More stories

  • in

    Seeing the plasma edge of fusion experiments in new ways with artificial intelligence

    To make fusion energy a viable resource for the world’s energy grid, researchers need to understand the turbulent motion of plasmas: a mix of ions and electrons swirling around in reactor vessels. The plasma particles, following magnetic field lines in toroidal chambers known as tokamaks, must be confined long enough for fusion devices to produce significant gains in net energy, a challenge when the hot edge of the plasma (over 1 million degrees Celsius) is just centimeters away from the much cooler solid walls of the vessel.

    Abhilash Mathews, a PhD candidate in the Department of Nuclear Science and Engineering working at MIT’s Plasma Science and Fusion Center (PSFC), believes this plasma edge to be a particularly rich source of unanswered questions. A turbulent boundary, it is central to understanding plasma confinement, fueling, and the potentially damaging heat fluxes that can strike material surfaces — factors that impact fusion reactor designs.

    To better understand edge conditions, scientists focus on modeling turbulence at this boundary using numerical simulations that will help predict the plasma’s behavior. However, “first principles” simulations of this region are among the most challenging and time-consuming computations in fusion research. Progress could be accelerated if researchers could develop “reduced” computer models that run much faster, but with quantified levels of accuracy.

    For decades, tokamak physicists have regularly used a reduced “two-fluid theory” rather than higher-fidelity models to simulate boundary plasmas in experiment, despite uncertainty about accuracy. In a pair of recent publications, Mathews begins directly testing the accuracy of this reduced plasma turbulence model in a new way: he combines physics with machine learning.

    “A successful theory is supposed to predict what you’re going to observe,” explains Mathews, “for example, the temperature, the density, the electric potential, the flows. And it’s the relationships between these variables that fundamentally define a turbulence theory. What our work essentially examines is the dynamic relationship between two of these variables: the turbulent electric field and the electron pressure.”

    In the first paper, published in Physical Review E, Mathews employs a novel deep-learning technique that uses artificial neural networks to build representations of the equations governing the reduced fluid theory. With this framework, he demonstrates a way to compute the turbulent electric field from an electron pressure fluctuation in the plasma consistent with the reduced fluid theory. Models commonly used to relate the electric field to pressure break down when applied to turbulent plasmas, but this one is robust even to noisy pressure measurements.

    In the second paper, published in Physics of Plasmas, Mathews further investigates this connection, contrasting it against higher-fidelity turbulence simulations. This first-of-its-kind comparison of turbulence across models has previously been difficult — if not impossible — to evaluate precisely. Mathews finds that in plasmas relevant to existing fusion devices, the reduced fluid model’s predicted turbulent fields are consistent with high-fidelity calculations. In this sense, the reduced turbulence theory works. But to fully validate it, “one should check every connection between every variable,” says Mathews.

    Mathews’ advisor, Principal Research Scientist Jerry Hughes, notes that plasma turbulence is notoriously difficult to simulate, more so than the familiar turbulence seen in air and water. “This work shows that, under the right set of conditions, physics-informed machine-learning techniques can paint a very full picture of the rapidly fluctuating edge plasma, beginning from a limited set of observations. I’m excited to see how we can apply this to new experiments, in which we essentially never observe every quantity we want.”

    These physics-informed deep-learning methods pave new ways in testing old theories and expanding what can be observed from new experiments. David Hatch, a research scientist at the Institute for Fusion Studies at the University of Texas at Austin, believes these applications are the start of a promising new technique.

    “Abhi’s work is a major achievement with the potential for broad application,” he says. “For example, given limited diagnostic measurements of a specific plasma quantity, physics-informed machine learning could infer additional plasma quantities in a nearby domain, thereby augmenting the information provided by a given diagnostic. The technique also opens new strategies for model validation.”

    Mathews sees exciting research ahead.

    “Translating these techniques into fusion experiments for real edge plasmas is one goal we have in sight, and work is currently underway,” he says. “But this is just the beginning.”

    Mathews was supported in this work by the Manson Benedict Fellowship, Natural Sciences and Engineering Research Council of Canada, and U.S. Department of Energy Office of Science under the Fusion Energy Sciences program.​ More

  • in

    MIT students explore food sustainability

    As students approached the homestretch of the fall semester, many were focused on completing final projects and preparing for exams. During this time of year, some students may neglect their well-being to the point of skipping meals. To help alleviate end-of-term stress and to give students a delicious study break, the Food Security Action Team recently offered a group of first-year students the opportunity to join a food tour of Daily Table, a new grocer located in Cambridge’s Central Square.

