabilities,” said Surendranath. “I see a lot of the future of MIT.nano around the question of how nanostructures evolve and change under the conditions that are relevant to their function. The tools at MIT.nano can help us sort that out.”

    Tech transfer and quantum computing

    The “Advanced Electronics” session chaired by Jesús del Alamo, the Donner Professor of Science in the Department of Electrical Engineering and Computer Science (EECS), brought together industry partners and MIT faculty for a panel discussion on the future of semiconductors and microelectronics. “Excellence in innovation is not enough, we also need to be excellent in transferring these to the marketplace,” said del Alamo. On this point, panelists spoke about strengthening the industry-university connection, as well as the importance of collaborative research environments and of access to advanced facilities, such as MIT.nano, for these environments to thrive.

    The session came on the heels of a startup exhibit in which eleven START.nano companies presented their technologies in health, energy, climate, and virtual reality, among other topics. START.nano, MIT.nano’s hard-tech accelerator, provides participants use of MIT.nano’s facilities at a discounted rate and access to MIT’s startup ecosystem. The program aims to ease hard-tech startups’ transition from the lab to the marketplace, surviving common “valleys of death” as they move from idea to prototype to scaling up.

    When asked about the state of quantum computing in the “Quantum Science and Engineering” session, physics professor Aram Harrow related his response to these startup challenges. “There are quite a few valleys to cross — there are the technical valleys, and then also the commercial valleys.” He spoke about scaling superconducting qubits and qubits made of suspended trapped ions, and the need for more scalable architectures, which we have the ingredients for, he said, but putting everything together is quite challenging.

    Throughout the session, William Oliver, professor of physics and the Henry Ellis Warren (1894) Professor of Electrical Engineering and Computer Science, asked the panelists how MIT.nano can address challenges in assembly and scalability in quantum science.

    “To harness the power of students to innovate, you really need to allow them to get their hands dirty, try new things, try all their crazy ideas, before this goes into a foundry-level process,” responded Kevin O’Brien, associate professor in EECS. “That’s what my group has been working on at MIT.nano, building these superconducting quantum processors using the state-of-the art fabrication techniques in MIT.nano.”

    Connecting the digital to the physical

    In his reflections on the semiconductor industry, Douglas Carlson, senior vice president for technology at MACOM, stressed connecting the digital world to real-world application. Later, in the “Immersive Data Technology” session, MIT.nano associate director Brian Anthony explained how, at the MIT.nano Immersion Lab, researchers are doing just that.

    “We think about and facilitate work that has the human immersed between hardware, data, and experience,” said Anthony, principal research scientist in mechanical engineering. He spoke about using the capabilities of the Immersion Lab to apply immersive technologies to different areas — health, sports, performance, manufacturing, and education, among others. Speakers in this session gave specific examples in hardware, pediatric health, and opera.

    Anthony connected this third pillar of MIT.nano to the fab and characterization facilities, highlighting how the Immersion Lab supports work conducted in other parts of the building. The Immersion Lab’s strength, he said, is taking novel work being developed inside MIT.nano and bringing it up to the human scale to think about applications and uses.

    Artworks that are scientifically inspired

    The Nano Summit closed with a reception at MIT.nano where guests could explore the facility and gaze through the cleanroom windows, where users were actively conducting research. Attendees were encouraged to visit an exhibition on MIT.nano’s first- and second-floor galleries featuring work by students from the MIT Program in Art, Culture, and Technology (ACT) who were invited to utilize MIT.nano’s tool sets and environments as inspiration for art.

    In his closing remarks, Bulović reflected on the community of people who keep MIT.nano running and who are using the tools to advance their research. “Today we are celebrating the facility and all the work that has been done over the last five years to bring it to where it is today. It is there to function not just as a space, but as an essential part of MIT’s mission in research, innovation, and education. I hope that all of us here today take away a deep appreciation and admiration for those who are leading the journey into the nano age.” More

  • in

    Microbes could help reduce the need for chemical fertilizers

    Production of chemical fertilizers accounts for about 1.5 percent of the world’s greenhouse gas emissions. MIT chemists hope to help reduce that carbon footprint by replacing some chemical fertilizer with a more sustainable source — bacteria.

    Bacteria that can convert nitrogen gas to ammonia could not only provide nutrients that plants need, but also help regenerate soil and protect plants from pests. However, these bacteria are sensitive to heat and humidity, so it’s difficult to scale up their manufacture and ship them to farms.

    To overcome that obstacle, MIT chemical engineers have devised a metal-organic coating that protects bacterial cells from damage without impeding their growth or function. In a new study, they found that these coated bacteria improved the germination rate of a variety of seeds, including vegetables such as corn and bok choy.

    This coating could make it much easier for farmers to deploy microbes as fertilizers, says Ariel Furst, the Paul M. Cook Career Development Assistant Professor of Chemical Engineering at MIT and the senior author of the study.

