More stories

  • in

    Sophia Chen: It’s our duty to make the world better through empathy, patience, and respect

    Sophia Chen, a fifth-year senior double majoring in mechanical engineering and art and design, learned about MIT D-Lab when she was a Florida middle schooler. She drove with her family from their home in Clearwater to Tampa to an MIT informational open house for prospective students. There, she heard about a moringa seed press that had been developed by D-Lab students. Those students, Kwami Williams ’12 and Emily Cunningham (a cross-registered Harvard University student), went on to found MoringaConnect with a goal of increasing Ghanaian farmer incomes. Over the past 12 years, the company has done just that, sometimes by a factor of 10 or more, by selling to wholesalers and establishing their own line of moringa skin and hair care products, as well as nutritional supplements and teas.“I remember getting chills,” says Sophia. “I was so in awe. MIT had always been my dream college growing up, but hearing this particular story truly cemented that dream. I even talked about D-Lab during my admissions interview. Once I came to MIT, I knew I had to take a D-Lab class — and now, at the end of my five years, I’ve taken four.”Taking four D-Lab classes during her undergraduate years may make Sophia exceptional, though not unusual. Of the nearly 4,000 enrollments in D-Lab classes over the past 22 years, as many as 20 percent took at least two classes, and many take three or more by the time the graduate. For Sophia, her D-Lab classes were a logical progression that both confirmed and expanded her career goals in global medicine.Centering the role of project community partnersSophia’s first D-Lab class was 2.722J / EC.720 (D-Lab: Design). Like all D-Lab classes, D-Lab: Design is project-based and centers the knowledge and contributions of each project’s community partner. Her team worked with a group in Uganda called Safe Water Harvesters on a project aimed at creating a solar-powered atmospheric water harvester using desiccants. They focused on early research and development for the desiccant technology by running tests for vapor absorption. Safe Water Harvesters designed the parameters and goals of the project and collaborated with the students remotely throughout the semester.Safe Water Harvesters’ role in the project was key to the project’s success. “At D-Lab, I learned the importance of understanding that solutions in international development must come from the voices and needs of people whom the intervention is trying to serve,” she says. “Some of the first questions we were taught to ask are ‘what materials and manufacturing processes are available?’ and ‘how is this technology going to be maintained by the community?’”The link between water access and gender inequityElecting to join the water harvesting project in Uganda was no accident. The previous summer, Sophia had interned with a startup targeting the spread of cholera in developing areas by engineering a new type of rapid detection technology that would sample from users’ local water sources. From there, she joined Professor Amos Winter’s Global Engineering and Research (GEAR) Lab as an Undergraduate Research Opportunities Program student and worked on a point-of-use desalination unit for households in India. Taking EC.715 (D-Lab: Water, Sanitation, and Hygiene) was a logical next step for Sophia. “This class was life-changing,” she says. “I was already passionate about clean water access and global resource equity, but I quickly discovered the complexity of WASH not just as an issue of poverty but as an issue of gender.” She joined a project spearheaded by a classmate from Nepal, which aimed to address the social taboos surrounding menstruation among Nepalese schoolgirls.“This class and project helped me realize that water insecurity and gender inequality — especially gender-based violence — ​are highly intertwined,” comments Sophia. This plays out in a variety of ways. Where there is poor sanitation infrastructure in schools, girls often miss classes or drop out altogether when menstruating. And where water is scarce, women and girls often walk miles to collect water to accommodate daily drinking, cooking, and hygiene needs. During this trek, they are vulnerable to assault and the pressure to engage in transactional sex at water access points.“It became clear to me that women are disproportionately affected by water insecurity, and that water is key to understanding women’s empowerment,” comments Sophia, “and that I wanted to keep learning about the field of development and how it intersects with gender!”So, in fall 2023, Sophia took both 11.025/EC.701 (D-Lab: Development) and WGS.277/EC.718 (D-Lab: Gender and Development). In D-Lab: Development, her team worked with Tatirano, a nongovernmental organization in Madagascar, to develop a vapor-condensing chamber for a water desalination system, a prototype they were able to test and iterate in Madagascar at the end of the semester.Getting out into the world through D-Lab fieldwork“Fieldwork with D-Lab is an eye-opening experience that anyone could benefit from,” says Sophia. “It’s easy to get lost in the MIT and tech bubble. But there’s a whole world out there with people who live such different lives than many of us, and we can learn even more from them than we can from our psets.”For Sophia’s D-Lab: Gender and Development class, she worked with the Society Empowerment Project in Kenya, ultimately traveling there during MIT’s Independent Activities Period last January. In Kenya, she worked with her team to run a workshop with teen parents to identify risk factors prior to pregnancy and postpartum challenges, in order to then ideate and develop solutions such as social programs. “Through my fieldwork in Kenya and Madagascar,” says Sophia, “it became clear how important it is to create community-based solutions that are led and maintained by community members. Solutions need community input, leadership, and trust. Ultimately, this is the only way to have long-lasting, high-impact, sustainable change. One of my D-Lab trip leaders said that you cannot import solutions. I hope all engineers recognize the significance of this statement. It is our duty as engineers and scientists to make the world a better place while carrying values of empathy, patience, and respect.”Pursuing passion and purpose at the intersection of medicine, technology, and policyAfter graduation in June, Sophia will be traveling to South Africa through MISTI Africa to help with a clinical trial and community outreach. She then intends to pursue a master’s in global health and apply to medical school, with the goal of working in global health at the intersection of medicine, technology, and policy.“It is no understatement to say that D-Lab has played a central role in helping me discover what I’m passionate about and what my purpose is in life,” she says. “I hope to dedicate my career towards solving global health inequity and gender inequality.” ​ More

  • in

    Q&A: Claire Walsh on how J-PAL’s King Climate Action Initiative tackles the twin climate and poverty crises

    The King Climate Action Initiative (K-CAI) is the flagship climate change program of the Abdul Latif Jameel Poverty Action Lab (J-PAL), which innovates, tests, and scales solutions at the nexus of climate change and poverty alleviation, together with policy partners worldwide.

    Claire Walsh is the associate director of policy at J-PAL Global at MIT. She is also the project director of K-CAI. Here, Walsh talks about the work of K-CAI since its launch in 2020, and describes the ways its projects are making a difference. This is part of an ongoing series exploring how the MIT School of Humanities, Arts, and Social Sciences is addressing the climate crisis.

    Q: According to the King Climate Action Initiative (K-CAI), any attempt to address poverty effectively must also simultaneously address climate change. Why is that?