    Seventeen students along with staff from Student Financial Services, Office of the First Year, and the Office of Sustainability led the group from the steps of 77 Massachusetts Avenue a few blocks down the street to Daily Table in Central Square. As part of participating in the program, students were given a $25 TechCash gift card to shop for grocery items during the trip. To make things even more fun, MIT staff created a recipe challenge to encourage students to work together on making their own variation of quesadillas.

    Healthy, affordable, sustainable

    At Daily Table, students were greeted by Celia Grant, director of community engagement and programs from Daily Table, who led them through a tour of the space and highlighted the history and model of the grocery store, as well as some of its unique features. Founded by former Trader Joe’s president Doug Rauch in 2015, Daily Table operates three retail stores in Dorchester, Roxbury, and Central Square, and a commissary kitchen in the Boston metro area. Two more stores are in the works: one in Mattapan and another in Salem. For added convenience, Daily Table also offers free grocery delivery within a two-mile radius of its three locations.

    The Daily Table’s ethos is that delicious and wholesome food should be available, accessible, and affordable for everyone. To achieve these goals, Daily Table provides a wide selection of fresh produce, nutritious grocery staples, and made-from-scratch prepared grab-n-go foods at affordable prices. “All of our products meet strict nutritional guidelines for sodium and sugar so that customers can make food choices based on their diets, not based on price,” says Grant.

    In addition to a large network of farmers, manufacturers, and distributors who supply food to their stores, Daily Table often recovers and rescues perfectly good food that would have otherwise been sent to landfills. Surplus food, packaging and/or label changes, and items with close expiration dates are often discarded by larger grocery stores in the supply chain. But Daily Table steps in to break this cycle of waste and sell these products to customers at a much lower cost. 

    The pandemic has uncovered how difficult it can be for individuals and families to budget for necessities like utilities, rent, and even food. Daily Table seeks to create a more sustainable future by providing access to more well-balanced, nutritious food. “Even before the pandemic, it was challenging for families on limited incomes to meet the nutrition needs of their families. Post-pandemic, this challenge has now encompassed even more households, even those that have never before been challenged in this way,” says Grant. “As winter moves through, and inflation increases, the need for more affordable food and nutrition will rise. Daily Table is prepared to help meet those needs, and more.” 

    Food resources at MIT

    Downstairs at the Daily Table Central Square store, MIT staff members led a discussion about the components of a sustainable food system at MIT and beyond, shared advice on how to budget for food, and offered tips on how to make grocery shopping or cooking fun with fellow classmates and peers. “Shopping at Daily Table provides an experiential case study in solving for multiple goals at once — from the environmental impacts of food waste to healthy eating to affordability — an important framework to consider when tackling climate challenges.” says Susy Jones, senior sustainability project manager in the MIT Office of Sustainability.

    The group also discussed budgeting expenses, including food. “By taking students to the grocery store and providing some small but meaningful tips, we provided them the opportunity to put their learning into practice!” says Erica Aguiar, associate director for financial education in Student Financial Services. “We saw students taking a closer look at prices and even coming together to share groceries.”

    MIT senior and DormCon Dining Chair Ashley Holton shared her grocery shopping strategies with the group, and how she utilizes resources available at MIT. “Having a plan before you enter the grocery store is really important,” says Holton. “Not only does it save time, but it helps you avoid potentially getting more than what your budget allows for, while also making sure you get all the food you’ll need.”

    This program, along with many others, is part of MIT’s larger effort on fostering a more food-secure and sustainable campus for all students. Food Security Action Team members, including students, staff, and campus partners, are striving to achieve this goal by ensuring that there continues to be a well-organized and coordinated action around food security that can be implemented effectively each year. For example, to make shopping at Daily Table even easier, MIT has made it a priority to ensure the store accepts TechCash.

    No MIT student should go hungry due to lack of money or resources, and no student should feel like they need to be “really hungry” to ask for help. MIT offers several other resources to help students find the nutrition and other support they need. In addition, the Office of Student Wellbeing launched their DoingWell website, which offers programs and resources to help students prioritize their well-being by practicing healthy habits and getting support when they need it.

    “In my own cost-analysis comparison of staple grocery items of all the local grocery stores, no other store comes close to being able to offer what Daily Table does for the prices it does. It’s really remarkable to learn and experience just how Daily Table is changing the food system,” says Holton. “Its model is one of the many ways that will continue to foster a more food-secure community where everyone — including MIT students — can access affordable, nutritious food.” More

  • in

    Meet the 2021-22 Accenture Fellows

    Launched in October of 2020, the MIT and Accenture Convergence Initiative for Industry and Technology underscores the ways in which industry and technology come together to spur innovation. The five-year initiative aims to achieve its mission through research, education, and fellowships. To that end, Accenture has once again awarded five annual fellowships to MIT graduate students working on research in industry and technology convergence who are underrepresented, including by race, ethnicity, and gender.