    “We can protect them from the drying process, which would allow us to distribute them much more easily and with less cost because they’re a dried powder instead of in liquid,” she says. “They can also withstand heat up to 132 degrees Fahrenheit, which means that you wouldn’t have to use cold storage for these microbes.”

    Benjamin Burke ’23 and postdoc Gang Fan are the lead authors of the open-access paper, which appears in the Journal of the American Chemical Society Au. MIT undergraduate Pris Wasuwanich and Evan Moore ’23 are also authors of the study.

    Protecting microbes

    Chemical fertilizers are manufactured using an energy-intensive process known as Haber-Bosch, which uses extremely high pressures to combine nitrogen from the air with hydrogen to make ammonia.

    In addition to the significant carbon footprint of this process, another drawback to chemical fertilizers is that long-term use eventually depletes the nutrients in the soil. To help restore soil, some farmers have turned to “regenerative agriculture,” which uses a variety of strategies, including crop rotation and composting, to keep soil healthy. Nitrogen-fixing bacteria, which convert nitrogen gas to ammonia, can aid in this approach.

    Some farmers have already begun deploying these “microbial fertilizers,” growing them in large onsite fermenters before applying them to the soil. However, this is cost-prohibitive for many farmers.

    Shipping these bacteria to rural areas is not currently a viable option, because they are susceptible to heat damage. The microbes are also too delicate to survive the freeze-drying process that would make them easier to transport.

    To protect the microbes from both heat and freeze-drying, Furst decided to apply a coating called a metal-phenol network (MPN), which she has previously developed to encapsulate microbes for other uses, such as protecting therapeutic bacteria delivered to the digestive tract.

    The coatings contain two components — a metal and an organic compound called a polyphenol — that can self-assemble into a protective shell. The metals used for the coatings, including iron, manganese, aluminum, and zinc, are considered safe as food additives. Polyphenols, which are often found in plants, include molecules such as tannins and other antioxidants. The FDA classifies many of these polyphenols as GRAS (generally regarded as safe).

    “We are using these natural food-grade compounds that are known to have benefits on their own, and then they form these little suits of armor that protect the microbes,” Furst says.

    For this study, the researchers created 12 different MPNs and used them to encapsulate Pseudomonas chlororaphis, a nitrogen-fixing bacterium that also protects plants against harmful fungi and other pests. They found that all of the coatings protected the bacteria from temperatures up to 50 degrees Celsius (122 degrees Fahrenheit), and also from relative humidity up to 48 percent. The coatings also kept the microbes alive during the freeze-drying process.

    A boost for seeds

    Using microbes coated with the most effective MPN — a combination of manganese and a polyphenol called epigallocatechin gallate (EGCG) — the researchers tested their ability to help seeds germinate in a lab dish. They heated the coated microbes to 50 C before placing them in the dish, and compared them to fresh uncoated microbes and freeze-dried uncoated microbes.

    The researchers found that the coated microbes improved the seeds’ germination rate by 150 percent, compared to seeds treated with fresh, uncoated microbes. This result was consistent across several different types of seeds, including dill, corn, radishes, and bok choy.

    Furst has started a company called Seia Bio to commercialize the coated bacteria for large-scale use in regenerative agriculture. She hopes that the low cost of the manufacturing process will help make microbial fertilizers accessible to small-scale farmers who don’t have the fermenters needed to grow such microbes.

    “When we think about developing technology, we need to intentionally design it to be inexpensive and accessible, and that’s what this technology is. It would help democratize regenerative agriculture,” she says.

    The research was funded by the Army Research Office, a National Institutes of Health New Innovator Award, a National Institute for Environmental Health Sciences Core Center Grant, the CIFAR Azrieli Global Scholars Program, the MIT J-WAFS Program, the MIT Climate and Sustainability Consortium, and the MIT Deshpande Center. More

  • in

    The power of knowledge

    In his early career at MIT, Josh Kuffour’s academic interests spanned mathematics, engineering, and physics. He decided to major in chemical engineering, figuring it would draw on all three areas. Then, he found himself increasingly interested in the mathematical components of his studies and added a second major, applied mathematics.

    Now, with a double major and energy studies minor, Kuffour is still seeking to learn even more. He has made it a goal to take classes from as many different departments as he can before he graduates. So far, he has taken classes from 17 different departments, ranging from Civil and Environmental Engineering to Earth, Atmospheric, and Planetary Sciences to Linguistics and Philosophy.

    “It’s taught me about valuing different ways of thinking,” he says about this wide-ranging approach to the course catalog. “It’s also taught me to value blending disciplines as a whole. Learning about how other people think about the same problems from different perspectives allows for better solutions to be developed.”

    After graduation, Kuffour plans to pursue a master’s degree at MIT, either in the Technology and Policy Program or in the Department of Chemical Engineering. He intends to make renewable energy, and its role in addressing societal inequalities, the focus of his career after graduating, and eventually plans to become a teacher.

    Serving the public

    Recognizing the power of knowledge, Kuffour says he enjoys helping to educate others “in any way I can.” He is involved with several extracurriculars in which he can be a mentor for both peers and high school students.