    A: Climate change will disproportionately harm people in poverty, particularly in low- and middle-income countries, because they tend to live in places that are more exposed to climate risk. These are nations in sub-Saharan Africa and South and Southeast Asia where low-income communities rely heavily on agriculture for their livelihoods, so extreme weather — heat, droughts, and flooding — can be devastating for people’s jobs and food security. In fact, the World Bank estimates that up to 130 million more people may be pushed into poverty by climate change by 2030.

    This is unjust because these countries have historically emitted the least; their people didn’t cause the climate crisis. At the same time, they are trying to improve their economies and improve people’s welfare, so their energy demands are increasing, and they are emitting more. But they don’t have the same resources as wealthy nations for mitigation or adaptation, and many developing countries understandably don’t feel eager to put solving a problem they didn’t create at the top of their priority list. This makes finding paths forward to cutting emissions on a global scale politically challenging.

    For these reasons, the problems of enhancing the well-being of people experiencing poverty, addressing inequality, and reducing pollution and greenhouse gases are inextricably linked.

    Q: So how does K-CAI tackle this hybrid challenge?

    A: Our initiative is pretty unique. We are a competitive, policy-based research and development fund that focuses on innovating, testing, and scaling solutions. We support researchers from MIT and other universities, and their collaborators, who are actually implementing programs, whether NGOs [nongovernmental organizations], government, or the private sector. We fund pilots of small-scale ideas in a real-world setting to determine if they hold promise, followed by larger randomized, controlled trials of promising solutions in climate change mitigation, adaptation, pollution reduction, and energy access. Our goal is to determine, through rigorous research, if these solutions are actually working — for example, in cutting emissions or protecting forests or helping vulnerable communities adapt to climate change. And finally, we offer path-to-scale grants which enable governments and NGOs to expand access to programs that have been tested and have strong evidence of impact.

    We think this model is really powerful. Since we launched in 2020, we have built a portfolio of over 30 randomized evaluations and 13 scaling projects in more than 35 countries. And to date, these projects have informed the scale ups of evidence-based climate policies that have reached over 15 million people.

    Q: It seems like K-CAI is advancing a kind of policy science, demanding proof of a program’s capacity to deliver results at each stage. 

    A: This is one of the factors that drew me to J-PAL back in 2012. I majored in anthropology and studied abroad in Uganda. From those experiences I became very passionate about pursuing a career focused on poverty reduction. To me, it is unfair that in a world full of so much wealth and so much opportunity there exists so much extreme poverty. I wanted to dedicate my career to that, but I’m also a very detail-oriented nerd who really cares about whether a program that claims to be doing something for people is accomplishing what it claims.

    It’s been really rewarding to see demand from governments and NGOs for evidence-informed policymaking grow over my 12 years at J-PAL. This policy science approach holds exciting promise to help transform public policy and climate policy in the coming decades.  

    Q: Can you point to K-CAI-funded projects that meet this high bar and are now making a significant impact?

    A: Several examples jump to mind. In the state of Gujarat, India, pollution regulators are trying to cut particulate matter air pollution, which is devastating to human health. The region is home to many major industries whose emissions negatively affect most of the state’s 70 million residents.

    We partnered with state pollution regulators — kind of a regional EPA [Environmental Protection Agency] — to test an emissions trading scheme that is used widely in the U.S. and Europe but not in low- and middle-income countries. The government monitors pollution levels using technology installed at factories that sends data in real time, so the regulator knows exactly what their emissions look like. The regulator sets a cap on the overall level of pollution, allocates permits to pollute, and industries can trade emissions permits.

    In 2019, researchers in the J-PAL network conducted the world’s first randomized, controlled trial of this emissions trading scheme and found that it cut pollution by 20 to 30 percent — a surprising reduction. It also reduced firms’ costs, on average, because the costs of compliance went down. The state government was eager to scale up the pilot, and in the past two years, two other cities, including Ahmedabad, the biggest city in the state, have adopted the concept.

    We are also supporting a project in Niger, whose economy is hugely dependent on rain-fed agriculture but with climate change is experiencing rapid desertification. Researchers in the J-PAL network have been testing training farmers in a simple, inexpensive rainwater harvesting technique, where farmers dig a half-moon-shaped hole called a demi-lune right before the rainy season. This demi-lune feeds crops that are grown directly on top of it, and helps return land that resembled flat desert to arable production.

    Researchers found that training farmers in this simple technology increased adoption from 4 percent to 94 percent and that demi-lunes increased agricultural output and revenue for farmers from the first year. K-CAI is funding a path-to-scale grant so local implementers can teach this technique to over 8,000 farmers and build a more cost-effective program model. If this takes hold, the team will work with local partners to scale the training to other relevant regions of the country and potentially other countries in the Sahel.

    One final example that we are really proud of, because we first funded it as a pilot and now it’s in the path to scale phase: We supported a team of researchers working with partners in Bangladesh trying to reduce carbon emissions and other pollution from brick manufacturing, an industry that generates 17 percent of the country’s carbon emissions. The scale of manufacturing is so great that at some times of year, Dhaka (the capital of Bangladesh) looks like Mordor.

    Workers form these bricks and stack hundreds of thousands of them, which they then fire by burning coal. A team of local researchers and collaborators from our J-PAL network found that you can reduce the amount of coal needed for the kilns by making some low-cost changes to the manufacturing process, including stacking the bricks in a way that increases airflow in the kiln and feeding the coal fires more frequently in smaller rather than larger batches.

    In the randomized, controlled trial K-CAI supported, researchers found that this cut carbon and pollution emissions significantly, and now the government has invited the team to train 1,000 brick manufacturers in Dhaka in these techniques.

    Q: These are all fascinating and powerful instances of implementing ideas that address a range of problems in different parts of the world. But can K-CAI go big enough and fast enough to take a real bite out of the twin poverty and climate crisis?

    A: We’re not trying to find silver bullets. We are trying to build a large playbook of real solutions that work to solve specific problems in specific contexts. As you build those up in the hundreds, you have a deep bench of effective approaches to solve problems that can add up in a meaningful way. And because J-PAL works with governments and NGOs that have the capacity to take the research into action, since 2003, over 600 million people around the world have been reached by policies and programs that are informed by evidence that J-PAL-affiliated researchers produced. While global challenges seem daunting, J-PAL has shown that in 20 years we can achieve a great deal, and there is huge potential for future impact.

    But unfortunately, globally, there is an underinvestment in policy innovation to combat climate change that may generate quicker, lower-cost returns at a large scale — especially in policies that determine which technologies get adopted or commercialized. For example, a lot of the huge fall in prices of renewable energy was enabled by early European government investments in solar and wind, and then continuing support for innovation in renewable energy.