    This year’s Accenture Fellows work across disciplines including robotics, manufacturing, artificial intelligence, and biomedicine. Their research covers a wide array of subjects, including: advancing manufacturing through computational design, with the potential to benefit global vaccine production; designing low-energy robotics for both consumer electronics and the aerospace industry; developing robotics and machine learning systems that may aid the elderly in their homes; and creating ingestible biomedical devices that can help gather medical data from inside a patient’s body.

    Student nominations from each unit within the School of Engineering, as well as from the four other MIT schools and the MIT Schwarzman College of Computing, were invited as part of the application process. Five exceptional students were selected as fellows in the initiative’s second year.

    Xinming (Lily) Liu is a PhD student in operations research at MIT Sloan School of Management. Her work is focused on behavioral and data-driven operations for social good, incorporating human behaviors into traditional optimization models, designing incentives, and analyzing real-world data. Her current research looks at the convergence of social media, digital platforms, and agriculture, with particular attention to expanding technological equity and economic opportunity in developing countries. Liu earned her BS from Cornell University, with a double major in operations research and computer science.

    Caris Moses is a PhD student in electrical engineering and computer science specializing inartificial intelligence. Moses’ research focuses on using machine learning, optimization, and electromechanical engineering to build robotics systems that are robust, flexible, intelligent, and can learn on the job. The technology she is developing holds promise for industries including flexible, small-batch manufacturing; robots to assist the elderly in their households; and warehouse management and fulfillment. Moses earned her BS in mechanical engineering from Cornell University and her MS in computer science from Northeastern University.

    Sergio Rodriguez Aponte is a PhD student in biological engineering. He is working on the convergence of computational design and manufacturing practices, which have the potential to impact industries such as biopharmaceuticals, food, and wellness/nutrition. His current research aims to develop strategies for applying computational tools, such as multiscale modeling and machine learning, to the design and production of manufacturable and accessible vaccine candidates that could eventually be available globally. Rodriguez Aponte earned his BS in industrial biotechnology from the University of Puerto Rico at Mayaguez.

    Soumya Sudhakar SM ’20 is a PhD student in aeronautics and astronautics. Her work is focused on theco-design of new algorithms and integrated circuits for autonomous low-energy robotics that could have novel applications in aerospace and consumer electronics. Her contributions bring together the emerging robotics industry, integrated circuits industry, aerospace industry, and consumer electronics industry. Sudhakar earned her BSE in mechanical and aerospace engineering from Princeton University and her MS in aeronautics and astronautics from MIT.

    So-Yoon Yang is a PhD student in electrical engineering and computer science. Her work on the development of low-power, wireless, ingestible biomedical devices for health care is at the intersection of the medical device, integrated circuit, artificial intelligence, and pharmaceutical fields. Currently, the majority of wireless biomedical devices can only provide a limited range of medical data measured from outside the body. Ingestible devices hold promise for the next generation of personal health care because they do not require surgical implantation, can be useful for detecting physiological and pathophysiological signals, and can also function as therapeutic alternatives when treatment cannot be done externally. Yang earned her BS in electrical and computer engineering from Seoul National University in South Korea and her MS in electrical engineering from Caltech. More

  • in

    Helping to make nuclear fusion a reality

    Up until she served in the Peace Corps in Malawi, Rachel Bielajew was open to a career reboot. Having studied nuclear engineering as an undergraduate at the University of Michigan at Ann Arbor, graduate school had been on her mind. But seeing the drastic impacts of climate change play out in real-time in Malawi — the lives of the country’s subsistence farmers swing wildly, depending on the rains — convinced Bielajew of the importance of nuclear engineering. Bielajew was struck that her high school students in the small town of Chisenga had a shaky understanding of math, but universally understood global warming. “The concept of the changing world due to human impact was evident, and they could see it,” Bielajew says.

    Bielajew was looking to work on solutions that could positively impact global problems and feed her love of physics. Nuclear engineering, especially the study of fusion as a carbon-free energy source, checked off both boxes. Bielajew is now a fourth-year doctoral candidate in the Department of Nuclear Science and Engineering (NSE). She researches magnetic confinement fusion in the Plasma Science and Fusion Center (PSFC) with Professor Anne White.