    Kuffour has volunteered with the Educational Studies Program since his first semester at MIT. This club runs Splash, “a weekend-long learning extravaganza,” as Kuffour puts it, in which MIT students teach over 400 free classes on a huge variety of topics for local high school students.

    For his peers, Kuffour also participates in the Gordon Engineering Leadership Program (GEL). Here, he teaches first-year GEL students leadership skills that engineers may require in their future careers. In doing this, Kuffour says he develops his own leadership skills as well. He is also working as a teaching assistant for multivariable calculus this semester.

    Kuffour has also served as an advisor for the Concourse learning community; as president of his fraternity, Beta Theta Pi; as a student representative on the HASS requirement subcommittee; and as a publicist for the Reason for God series, which invites the MIT community to discuss the intersections of religion with various facets of human life.

    Renewable energy

    Kuffour’s interest in energy issues has grown and evolved in recent years. He first learned about the ecological condition of the world in the eighth grade after watching the climate change documentary “Earth 2100” in school. Going into high school and college, Kuffour says he started reading books, taking classes, watching documentaries, participating in beach and city clean ups, to learn as much as possible about the environment and      global warming.

    During the summer of 2023, Kuffour worked as an energy and climate analysis intern for the consulting company Keylogic and has continued helping the company shift programming languages to Python for evaluating the economics of different methods of decarbonizing electricity sectors in the U.S. He has also assisted in analyzing trends in U.S. natural gas imports, exports, production, and consumption since the early 2000s.            

    In his time as an undergraduate, Kuffour’s interest in renewable energy has taken on a more justice-focused perspective. He’s learned over the course of his that due to historical inequalities in the U.S., pollution and other environmental problems have disproportionately impacted people of lower economic status and people of color. Since global warming will exacerbate these impacts, Kuffour seeks to address these growing inequalities through his work in energy data analysis.        

    Translating interests into activity

    Kuffour’s pursuit to expand his worldview never rests, even outside of the classroom. In his free time, he enjoys listening to podcasts or watching documentaries on any subject. When attempting to list all his favorite podcasts, he cuts himself off, saying, “This could go on for a while.”

    In 2022, Kuffour participated on a whim with a group of friends in an American Institute of Chemical Engineers competition, where he was tasked with creating a 1-by-1 foot cube that could filter water to specifications provided by the competition. He says it was fun to apply what he was learning at MIT to a project all the way in Arizona. 

    Kuffour enjoys discovering new things with friends as much as on his own. Three years ago, he started an intramural soccer team with friends from the Interphase EDGE program, which attracted many people he had never interacted with before. The team has been playing nearly every week since and Kuffour says the experience has been, “very enriching.”

    Kuffour hopes other students will also seek out knowledge and experiences from a wide range of sources during their undergraduate years. He offers: “Try as many things as possible even if you think you know what you want to do, and appreciate everything life has to offer.” More

  • in

    Ayomikun Ayodeji ’22 named a 2024 Rhodes Scholar

    Ayomikun “Ayo” Ayodeji ’22 from Lagos, Nigeria, has been selected as a Rhodes Scholar for West Africa. He will begin fully funded postgraduate studies at Oxford University in the U.K. next fall.

    Ayodeji was supported by Associate Dean Kim Benard and the Distinguished Fellowships team in Career Advising and Professional Development, and received additional mentorship from the Presidential Committee on Distinguished Fellowships.

    “Ayo has worked hard to develop his vision and to express it in ways that will capture the imagination of the broader world. It is a thrill to see him recognized this year as a Rhodes Scholar,” says Professor Nancy Kanwisher, who co-chairs the committee along with Professor Will Broadhead.

    Ayodeji graduated from MIT in 2022 with BS degrees in chemical engineering and management. He is currently an associate at Boston Consulting Group.

    He is passionate about championing reliable energy access across the African landscape and fostering culturally inclusive communities. As a Rhodes Scholar, he will pursue an MSc in energy systems and an MSc in global governance and diplomacy.

    During his time at MIT, Ayodeji’s curiosity for energy innovations was fueled by his research on perovskite solar cells under the MIT Energy Initiative. He then went on to intern at Pioneer Natural Resources where he explored the boundless applications of machine learning tools in completions. At BCG, Ayodeji supports both public and private sector clients on a variety of renewable energy topics including clean energy transition, decarbonization roadmaps, and workforce development.

    Ayodeji’s community-oriented mindset led him to team up with a group of friends and partner with the Northeast Children’s Trust (NECT), an organization that helps children affected by the Boko Haram insurgency in northeastern Nigeria. The project, sponsored by Davis Projects for Peace and MIT’s PKG Center, expanded NECT’s programs via an offline, portable classroom server.

    Ayodeji served as an undergraduate representative on the MIT Department of Chemical Engineering’s Diversity, Equity, and Inclusion Committee. He was also vice president of the MIT African Students’ Association and a coordinator for the annual MIT International Students Orientation. More