    That’s why I think social sciences have so much to offer in the fight against climate change and poverty; we are working where technology meets policy and where technology meets real people, which often determines their success or failure. The world should be investing in policy, economic, and social innovation just as much as it is investing in technological innovation.

    Q: Do you need to be an optimist in your job?

    A: I am half-optimist, half-pragmatist. I have no control over the climate change outcome for the world. And regardless of whether we can successfully avoid most of the potential damages of climate change, when I look back, I’m going to ask myself, “Did I fight or not?” The only choice I have is whether or not I fought, and I want to be a fighter. More

  • in

    Moving past the Iron Age

    MIT graduate student Sydney Rose Johnson has never seen the steel mills in central India. She’s never toured the American Midwest’s hulking steel plants or the mini mills dotting the Mississippi River. But in the past year, she’s become more familiar with steel production than she ever imagined.

    A fourth-year dual degree MBA and PhD candidate in chemical engineering and a graduate research assistant with the MIT Energy Initiative (MITEI) as well as a 2022-23 Shell Energy Fellow, Johnson looks at ways to reduce carbon dioxide (CO2) emissions generated by industrial processes in hard-to-abate industries. Those include steel.

    Almost every aspect of infrastructure and transportation — buildings, bridges, cars, trains, mass transit — contains steel. The manufacture of steel hasn’t changed much since the Iron Age, with some steel plants in the United States and India operating almost continually for more than a century, their massive blast furnaces re-lined periodically with carbon and graphite to keep them going.

    According to the World Economic Forum, steel demand is projected to increase 30 percent by 2050, spurred in part by population growth and economic development in China, India, Africa, and Southeast Asia.

    The steel industry is among the three biggest producers of CO2 worldwide. Every ton of steel produced in 2020 emitted, on average, 1.89 tons of CO2 into the atmosphere — around 8 percent of global CO2 emissions, according to the World Steel Association.

    A combination of technical strategies and financial investments, Johnson notes, will be needed to wrestle that 8 percent figure down to something more planet-friendly.

    Johnson’s thesis focuses on modeling and analyzing ways to decarbonize steel. Using data mined from academic and industry sources, she builds models to calculate emissions, costs, and energy consumption for plant-level production.

    “I optimize steel production pathways using emission goals, industry commitments, and cost,” she says. Based on the projected growth of India’s steel industry, she applies this approach to case studies that predict outcomes for some of the country’s thousand-plus factories, which together have a production capacity of 154 million metric tons of steel. For the United States, she looks at the effect of Inflation Reduction Act (IRA) credits. The 2022 IRA provides incentives that could accelerate the steel industry’s efforts to minimize its carbon emissions.

    Johnson compares emissions and costs across different production pathways, asking questions such as: “If we start today, what would a cost-optimal production scenario look like years from now? How would it change if we added in credits? What would have to happen to cut 2005 levels of emissions in half by 2030?”

    “My goal is to gain an understanding of how current and emerging decarbonization strategies will be integrated into the industry,” Johnson says.

    Grappling with industrial problems

    Growing up in Marietta, Georgia, outside Atlanta, the closest she ever came to a plant of any kind was through her father, a chemical engineer working in logistics and procuring steel for an aerospace company, and during high school, when she spent a semester working alongside chemical engineers tweaking the pH of an anti-foaming agent.

    At Kennesaw Mountain High School, a STEM magnet program in Cobb County, students devote an entire semester of their senior year to an internship and research project.

    Johnson chose to work at Kemira Chemicals, which develops chemical solutions for water-intensive industries with a focus on pulp and paper, water treatment, and energy systems.

    “My goal was to understand why a polymer product was falling out of suspension — essentially, why it was less stable,” she recalls. She learned how to formulate a lab-scale version of the product and conduct tests to measure its viscosity and acidity. Comparing the lab-scale and regular product results revealed that acidity was an important factor. “Through conversations with my mentor, I learned this was connected with the holding conditions, which led to the product being oxidized,” she says. With the anti-foaming agent’s problem identified, steps could be taken to fix it.

    “I learned how to apply problem-solving. I got to learn more about working in an industrial environment by connecting with the team in quality control as well as with R&D and chemical engineers at the plant site,” Johnson says. “This experience confirmed I wanted to pursue engineering in college.”

    As an undergraduate at Stanford University, she learned about the different fields — biotechnology, environmental science, electrochemistry, and energy, among others — open to chemical engineers. “It seemed like a very diverse field and application range,” she says. “I was just so intrigued by the different things I saw people doing and all these different sets of issues.”

    Turning up the heat

    At MIT, she turned her attention to how certain industries can offset their detrimental effects on climate.

    “I’m interested in the impact of technology on global communities, the environment, and policy. Energy applications affect every field. My goal as a chemical engineer is to have a broad perspective on problem-solving and to find solutions that benefit as many people, especially those under-resourced, as possible,” says Johnson, who has served on the MIT Chemical Engineering Graduate Student Advisory Board, the MIT Energy and Climate Club, and is involved with diversity and inclusion initiatives.

    The steel industry, Johnson acknowledges, is not what she first imagined when she saw herself working toward mitigating climate change.

    “But now, understanding the role the material has in infrastructure development, combined with its heavy use of coal, has illuminated how the sector, along with other hard-to-abate industries, is important in the climate change conversation,” Johnson says.

    Despite the advanced age of many steel mills, some are quite energy-efficient, she notes. Yet these operations, which produce heat upwards of 3,000 degrees Fahrenheit, are still emission-intensive.

    Steel is made from iron ore, a mixture of iron, oxygen, and other minerals found on virtually every continent, with Brazil and Australia alone exporting millions of metric tons per year. Commonly based on a process dating back to the 19th century, iron is extracted from the ore through smelting — heating the ore with blast furnaces until the metal becomes spongy and its chemical components begin to break down.

    A reducing agent is needed to release the oxygen trapped in the ore, transforming it from its raw form to pure iron. That’s where most emissions come from, Johnson notes.

    “We want to reduce emissions, and we want to make a cleaner and safer environment for everyone,” she says. “It’s not just the CO2 emissions. It’s also sometimes NOx and SOx [nitrogen oxides and sulfur oxides] and air pollution particulate matter at some of these production facilities that can affect people as well.”

    In 2020, the International Energy Agency released a roadmap exploring potential technologies and strategies that would make the iron and steel sector more compatible with the agency’s vision of increased sustainability. Emission reductions can be accomplished with more modern technology, the agency suggests, or by substituting the fuels producing the immense heat needed to process ore. Traditionally, the fuels used for iron reduction have been coal and natural gas. Alternative fuels include clean hydrogen, electricity, and biomass.