    Researching fusion’s big challenge

    You need to confine plasma effectively in order to generate the extremely high temperatures (100 million degrees Celsius) fusion needs, without melting the walls of the tokamak, the device that hosts these reactions. Magnets can do the job, but “plasmas are weird, they behave strangely and are challenging to understand,” Bielajew says. Small instabilities in plasma can coalesce into fluctuating turbulence that can drive heat and particles out of the machine.

    In high-confinement mode, the edges of the plasma have less tolerance for such unruly behavior. “The turbulence gets damped out and sheared apart at the edge,” Bielajew says. This might seem like a good thing, but high-confinement plasmas have their own challenges. They are so tightly bound that they create edge-localized modes (ELMs), bursts of damaging particles and energy, that can be extremely damaging to the machine.

    The questions Bielajew is looking to answer: How do we get high confinement without ELMs? How do turbulence and transport play a role in plasmas? “We do not fully understand turbulence, even though we have studied it for a long time,” Bielajew says, “It is a big and important problem to solve for fusion to be a reality. I like that challenge,” Bielajew adds.

    A love of science

    Confronting such challenges head-on has been part of Bielajew’s toolkit since she was a child growing up in Ann Arbor, Michigan. Her father, Alex Bielajew, is a professor of nuclear engineering at the University of Michigan, and Bielajew’s mother also pursued graduate studies.

    Bielajew’s parents encouraged her to follow her own path and she found it led to her father’s chosen profession: nuclear engineering. Once she decided to pursue research in fusion, MIT stood out as a school she could set her sights on. “I knew that MIT had an extensive program in fusion and a lot of faculty in the field,” Bielajew says. The mechanics of the application were challenging: Chisenga had limited internet access, so Bielajew had to ride on the back of a pickup truck to meet a friend in a city a few hours away and use his phone as a hotspot to send the documents.

    A similar tenacity has surfaced in Bielajew’s approach to research during the Covid-19 pandemic. Working off a blueprint, Bielajew built the Correlation Cyclotron Emission Diagnostic, which measures turbulent electron temperature fluctuations. Through a collaboration, Bielajew conducts her plasma research at the ASDEX Upgrade tokamak in Germany. Traditionally, Bielajew would ship the diagnostic to Germany, follow and install it, and conduct the research in person. The pandemic threw a wrench in the plans, so Bielajew shipped the diagnostic and relied on team members to install it. She Zooms into the control room and trusts others to run the plasma experiments.

    DEI advocate

    Bielajew is very hands-on with another endeavor: improving diversity, equity, and inclusion (DEI) in her own backyard. Having grown up with parental encouragement and in an environment that never doubted her place as a woman in engineering, Bielajew realizes not everyone has the same opportunities. “I wish that the world was in a place where all I had to do was care about my research, but it’s not,” Bielajew says. While science can solve many problems, more fundamental ones about equity need humans to act in specific ways, she points out. “I want to see more women represented, more people of color. Everyone needs a voice in building a better world,” Bielajew says.

    To get there, Bielajew co-launched NSE’s Graduate Application Assistance Program, which connects underrepresented student applicants with NSE mentors. She has been the DEI officer with NSE’s student group, ANS, and is very involved in the department’s DEI committee.

    As for future research, Bielajew hopes to concentrate on the experiments that make her question existing paradigms about plasmas under high confinement. Bielajew has registered more head-scratching “hmm” moments than “a-ha” ones. Measurements from her experiments drive the need for more intensive study.

    Bielajew’s dogs, Dobby and Winky, keep her company through it all. They came home with her from Malawi. More

  • in

    MIT community in 2021: A year in review

    During 2021, the Covid-19 pandemic continued to color much of the year, as MIT saw both the promise of vaccines as well as the rise of troubling new variants. The Institute also made new commitments to climate action, saw the opening of new and renovated spaces, continued in its efforts to support its diverse voices, and celebrated new Nobel laureates and astronaut candidates. Here are some of the top stories in the MIT community this year.

    Continuing to work through CovidVaccines became widely available to the MIT community early in the year — thanks, in significant part, to the ingenuity of MIT scientists and engineers. In response, the Institute developed a policy requiring vaccination for most members of the community and planned a return to fully in-person teaching and working at MIT for the fall 2021 semester.

    With copious protections in place, the fall semester in many ways embodied MIT’s resilience: In-person teaching expanded, staff returned with new flexible arrangements, and community spirit lifted as face-to-face meetings became possible in many cases once again. Some annual traditions, such as Commencement, stayed remote, while others, like the outdoor Great Glass Pumpkin Patch, and 2.009 grand finale, returned, adding smiles and a sense of gratitude among community members.Melissa Nobles appointed chancellor

    In August, Melissa Nobles, the former Kenin Sahin Dean of the MIT School of Humanities, Arts, and Social Sciences, became the Institute’s new chancellor. A political scientist, Nobles succeeded Cynthia Barnhart, who returned to research and teaching after seven years as chancellor.

    In other news related to MIT’s top administration, Martin Schmidt announced in November that after 40 years at MIT, he plans to step down as provost to become the next president of Rensselaer Polytechnic Institute, his alma mater.

    New climate action plan

    MIT unveiled a new action plan to tackle the climate crisis, committing to net-zero emissions by 2026 and charting a course marshaling all of MIT’s capabilities toward decarbonization. The plan includes a broad array of new initiatives and significant expansions of existing programs to address the needs for new technologies, new policies, and new kinds of outreach to bring the Institute’s expertise to bear on this critical global issue.

    In November, a delegation from MIT also traveled to Scotland for COP26, the 2021 United Nations climate change conference, where international negotiators sought to keep global climate goals on track. Approximately 20 MIT faculty, staff, and students were on hand to observe the negotiations, share and conduct research, and launch new initiatives.

    MIT and Harvard transfer edX

    MIT and Harvard University announced in June that assets of edX, the nonprofit they launched in 2012 to provide an open online platform for university courses, would be acquired by the publicly-traded education technology company 2U, and reorganized as a public benefit company under the 2U umbrella. In exchange, 2U was set to transfer net proceeds from the $800 million transaction to a nonprofit organization, also led by MIT and Harvard, to explore the next generation of online education.

    Supporting our diverse communityAs an important step forward in MIT’s ongoing efforts to create a more welcoming and inclusive community, the Institute hired six new assistant deans, one in each school and in the MIT Schwarzman College of Computing, to serve as diversity, equity, and inclusion professionals. In addition, this week Institute Community and Equity Officer John Dozier provided an update on the Strategic Action Plan for Diversity, Equity, and Inclusion, the first draft of which was released in March.

    A community discussion also examined the complexities of Asian American and Pacific Islander identity and acceptance at MIT, while underscoring the need for collaborative work among groups to combat prejudice and create equity. The forum was held amid a string of violent assaults on Asian Americans in the U.S., which raised public awareness about anti-Asian discrimination. Meanwhile, Professor Emma Teng provided historic context for the crisis.

    Three with MIT ties win Nobel PrizesProfessor Joshua Angrist, whose influential work has enhanced rigorous empirical research in economics, shared half of the 2021 Nobel Prize in economic sciences with Guido Imbens of the Stanford Graduate School of Business; the other half went to David Card of the University of California at Berkeley.

    In addition, David Julius ’77, a professor at the University of California at San Francisco, shared the 2021 Nobel Prize in Physiology or Medicine with Ardem Patapoutian, a professor at the Scripps Research Institute, for their discoveries in how the body senses touch and temperature. And Maria Ressa, a journalist in the Philippines and digital fellow at the MIT Initiative on the Digital Economy, shared the 2021 Nobel Peace Prize with journalist Dmitry Muratov of Russia.

    National STEM leadersBefore taking office in January, President Joe Biden selected two MIT faculty leaders for top science and technology posts in his administration. Eric Lander, director of the Broad Institute and professor of biology, was named presidential science advisor and director of the Office of Science and Technology Policy. Maria Zuber, vice president for research and professor of earth, atmospheric, and planetary sciences, was named co-chair of the President’s Council of Advisors on Science and Technology (PCAST), along with Caltech chemical engineer Frances Arnold — the first women ever to co-chair PCAST.

    Paula Hammond, head of the Department of Chemical Engineering, was also chosen to serve as a member of PCAST. Earlier in the year, Hammond, along with chemical engineer Arup Chakraborty, was named an Institute Professor, the highest honor bestowed upon MIT faculty.

    Task Force 2021 final report

    MIT’s Task Force 2021 and Beyond, charged with reimagining the future of MIT, released its final report, 18 months after it began work in the shadow of the Covid-19 pandemic. The report offers 17 recommendations to strengthen and streamline MIT, and make the Institute more successful across its teaching, research, and innovation endeavors. In addition to a providing a substantive list of recommendations, the report suggests routes to implementation, and assigns one or more senior leaders or faculty governance committees with oversight, for every idea presented.