    Using the MITEI Sustainable Energy System Analysis Modeling Environment (SESAME), Johnson analyzes various decarbonization strategies. She considers options such as switching fuel for furnaces to hydrogen with a little bit of natural gas or adding carbon-capture devices. The models demonstrate how effective these tactics are likely to be. The answers aren’t always encouraging.

    “Upstream emissions can determine how effective the strategies are,” Johnson says. Charcoal derived from forestry biomass seemed to be a promising alternative fuel, but her models showed that processing the charcoal for use in the blast furnace limited its effectiveness in negating emissions.

    Despite the challenges, “there are definitely ways of moving forward,” Johnson says. “It’s been an intriguing journey in terms of understanding where the industry is at. There’s still a long way to go, but it’s doable.”

    Johnson is heartened by the steel industry’s efforts to recycle scrap into new steel products and incorporate more emission-friendly technologies and practices, some of which result in significantly lower CO2 emissions than conventional production.

    A major issue is that low-carbon steel can be more than 50 percent more costly than conventionally produced steel. “There are costs associated with making the transition, but in the context of the environmental implications, I think it’s well worth it to adopt these technologies,” she says.

    After graduation, Johnson plans to continue to work in the energy field. “I definitely want to use a combination of engineering knowledge and business knowledge to work toward mitigating climate change, potentially in the startup space with clean technology or even in a policy context,” she says. “I’m interested in connecting the private and public sectors to implement measures for improving our environment and benefiting as many people as possible.” More

  • in

    Explained: Carbon credits

    One of the most contentious issues faced at the 28th Conference of Parties (COP28) on climate change last December was a proposal for a U.N.-sanctioned market for trading carbon credits. Such a mechanism would allow nations and industries making slow progress in reducing their own carbon emissions to pay others to take emissions-reducing measures, such as improving energy efficiency or protecting forests.

    Such trading systems have already grown to a multibillion-dollar market despite a lack of clear international regulations to define and monitor the claimed emissions reductions. During weeks of feverish negotiations, some nations, including the U.S., advocated for a somewhat looser approach to regulations in the interests of getting a system in place quickly. Others, including the European Union, advocated much tighter regulation, in light of a history of questionable or even counterproductive projects of this kind in the past. In the end, no agreement was reached on the subject, which will be revisited at a later meeting.

    The concept seems simple enough: Offset emissions in one place by preventing or capturing an equal amount of emissions elsewhere. But implementing that idea has turned out to be far more complex and fraught with problems than many expected.

    For example, projects that aim to preserve a section of forest — which can remove carbon dioxide from the air and sequester it in the soil — face numerous issues. Will the preservation of one parcel just lead to the clearcutting of an adjacent parcel? Would the preserved land have been left uncut anyway? And what if it ends up being destroyed by wildfire, drought, or insect infestation — all of which are expected to become more likely with climate change?

    Similarly, projects that aim to capture carbon dioxide emissions and inject them into the ground are sometimes used to justify increasing the production of petroleum or natural gas, negating the intended climate mitigation of the process.

    Several experts at MIT now say that the system could be effective, at least in certain circumstances, but it must be thoroughly evaluated and regulated.

    Carbon removal, natural or mechanical

    Sergey Paltsev, deputy director of MIT’s Joint Program on the Science and Policy of Global Change, co-led a study and workshop last year that included policymakers, industry representatives, and researchers. They focused on one kind of carbon offsets, those based on natural climate solutions — restoration or preservation of natural systems that not only sequester carbon but also provide other benefits, such as greater biodiversity. “We find a lot of confusion and misperceptions and misinformation, even about how you define the term carbon credit or offset,” he says.

    He points out that there has been a lot of criticism of the whole idea of carbon offsets, “and that criticism is well-placed. I think that’s a very healthy conversation, to clarify what makes sense and what doesn’t make sense. What are the real actions versus what is greenwashing?”

    He says that government-mandated and managed carbon trading programs in some places, including British Columbia and parts of Europe, have been somewhat effective because they have clear standards in place, whereas unregulated carbon credit systems have often been abused.

    Charles Harvey, an MIT professor of civil and environmental engineering, should know, having been actively involved in both sides of the issue over the last two decades. He co-founded a company in 2008 that was the first private U.S. company to attempt to remove carbon dioxide from emissions on a commercial scale, a process called carbon capture and sequestration, or CCS. Such projects have been a major recipient of federal subsidies aimed at combatting climate change, but Harvey now says these are largely a waste of money and in most cases do not achieve their stated objective.

    In fact, he says that according to industry sources, as of 2021 more than 90 percent of CCS projects in the U.S. have been used for the production of more fossil fuels — oil and natural gas. Here’s how it works: Natural gas wells often produce methane mixed with carbon dioxide, which must be removed to produce a marketable natural gas. This carbon dioxide is then injected into oil wells to stimulate more production. So, the net effect is the creation of more total greenhouse gas emissions rather than less, explains Harvey, who recently received a grant from the Rockefeller Foundation to explore CCS projects and whether they can be made to contribute to true emissions reductions.

    What went wrong with the ambitious startup CCS company Harvey co-founded? “What happened is that the prices of renewables and energy storage are now incredibly cheap,” he says. “It makes no sense to do this, ever, on power plants because honestly, fossil fuel power plants don’t even really make economic sense anymore.”

    Where does Harvey see potential for carbon credits to work? One possibility is the preservation or restoration of tropical peatlands, which he has received another grant to study. These are vast areas of permanently waterlogged land in which dead plant matter —and the carbon it contains — remains in place because the water prevents the normal decomposition processes that would otherwise release the stored carbon back into the air.

    While it is virtually impossible to quantify the amount of carbon stored in the soil of forest or farmland, in peatlands that’s easy to do because essentially all of the submerged material is carbon-based. Simply measuring changes in the elevation of such land, which can be done remotely by plane or satellite, gives a precise measure of how much carbon has been stored or released. When a patch of peat forest that has been clear-cut to build plantations or roads is reforested, the amount of carbon emissions that were prevented can be measured accurately.

    Because of that potential for accurate documentation, protecting or restoring peat bogs can also be a good way to achieve meaningful offsets for carbon emissions elsewhere, Harvey says. Rewetting a previously drained peat forest can immediately counteract the release of its stored carbon and can keep it there as long as it is not drained again — something that can be verified using satellite data.

    Paltsev adds that while such nature-based systems for countering carbon emissions can be a key component of addressing climate change, especially in very difficult-to-decarbonize industries such as aviation, carbon credits for such programs “shouldn’t be a replacement for our efforts at emissions reduction. It should be in addition.”