    Newly opened or reopened

    A number of facilities, new or newly redesigned, opened in 2021. These included a new MIT Welcome Center in Kendall Square; the new InnovationHQ, a hub for MIT entrepreneurship; the newly renovated and reimagined Hayden Library and courtyard; and the new MIT Press Bookstore. Two new student residences also opened, and the community welcomed programming from the Institute’s new outdoor open space.

    Students win an impressive number of distinguished fellowshipsAs always, MIT students continued to shine. This year, exceptional undergraduates were awarded Fulbright, Marshall, Mitchell, Rhodes, and Schwarzman scholarships.

    Remembering those we’ve lostAmong community members who died this year were William Dalzell, Sergio Dominguez, Gene Dresselhaus, Sow Hsin-Chen, Ronald Kurtz, Paul Lagacé, Shirley McBay, ChoKyun Rha, George Shultz, Isadore Singer, James Swan, and Jing Wang. A longer list of 2021 obituaries is available on MIT News.

    In Case You Missed It… 

    Additional top community stories of 2021 included NASA’s selection of three new alumni astronaut candidates; the announcement of the 2021 MIT Solve Global Challenges; the successful conclusion of the MIT Campaign for a Better World; a win for MIT in the American Solar Challenge; a look at chess at the Institute; a roundup of new books from MIT authors; and the introduction of STEM-focused young-adult graphic fiction from the MIT Press. More

  • in

    Expanding the conversation about sustainability

    Stacy Godfreey-Igwe sat in her dorm room at MIT, staring frantically at her phone. An unprecedented snowstorm had hit her hometown of Richardson, Texas, and she was having difficulty contacting her family. She felt worried and frustrated, aware that nearby neighborhoods hadn’t lost power during the storm but that her family home had suffered significant damage. She finally got a hold of her parents, who had taken refuge in a nearby office building, but the experience left her shaken and more determined than ever to devote herself to addressing climate injustice.

    Godfreey-Igwe, the daughter of Nigerian immigrants, has long been concerned about how marginalized communities can shoulder a disproportionately heavy environmental burden. At MIT, she chose a double major in mechanical engineering with a concentration in global and sustainable development, and in African and African diaspora studies, a major she helped establish and became the first student to declare. Initially seeing the two fields as separate, she now embraces their intersectionality in her work in and out of the classroom.

    Through an Undergraduate Research Opportunity Program (UROP) project with Amah Edoh, the Homer A. Burnell Assistant Professor of Anthropology and African Studies at MIT, Godfreey-Igwe has learned more about her Igbo cultural heritage and hopes to understand what the future of climate change poses for the culture’s sustainability. Godfreey-Igwe herself is the “Ada” – or eldest child – in her family, a role that carries a responsibility for keeping her family’s culture alive. That sense of responsibility, to her community and to future generations, has stayed with her at MIT.

    For Independent Activities Period during her first year at the Institute, Godfreey-Igwe traveled to Kazakhstan through MIT’s Global Teaching Labs. As a student teacher, she taught Kazakh high school chemistry students about polymers and the impact plastic materials can have on the Earth’s climate. She was also an MIT International Science and Technology Initiatives (MISTI) Identity X Ambassador during her time there, blogging about her experiences as a Black woman in the country. She saw the role as an opportunity to shed light on the challenges of navigating her identity abroad, with hopes of fostering community through her posts.

    The following summer, Godfreey-Igwe interned for the Saathi Biodegradable Sanitary Napkins Startup in Ahmedabad, India. During her time there, she researched and wrote articles focused on educating the public about the benefits eco-friendly sanitary pads posed to public health and the environment. She also interviewed a director for the city’s Center for Environmental Education, about the importance of uplifting and supporting marginalized communities hit hardest by climate change. The conversation was eye-opening for Godfreey-Igwe; she saw not only how complex the process of mitigating climate change was, but also how diverse the solutions needed to be.

    She has also pursued her interest in plastics and sustainability through summer research projects. In of the summer of 2020, Godfreey-Igwe worked under a lab in Stanford University’s civil and environmental engineering department to create and design models maximizing the efficiency of bacterial processes leading to the creation of bioplastics. The project’s goal was to find a sustainable form of plastic breakdown for future applications in the environment.  She presented her research at the Harvard National Collegiate Research Conference and received a presentation award during the MIT Mechanical Engineering Research Exhibition. This past summer, she was awarded a grant through the NSF Center for Sustainable Polymers at the University of Minnesota to work on a research project seeking to understand microplastic generation.

    Ultimately, Godfreey-Igwe recognizes that to propose thoughtful solutions to climate issues, the people hit hardest must be a part of the conversation. For her, a key way to bring more people into conversations about sustainability and inclusion is through mentorship. This role is especially meaningful to Godfreey-Igwe because she knows firsthand how important for members of underrepresented groups to feel supported at a place like MIT. “The experience of coming to an institution like MIT, as someone who is low-income or of color, can be isolating. Especially if you feel like there are people who can’t relate to your background,” she says.

    Godfreey-Igwe is a member of Active Community Engagement FPOP (ACE), a social action group on campus that engages with local communities through public service work. Initially joining as a participant, Godfreey-Igwe became a counselor and then coordinator; she facilitates social action workshops and introduces students to service opportunities both at MIT and around Boston. She says her time in ACE has helped build her confidence in her abilities as a leader, mentor, and cultivator of inclusionary spaces. She is also a member of iHouse (International Development House), where she served for three years as the housing and service co-chair.

    Godfreey-Igwe also tutors one-on-one for Tutoring Plus in Cambridge, where since her first year she has provided mentorship and STEM tutoring to a low-income, high school student of color. Last spring, she was awarded the Tutoring Plus of Cambridge Unwavering Service Award for her service and commitment to the program.

    Looking ahead, Godfreey-Igwe hopes to use the skills learned from her mentorship and leadership roles to establish greater structures for collaboration on climate mitigation technologies, ideas, and practices. Focusing on mentoring young scientists of color, she wants to build up underprivileged groups and institutions for sustainable climate change research, ensuring everyone has a voice in the ongoing conversation.

    “In all this work, I’m hoping to make sure that globally marginalized communities are more visible in climate-related spaces, both in terms of who is doing the engineering and who the engineering works for,” she says. More

  • in

    3 Questions: Tolga Durak on building a safety culture at MIT

    Environment, Health, and Safety Managing Director Tolga Durak heads a team working to build a strong safety culture at the Institute and to implement systems that lead to successful lab and makerspace operations. EHS is also pursuing new opportunities in the areas of safe and sustainable labs and applied makerspace research. 

    Durak holds a BS in mechanical engineering, a MS in industrial and systems engineering, and a PhD in building construction/environmental design and planning. He has over 20 years of experience in engineering and EHS in higher education, having served in such roles as authority having jurisdiction, responsible official, fire marshal, risk manager, radiation safety officer, laser safety officer, safety engineer, project manager, and emergency manager for government agencies, as well as universities with extensive health-care and research facilities.

    Q: What “words of wisdom” regarding lab/shop health and safety would you like to share with the research community? 

    A: EHS staff always strive to help maintain the safety and well-being of the MIT community. When it comes to lab/shop safety or any areas with hazards, first and foremost, we encourage wearing the appropriate personal protective equipment (PPE) when handling potentially hazardous materials. While PPE needs depend on the hazards and the space, common PPE includes safety glasses, lab coats, gloves, clothes that cover your skin, and closed-toe shoes. Shorts and open-toe shoes have no place in the lab/shop setting when hazardous materials are stored or used. Accidents will and do happen. The severity of injuries due to accidental exposures can be minimized when researchers are wearing PPE. Remember, there is only one you!   

    Overall, be aware of your surroundings, be knowledgeable about the hazards of the materials and equipment you are using, and be prepared for the unexpected. Ask yourself, “What’s the worst thing that can happen during this experiment or procedure?” Prepare by doing a thorough risk assessment, ask others who may be knowledgeable for their ideas and help, and standardize procedures where possible. Be prepared to respond appropriately when an emergency arises. 

    Safety in our classrooms, labs, and makerspaces is paramount and requires a collaborative effort. 

    Q: What are the established programs within EHS that students and researchers should be aware of, and what opportunities and challenges do you face trying to advance a healthy safety culture at MIT? 

    A: The EHS program staff in Biosafety, Industrial Hygiene, Environmental Management, Occupational and Construction Safety, and Radiation Protection are ready to assist with risk assessments, chemical safety, physical hazards, hazard-specific training, materials management, and hazardous waste disposal and reuse/recycling. Locally, each department, laboratory, and center has an EHS coordinator, as well as an assigned EHS team, to assist in the implementation of required EHS programs. Each lab/shop also has a designated EHS representative — someone who has local knowledge of your lab/shop and can help you with safety requirements specific to your work area.  

    One of the biggest challenges we face is that due to the decentralized nature of the Institute, no one size fits all when it comes to implementing successful safety practices. We also view this as an opportunity to enhance our safety culture. A strong safety culture is reflected at MIT when all lab and makerspace members are willing to look out for each other, challenge the status quo when necessary, and do the right thing even when no one is looking. In labs/shops with a strong safety culture, faculty and researchers discuss safety topics at group meetings, group members remind each other to wear the appropriate PPE (lab coats, safety glasses, etc.), more experienced team members mentor the newcomers, and riskier operations are reviewed and assessed to make them as safe as possible.  