    Criteria for meaningful offsets

    John Sterman, the Jay W. Forrester Professor of Management at the MIT Sloan School of Management, has published a set of criteria for evaluating proposed carbon offset plans to make sure they would provide the benefits they claim. At present, “there’s no regulation, there’s no oversight” for carbon offsets, he says. “There have been many scandals over this.”

    For example, one company was providing what it claimed was certification for carbon offset projects but was found to have such lax standards that the claimed offsets were often not real. For example, there were multiple claims to protect the same piece of forest and claims to protect land that was already legally protected.

    Sterman’s proposed set of criteria goes by the acronym AVID+. “It stands for four principles that you have to meet in order for your offset to be legitimate: It has to be additional, verifiable, immediate, and durable,” he says. “And then I call it AVID+,” he adds, the “plus” being for plans that have additional benefits as well, such as improving health, creating jobs, or helping historically disadvantaged communities.

    Offsets can be useful, he says, for addressing especially hard-to-abate industries such as steel or cement manufacturing, or aviation. But it is essential to meet all four of the criteria, or else real emissions are not really being offset. For example, planting trees today, while often a good thing to do, would take decades to offset emissions going into the atmosphere now, where they may persist for centuries — so that fails to meet the “immediate” requirement.

    And protecting existing forests, while also desirable, is very hard to prove as being additional, because “that requires a counterfactual that you can never observe,” he says. “That’s where a lot of squirrely accounting and a lot of fraud comes in, because how do you know that the forest would have been cut down but for the offset?” In one well-documented case, he points out, a company tried to sell carbon offsets for a section of forest that was already an established nature preserve.

    Are there offsets that can meet all the criteria and provide real benefits in helping to address climate change? Yes, Sterman and Harvey say, but they need to be evaluated carefully.

    “My favorite example,” Sterman says, “is doing deep energy retrofits and putting solar panels on low-income housing.” These measures can help address the so-called landlord-tenant problem: If tenants typically pay the utility bills, landlords have little incentive to pay for efficiency improvements, and the tenants don’t have the capital to make such improvements on their own. “Policies that would make this possible are pretty good candidates for legitimate offsets, because they are additional — low-income households can’t afford to do it without assistance, so it’s not going to happen without a program. It’s verifiable, because you’ve got the utility bills pre and post.” They are also quite immediate, typically taking only a year or so to implement, and “they’re pretty durable,” he says.

    Another example is a recent plan in Alaska that allows cruise ships to offset the emissions caused by their trips by paying into a fund that provides subsidies for Alaskan citizens to install heat pumps in their homes, thus preventing emissions from wood or fossil fuel heating systems. “I think this is a pretty good candidate to meet the criteria, certainly a lot better than much of what’s being done today,” Sterman says.

    But eventually, what is really needed, the researchers agree, are real, enforceable standards. After COP28, carbon offsets are still allowed, Sterman says, “but there is still no widely accepted mandatory regulation. We’re still in the wild West.”

    Paltsev nevertheless sees reasons for optimism about nature-based carbon offset systems. For example, he says the aviation industry has recently agreed to implement a set of standards for offsetting their emissions, known as CORSIA, for carbon offsetting and reduction scheme for international aviation. “It’s a point for optimism,” he says, “because they issued very tough guidelines as to what projects are eligible and what projects are not.”

    He adds, “There is a solution if you want to find a good solution. It is doable, when there is a will and there is the need.” More

  • in

    Gosha Geogdzhayev and Sadhana Lolla named 2024 Gates Cambridge Scholars

    This article was updated on April 23 to reflect the promotion of Gosha Geogdzhayev from alternate to winner of the Gates Cambridge Scholarship.

    MIT seniors Gosha Geogdzhayev and Sadhana Lolla have won the prestigious Gates Cambridge Scholarship, which offers students an opportunity to pursue graduate study in the field of their choice at Cambridge University in the U.K.

    Established in 2000, Gates Cambridge offers full-cost post-graduate scholarships to outstanding applicants from countries outside of the U.K. The mission of Gates Cambridge is to build a global network of future leaders committed to improving the lives of others.

    Gosha Geogdzhayev

    Originally from New York City, Geogdzhayev is a senior majoring in physics with minors in mathematics and computer science. At Cambridge, Geogdzhayev intends to pursue an MPhil in quantitative climate and environmental science. He is interested in applying these subjects to climate science and intends to spend his career developing novel statistical methods for climate prediction.

    At MIT, Geogdzhayev researches climate emulators with Professor Raffaele Ferrari’s group in the Department of Earth, Atmospheric and Planetary Sciences and is part of the “Bringing Computation to the Climate Challenge” Grand Challenges project. He is currently working on an operator-based emulator for the projection of climate extremes. Previously, Geogdzhayev studied the statistics of changing chaotic systems, work that has recently been published as a first-author paper.

    As a recipient of the National Oceanic and Atmospheric Agency (NOAA) Hollings Scholarship, Geogdzhayev has worked on bias correction methods for climate data at the NOAA Geophysical Fluid Dynamics Laboratory. He is the recipient of several other awards in the field of earth and atmospheric sciences, notably the American Meteorological Society Ward and Eileen Seguin Scholarship.

    Outside of research, Geogdzhayev enjoys writing poetry and is actively involved with his living community, Burton 1, for which he has previously served as floor chair.

    Sadhana Lolla

    Lolla, a senior from Clarksburg, Maryland, is majoring in computer science and minoring in mathematics and literature. At Cambridge, she will pursue an MPhil in technology policy.

    In the future, Lolla aims to lead conversations on deploying and developing technology for marginalized communities, such as the rural Indian village that her family calls home, while also conducting research in embodied intelligence.

    At MIT, Lolla conducts research on safe and trustworthy robotics and deep learning at the Distributed Robotics Laboratory with Professor Daniela Rus. Her research has spanned debiasing strategies for autonomous vehicles and accelerating robotic design processes. At Microsoft Research and Themis AI, she works on creating uncertainty-aware frameworks for deep learning, which has impacts across computational biology, language modeling, and robotics. She has presented her work at the Neural Information Processing Systems (NeurIPS) conference and the International Conference on Machine Learning (ICML). 

    Outside of research, Lolla leads initiatives to make computer science education more accessible globally. She is an instructor for class 6.s191 (MIT Introduction to Deep Learning), one of the largest AI courses in the world, which reaches millions of students annually. She serves as the curriculum lead for Momentum AI, the only U.S. program that teaches AI to underserved students for free, and she has taught hundreds of students in Northern Scotland as part of the MIT Global Teaching Labs program.

    Lolla was also the director for xFair, MIT’s largest student-run career fair, and is an executive board member for Next Sing, where she works to make a cappella more accessible for students across musical backgrounds. In her free time, she enjoys singing, solving crossword puzzles, and baking. More

  • in

    Study: Global deforestation leads to more mercury pollution

    About 10 percent of human-made mercury emissions into the atmosphere each year are the result of global deforestation, according to a new MIT study.

    The world’s vegetation, from the Amazon rainforest to the savannahs of sub-Saharan Africa, acts as a sink that removes the toxic pollutant from the air. However, if the current rate of deforestation remains unchanged or accelerates, the researchers estimate that net mercury emissions will keep increasing.

    “We’ve been overlooking a significant source of mercury, especially in tropical regions,” says Ari Feinberg, a former postdoc in the Institute for Data, Systems, and Society (IDSS) and lead author of the study.

    The researchers’ model shows that the Amazon rainforest plays a particularly important role as a mercury sink, contributing about 30 percent of the global land sink. Curbing Amazon deforestation could thus have a substantial impact on reducing mercury pollution.

    The team also estimates that global reforestation efforts could increase annual mercury uptake by about 5 percent. While this is significant, the researchers emphasize that reforestation alone should not be a substitute for worldwide pollution control efforts.

    “Countries have put a lot of effort into reducing mercury emissions, especially northern industrialized countries, and for very good reason. But 10 percent of the global anthropogenic source is substantial, and there is a potential for that to be even greater in the future. [Addressing these deforestation-related emissions] needs to be part of the solution,” says senior author Noelle Selin, a professor in IDSS and MIT’s Department of Earth, Atmospheric and Planetary Sciences.

    Feinberg and Selin are joined on the paper by co-authors Martin Jiskra, a former Swiss National Science Foundation Ambizione Fellow at the University of Basel; Pasquale Borrelli, a professor at Roma Tre University in Italy; and Jagannath Biswakarma, a postdoc at the Swiss Federal Institute of Aquatic Science and Technology. The paper appears today in Environmental Science and Technology.

    Modeling mercury

    Over the past few decades, scientists have generally focused on studying deforestation as a source of global carbon dioxide emissions. Mercury, a trace element, hasn’t received the same attention, partly because the terrestrial biosphere’s role in the global mercury cycle has only recently been better quantified.

    Plant leaves take up mercury from the atmosphere, in a similar way as they take up carbon dioxide. But unlike carbon dioxide, mercury doesn’t play an essential biological function for plants. Mercury largely stays within a leaf until it falls to the forest floor, where the mercury is absorbed by the soil.

    Mercury becomes a serious concern for humans if it ends up in water bodies, where it can become methylated by microorganisms. Methylmercury, a potent neurotoxin, can be taken up by fish and bioaccumulated through the food chain. This can lead to risky levels of methylmercury in the fish humans eat.

    “In soils, mercury is much more tightly bound than it would be if it were deposited in the ocean. The forests are doing a sort of ecosystem service, in that they are sequestering mercury for longer timescales,” says Feinberg, who is now a postdoc in the Blas Cabrera Institute of Physical Chemistry in Spain.

    In this way, forests reduce the amount of toxic methylmercury in oceans.

    Many studies of mercury focus on industrial sources, like burning fossil fuels, small-scale gold mining, and metal smelting. A global treaty, the 2013 Minamata Convention, calls on nations to reduce human-made emissions. However, it doesn’t directly consider impacts of deforestation.

    The researchers launched their study to fill in that missing piece.

    In past work, they had built a model to probe the role vegetation plays in mercury uptake. Using a series of land use change scenarios, they adjusted the model to quantify the role of deforestation.

    Evaluating emissions

    This chemical transport model tracks mercury from its emissions sources to where it is chemically transformed in the atmosphere and then ultimately to where it is deposited, mainly through rainfall or uptake into forest ecosystems.

    They divided the Earth into eight regions and performed simulations to calculate deforestation emissions factors for each, considering elements like type and density of vegetation, mercury content in soils, and historical land use.

    However, good data for some regions were hard to come by.

    They lacked measurements from tropical Africa or Southeast Asia — two areas that experience heavy deforestation. To get around this gap, they used simpler, offline models to simulate hundreds of scenarios, which helped them improve their estimations of potential uncertainties.

    They also developed a new formulation for mercury emissions from soil. This formulation captures the fact that deforestation reduces leaf area, which increases the amount of sunlight that hits the ground and accelerates the outgassing of mercury from soils.

    The model divides the world into grid squares, each of which is a few hundred square kilometers. By changing land surface and vegetation parameters in certain squares to represent deforestation and reforestation scenarios, the researchers can capture impacts on the mercury cycle.

    Overall, they found that about 200 tons of mercury are emitted to the atmosphere as the result of deforestation, or about 10 percent of total human-made emissions. But in tropical and sub-tropical countries, deforestation emissions represent a higher percentage of total emissions. For example, in Brazil deforestation emissions are 40 percent of total human-made emissions.

    In addition, people often light fires to prepare tropical forested areas for agricultural activities, which causes more emissions by releasing mercury stored by vegetation.

    “If deforestation was a country, it would be the second highest emitting country, after China, which emits around 500 tons of mercury a year,” Feinberg adds.

    And since the Minamata Convention is now addressing primary mercury emissions, scientists can expect deforestation to become a larger fraction of human-made emissions in the future.

    “Policies to protect forests or cut them down have unintended effects beyond their target. It is important to consider the fact that these are systems, and they involve human activities, and we need to understand them better in order to actually solve the problems that we know are out there,” Selin says.

    By providing this first estimate, the team hopes to inspire more research in this area.

    In the future, they want to incorporate more dynamic Earth system models into their analysis, which would enable them to interactively track mercury uptake and better model the timescale of vegetation regrowth.

    “This paper represents an important advance in our understanding of global mercury cycling by quantifying a pathway that has long been suggested but not yet quantified. Much of our research to date has focused on primary anthropogenic emissions — those directly resulting from human activity via coal combustion or mercury-gold amalgam burning in artisanal and small-scale gold mining,” says Jackie Gerson, an assistant professor in the Department of Earth and Environmental Sciences at Michigan State University, who was not involved with this research. “This research shows that deforestation can also result in substantial mercury emissions and needs to be considered both in terms of global mercury models and land management policies. It therefore has the potential to advance our field scientifically as well as to promote policies that reduce mercury emissions via deforestation.