    Q: Can you describe the new Safe and Sustainable Laboratories (S2L) efforts and the makerspace operational research programs envisioned for the future? 

    A: The MIT EHS Office has a plan for renewing its dedication to sustainability and climate action. We are dedicated to doing our part to promote a research environment that assures the highest level of health and safety but also strives to reduce energy, water, and waste through educating and supporting faculty, students, and researchers. With the goal of integrating sustainability across the lab sector of campus and bridging that with the Institute’s climate action goals, EHS has partnered with the MIT Office of Sustainability, Department of Facilities, vice president for finance, and vice president for campus services and stewardship to relaunch the “green” labs sustainability efforts under a new Safe and Sustainable Labs program.

    Part of that plan is to implement a Sustainable Labs Certification program. The process is designed to be as easy as possible for the lab groups. We are starting with simple actions like promoting the use of equipment timers in certain locations to conserve energy, fume hood/ventilation management, preventative maintenance for ultra-low-temperature freezers, increasing recycling, and helping labs update their central chemical inventory system, which can help forecast MIT’s potential waste streams. 

    EHS has also partnered with Project Manus to build a test-bed lab to study potential health and environmental exposures present in makerspaces as a result of specialized equipment and processes with our new Applied Makerspace Research Initiative.   More

  • in

    Energy hackers give a glimpse of the postpandemic future

    After going virtual in 2020, the MIT EnergyHack was back on campus last weekend in a brand-new hybrid format that saw teams participate both in person and virtually from across the globe. While the hybrid format presented new challenges to the organizing team, it also allowed for one of the most diverse and inspiring iterations of the event to date.

    “Organizing a hybrid event was a challenging but important goal in 2021 as we slowly come out of the pandemic, but it was great to realize the benefits of the format this year,” says Kailin Graham, a graduate student in MIT’s Technology and Policy Program and one of the EnergyHack communications directors. “Not only were we able to get students back on campus and taking advantage of those important in-person interactions, but preserving a virtual avenue meant that we were still able to hear brilliant ideas from those around the world who might not have had the opportunity to contribute otherwise, and that’s what the EnergyHack is really about.”

    In fact, of the over 300 participants registered for the event, more than a third participated online, and two of the three grand prize winners participated entirely virtually. Teams of students at any degree level from any institution were welcome, and the event saw an incredible range of backgrounds and expertise, from undergraduates to MBAs, put their heads together to create innovative solutions.

    This year’s event was supported by a host of energy partners both in industry and within MIT. The MIT Energy and Climate Club worked with sponsoring organizations Smartflower, Chargepoint, Edison Energy, Line Vision, Chevron, Shell, and Sterlite Power to develop seven problem statements for hackers, with each judged by representatives form their respective organization. The challenges ranged from envisioning the future of electric vehicle fueling to quantifying the social and environmental benefits of renewable energy projects.

    Hackers had 36 hours to come up with a solution to one challenge, and teams then presented these solutions in a short pitch to a judging panel. Finalists from each challenge progressed to the final judging round to pitch against each other in pursuit of three grand prizes. Team COPrs came in third, receiving $1,000 for their solution to the Line Vision challenge; Crown Joules snagged second place and $1,500 for their approach to the Chargepoint problem; and Feel AMPowered took out first place and $2,000 for their innovative solution to the Smartflower challenge.

    In addition to a new format, this year’s EnergyHack also featured a new emphasis on climate change impacts and the energy transition. According to Arina Khotimsky, co-managing director of EnergyHack 2021, “Moving forward after this year’s rebranding of the MIT Energy and Climate Club, we were hoping to carry this aim to EnergyHack. It was incredibly exciting to have ChargePoint and SmartFlower leading as our Sustainability Circle-tier sponsors and bringing their impactful innovations to the conversations at EnergyHack 2021.”

    To the organizing team, whose members from sophomores to MBAs, this aspect of the event was especially important, and their hope was for the event to inspire a generation of young energy and climate leaders — a hope, according to them, that seems to have been fulfilled.

    “I was floored by the positive feedback we received from hackers, both in-person and virtual, about how much they enjoyed the hackathon,” says Graham. “It’s all thanks to our team of incredibly hardworking organizing directors who made EnergyHack 2021 what it was. It was incredibly rewarding seeing everyone’s impact on the event, and we are looking forward to seeing how it evolves in the future.”­­­ More