    This work was funded, in part, by the U.S. National Science Foundation, the Swiss National Science Foundation, and Swiss Federal Institute of Aquatic Science and Technology. More

  • in

    Reflecting on COP28 — and humanity’s progress toward meeting global climate goals

    With 85,000 delegates, the 2023 United Nations climate change conference, known as COP28, was the largest U.N. climate conference in history. It was held at the end of the hottest year in recorded history. And after 12 days of negotiations, from Nov. 30 to Dec. 12, it produced a decision that included, for the first time, language calling for “transitioning away from fossil fuels,” though it stopped short of calling for their complete phase-out.

    U.N. Climate Change Executive Secretary Simon Stiell said the outcome in Dubai, United Arab Emirates, COP28’s host city, signaled “the beginning of the end” of the fossil fuel era. 

    COP stands for “conference of the parties” to the U.N. Framework Convention on Climate Change, held this year for the 28th time. Through the negotiations — and the immense conference and expo that takes place alongside them — a delegation of faculty, students, and staff from MIT was in Dubai to observe the negotiations, present new climate technologies, speak on panels, network, and conduct research.

    On Jan. 17, the MIT Center for International Studies (CIS) hosted a panel discussion with MIT delegates who shared their reflections on the experience. Asking what’s going on at COP is “like saying, ‘What’s going on in the city of Boston today?’” quipped Evan Lieberman, the Total Professor of Political Science and Contemporary Africa, director of CIS, and faculty director of MIT International Science and Technology Initiatives (MISTI). “The value added that all of us can provide for the MIT community is [to share] what we saw firsthand and how we experienced it.” 

    Phase-out, phase down, transition away?

    In the first week of COP28, over 100 countries issued a joint statement that included a call for “the global phase out of unabated fossil fuels.” The question of whether the COP28 decision — dubbed the “UAE Consensus” — would include this phase-out language animated much of the discussion in the days and weeks leading up to COP28. 

    Ultimately, the decision called for “transitioning away from fossil fuels in energy systems, in a just, orderly and equitable manner.” It also called for “accelerating efforts towards the phase down of unabated coal power,” referring to the combustion of coal without efforts to capture and store its emissions.

    In Dubai to observe the negotiations, graduate student Alessandra Fabbri said she was “confronted” by the degree to which semantic differences could impose significant ramifications — for example, when negotiators referred to a “just transition,” or to “developed vs. developing nations” — particularly where evolution in recent scholarship has produced more nuanced understandings of the terms.

    COP28 also marked the conclusion of the first global stocktake, a core component of the 2015 Paris Agreement. The effort every five years to assess the world’s progress in responding to climate change is intended as a basis for encouraging countries to strengthen their climate goals over time, a process often referred to as the Paris Agreement’s “ratchet mechanism.” 

    The technical report of the first global stocktake, published in September 2023, found that while the world has taken actions that have reduced forecasts of future warming, they are not sufficient to meet the goals of the Paris Agreement, which aims to limit global average temperature increase to “well below” 2 degrees Celsius, while pursuing efforts to limit the increase to 1.5 degrees above pre-industrial levels.

    “Despite minor, punctual advancements in climate action, parties are far from being on track to meet the long-term goals of the Paris Agreement,” said Fabbri, a graduate student in the School of Architecture and Planning and a fellow in MIT’s Leventhal Center for Advanced Urbanism. Citing a number of persistent challenges, including some parties’ fears that rapid economic transition may create or exacerbate vulnerabilities, she added, “There is a noted lack of accountability among certain countries in adhering to their commitments and responsibilities under international climate agreements.” 

    Climate and trade

    COP28 was the first climate summit to formally acknowledge the importance of international trade by featuring an official “Trade Day” on Dec. 4. Internationally traded goods account for about a quarter of global greenhouse gas emissions, raising complex questions of accountability and concerns about offshoring of industrial manufacturing, a phenomenon known as “emissions leakage.” Addressing the nexus of climate and trade is therefore considered essential for successful decarbonization, and a growing number of countries are leveraging trade policies — such as carbon fees applied to imported goods — to secure climate benefits. 

    Members of the MIT delegation participated in several related activities, sharing research and informing decision-makers. Catherine Wolfram, professor of applied economics in the MIT Sloan School of Management, and Michael Mehling, deputy director of the MIT Center for Energy and Environmental Policy Research (CEEPR), presented options for international cooperation on such trade policies at side events, including ones hosted by the World Trade Organization and European Parliament. 

    “While COPs are often criticized for highlighting statements that don’t have any bite, they are also tremendous opportunities to get people from around the world who care about climate and think deeply about these issues in one place,” said Wolfram.

    Climate and health

    For the first time in the conference’s nearly 30-year history, COP28 included a thematic “Health Day” that featured talks on the relationship between climate and health. Researchers from MIT’s Abdul Latif Jameel Poverty Action Lab (J-PAL) have been testing policy solutions in this area for years through research funds such as the King Climate Action Initiative (K-CAI). 

    “An important but often-neglected area where climate action can lead to improved health is combating air pollution,” said Andre Zollinger, K-CAI’s senior policy manager. “COP28’s announcement on reducing methane leaks is an important step because action in this area could translate to relatively quick, cost-effective ways to curb climate change while improving air quality, especially for people living near these industrial sites.” K-CAI has an ongoing project in Colorado investigating the use of machine learning to predict leaks and improve the framework for regulating industrial methane emissions, Zollinger noted.

    This was J-PAL’s third time at COP, which Zollinger said typically presented an opportunity for researchers to share new findings and analysis with government partners, nongovernmental organizations, and companies. This year, he said, “We have [also] been working with negotiators in the [Middle East and North Africa] region in the months preceding COP to plug them into the latest evidence on water conservation, on energy access, on different challenging areas of adaptation that could be useful for them during the conference.”

    Sharing knowledge, learning from others

    MIT student Runako Gentles described COP28 as a “springboard” to greater impact. A senior from Jamaica studying civil and environmental engineering, Gentles said it was exciting to introduce himself as an MIT undergraduate to U.N. employees and Jamaican delegates in Dubai. “There’s a lot of talk on mitigation and cutting carbon emissions, but there needs to be much more going into climate adaptation, especially for small-island developing states like those in the Caribbean,” he said. “One of the things I can do, while I still try to finish my degree, is communicate — get the story out there to raise awareness.”

    At an official side event at COP28 hosted by MIT, Pennsylvania State University, and the American Geophysical Union, Maria T. Zuber, MIT’s vice president for research, stressed the importance of opportunities to share knowledge and learn from people around the world.

    “The reason this two-way learning is so important for us is simple: The ideas we come up with in a university setting, whether they’re technological or policy or any other kind of innovations — they only matter in the practical world if they can be put to good use and scaled up,” said Zuber. “And the only way we can know that our work has practical relevance for addressing climate is by working hand-in-hand with communities, industries, governments, and others.”

    Marcela Angel, research program director at the Environmental Solutions Initiative, and Sergey Paltsev, deputy director of MIT’s Joint Program on the Science and Policy of Global Change, also spoke at the event, which was moderated by Bethany Patten, director of policy and engagement for sustainability at the MIT Sloan School of Management.  More

  • in

    Soaring high, in the Army and the lab

    Starting off as a junior helicopter pilot, Lt. Col. Jill Rahon deployed to Afghanistan three times. During the last one, she was an air mission commander, the  pilot who is designated to interface with the ground troops throughout the mission.

    Today, Rahon is a fourth-year doctoral student studying applied physics at the Department of Nuclear Science and Engineering (NSE). Under the supervision of Areg Danagoulian, she is working on engineering solutions for enforcement of nuclear nonproliferation treaties. Rahon and her husband have 2-year-old twins: “They have the same warm relationship with my advisor that I had with my dad’s (PhD) advisor,” she says.

    Jill Rahon: Engineering solutions for enforcement of nuclear nonproliferation treaties

    A path to the armed forces

    The daughter of a health physicist father and a food chemist mother, Rahon grew up in the Hudson Valley, very close to New York City. Nine-eleven was a life-altering event: “Many of my friends’ fathers and uncles were policemen and firefighters [who] died responding to the attacks,” Rahon says. A hurt and angry teenager, Rahon was determined to do her part to help: She joined the Army and decided to pursue science, becoming part of the first class to enter West Point after 9/11.

    Rahon started by studying strategic history, a field that covers treaties and geopolitical relationships. It would prove useful later. Inspired by her father, who works in the nuclear field, Rahon added on a nuclear science and engineering track.

    After graduating from West Point, Rahon wanted to join active combat and chose aviation. At flight school in Fort Novosel, Alabama, she discovered that she loved flying. It was there that Rahon learned to fly the legendary Chinook helicopter. In short order, Rahon was assigned to the 101st Airborne Division and deployed to Afghanistan quickly thereafter.

    As expected, flying in Afghanistan, especially on night missions, was adrenaline-charged. “You’re thinking on the fly, you’re talking on five different radios, you’re making decisions for all the helicopters that are part of the mission,” Rahon remembers. Very often Rahon and her cohorts did not have the luxury of time. “We would get information that would need to be acted on quickly,” she says. During the planning meetings, she would be delighted to see a classmate from West Point function as the ground forces commander. “It would be surprising to see somebody you knew from a different setting halfway around the world, working toward common goals,” Rahon says.

    Also awesome: helping launch the first training program for female pilots to be recruited in the Afghan National Air Force. “I got to meet [and mentor] these strong young women who maybe didn’t have the same encouragement that I had growing up and they were out there hanging tough,” Rahon says.

    Exploring physics and nuclear engineering

    After serving in the combat forces, Rahon decided she wanted to teach physics at West Point. She applied to become a part of the Functional Area (FA52) as a nuclear and countering weapons of mass destruction officer.

    FA52 officers provide nuclear technical advice to maneuver commanders about nuclear weapons, effects, and operating in a nuclear environment or battlefield. Rahon’s specialty is radiation detection and operations in a nuclear environment, which poses unique threats and challenges to forces.

    Knowing she wanted to teach at West Point, she “brushed up extensively on math and physics” and applied to MIT NSE to pursue a master’s degree. “My fellow students were such an inspiration. They might not have had the same life experiences that I had but were still so mature and driven and knowledgeable not only about nuclear engineering but how that fits in the energy sector and in politics,” Rahon says.

    Resonance analysis to verify treaties

    Rahon returned to NSE to pursue her doctorate, where she does a “lot of detection and treaty verification work.”

    When looking at nuclear fuels to verify safeguards for treaties, experts search for the presence and quantities of heavy elements such as uranium, plutonium, thorium, and any of their decay products. To do so nondestructively is of high importance so they don’t destroy a piece of the material or fuel to identify it.

    Rahon’s research is built on resonance analysis, the fact that most midrange to heavy isotopes have unique resonance signatures that are accessed by neutrons of epithermal energy, which is relatively low on the scale of possible neutron energies. This means they travel slowly — crossing a distance of 2 meters in tens of microseconds, permitting their detection time to be used to calculate their energy.

    Studying how neutrons of a particular energy interact with a sample to identify worrisome nuclear materials is much like studying fingerprints to solve crimes. Isotopes that have a spike in likelihood of interaction occurring over a small neutron energy are said to have resonances, and these resonance patterns are isotopically unique. Experts can use this technique to nondestructively assess an item, identifying the constituent isotopes and their concentrations.

    Resonance analysis can be used to verify that the fuels are what the nuclear plant owner says they are. “There are a lot of safeguards activities and verification protocols that are managed by the International Atomic Energy Agency (IAEA) to ensure that a state is not misusing nuclear power for ulterior motives,” Rahon points out. And her method helps.

    “Our technique that leverages resonance analysis is nothing new,” Rahon says, “It’s been applied practically since the ’70s at very large beam facilities, hundreds of meters long with a very large accelerator that pulses neutrons, and then you’re able to correlate a neutron time of flight with a resonance profile. What we’ve done that is novel is we’ve shrunk it down to a 3-meter system with a portable neutron residence generator and a 2-meter beam path,” she says.

    Mobility confers many significant advantages: “This is something that could be conceivably put on the back of a truck and moved to a fuel facility, then driven to the next one for inspections or put at a treaty verification site. It could be taken out to a silo field where they are dismantling nuclear weapons,” Rahon says. However, the miniaturization does come with significant challenges, such as the neutron generator’s impacts on the signal to noise ratio.

    Rahon is delighted her research can ensure that a necessary fuel source will not be misused. “We need nuclear power. We need low-carbon solutions for energy and we need safe ones. We need to ensure that this powerful technology is not being misused. And that’s why these engineering solutions are needed for these safeguards,” she says.

    Rahon sees parallels between her time in active duty and her doctoral research. Teamwork and communication are key in both, she says. Her dad is her role model and Rahon is a firm believer in mentorship, something she nurtured both in the armed forces and at MIT. “My advisor is genuinely a wonderful person who has always given me so much support from not only being a student, but also being a parent,” Rahon adds.

    In turn, Danagoulian has been impressed by Rahon’s remarkable abilities: “Raising twins, doing research in applied nuclear physics, and flying coalition forces into Taliban territory while evading ground fire … [Jill] developed her own research project with minimal help from me and defended it brilliantly during the first part of the exam,” he says. 

    It seems that Rahon flies high no matter which mission she takes on. More