More stories

  • in

    MIT engineering students take on the heat of Miami

    Think back to the last time you had to wait for a bus. How miserable were you? If you were in Boston, your experience might have included punishing wind and icy sleet — or, more recently, a punch of pollen straight to the sinuses. But in Florida’s Miami-Dade County, where the effects of climate change are both drastic and intensifying, commuters have to contend with an entirely different set of challenges: blistering temperatures and scorching humidity, making long stints waiting in the sun nearly unbearable.

    One of Miami’s most urgent transportation needs is shared by car-clogged Boston: coaxing citizens to use the municipal bus network, rather than the emissions-heavy individual vehicles currently contributing to climate change. But buses can be a tough sell in a sunny city where humidity hovers between 60 and 80 percent year-round. 

    Enter MIT’s Department of Electrical Engineering and Computer Science (EECS) and the MIT Priscilla King Gray (PKG) Public Service Center. The result of close collaboration between the two organizations, class 6.900 (Engineering For Impact) challenges EECS students to apply their engineering savvy to real-world problems beyond the MIT campus.

    This spring semester, the real-world problem was heat. 

    Miami-Dade County Department of Transportation and Public Works Chief Innovation Officer Carlos Cruz-Casas explains: “We often talk about the city we want to live in, about how the proper mix of public transportation, on-demand transit, and other mobility solutions, such as e-bikes and e-scooters, could help our community live a car-light life. However, none of this will be achievable if the riders are not comfortable when doing so.” 

    “When people think of South Florida and climate change, they often think of sea level rise,” says Juan Felipe Visser, deputy director of equity and engagement within the Office of the Mayor in Miami-Dade. “But heat really is the silent killer. So the focus of this class, on heat at bus stops, is very apt.” With little tree cover to give relief at some of the hottest stops, Miami-Dade commuters cluster in tiny patches of shade behind bus stops, sometimes giving up when the heat becomes unbearable. 

    A more conventional electrical engineering course might use temperature monitoring as an abstract example, building sample monitors in isolation and grading them as a merely academic exercise. But Professor Joel Volman, EECS faculty head of electrical engineering, and Joe Steinmeyer, senior lecturer in EECS, had something more impactful in mind.

    “Miami-Dade has a large population of people who are living in poverty, undocumented, or who are otherwise marginalized,” says Voldman. “Waiting, sometimes for a very long time, in scorching heat for the bus is just one aspect of how a city population can be underserved, but by measuring patterns in how many people are waiting for a bus, how long they wait, and in what conditions, we can begin to see where services are not keeping up with demand.”

    Only after that gap is quantified can the work of city and transportation planners begin, Cruz-Casas explains: “We needed to quantify the time riders are exposed to extreme heat and prioritize improvements, including on-time performance improvements, increasing service frequency, or looking to enhance the tree canopy near the bus stop.” 

    Quantifying that time — and the subjective experience of the wait — proved tricky, however. With over 7,500 bus stops along 101 bus routes, Miami-Dade’s transportation network presents a considerable data-collection challenge. A network of physical temperature monitors could be useful, but only if it were carefully calibrated to meet the budgetary, environmental, privacy, and implementation requirements of the city. But how do you work with city officials — not to mention all of bus-riding Miami — from over 2,000 miles away? 

    This is where the PKG Center comes in. “We are a hub and a connector and facilitator of best practices,” explains Jill Bassett, associate dean and director of the center, who worked with Voldman and Steinmeyer to find a municipal partner organization for the course. “We bring knowledge of current pedagogy around community-engaged learning, which includes: help with framing a partnership that centers community-identified concerns and is mutually beneficial; identifying and learning from a community partner; talking through ways to build in opportunities for student learners to reflect on power dynamics, reciprocity, systems thinking, long-term planning, continuity, ethics, all the types of things that come up with this kind of shared project.”

    Through a series of brainstorming conversations, Bassett helped Voldman and Steinmeyer structure a well-defined project plan, as Cruz-Casas weighed in on the county’s needed technical specifications (including affordability, privacy protection, and implementability).

    “This course brings together a lot of subject area experts,” says Voldman. “We brought in guest lecturers, including Abby Berenson from the Sloan Leadership Center, to talk about working in teams; engineers from BOSE to talk about product design, certification, and environmental resistance; the co-founder and head of engineering from MIT spinout Butlr to talk about their low-power occupancy sensor; Tony Hu from MIT IDM [Integrated Design and Management] to talk about industrial design; and Katrina LaCurts from EECS to talk about communications and networking.”

    With the support of two generous donations and a gift of software from Altium, 6.900 developed into a hands-on exercise in hardware/software product development with a tangible goal in sight: build a better bus monitor.

    The challenges involved in this undertaking became apparent as soon as the 6.900 students began designing their monitors. “The most challenging requirement to meet was that the monitor be able to count how many people were waiting — and for how long they’d been standing there — while still maintaining privacy,” says Fabian Velazquez ’23 a recent EECS graduate. The task was complicated by commuters’ natural tendency to stand where the shade goes — whether beneath a tree or awning or snaking against a nearby wall in a line — rather than directly next to the bus sign or inside the bus shelter. “Accurately measuring people count with a camera — the most straightforward choice — is already quite difficult since you have to incorporate machine learning to identify which objects in frame are people. Maintaining privacy added an extra layer of constraint … since there is no guarantee the collected data wouldn’t be vulnerable.”

    As the groups weighed various privacy-preserving options, including lidar, radar, and thermal imaging, the class realized that Wi-Fi “sniffers,” which count the number of Wi-Fi enabled signals in the immediate area, were their best option to count waiting passengers. “We were all excited and ready for this amazing, answer-to-all-our-problems radar sensor to count people,” says Velasquez. “That component was extremely complex, however, and the complexity would have ultimately made my team use a lot of time and resources to integrate with our system. We also had a short time-to-market for this system we developed. We made the trade-off of complexity for robustness.” 

    The weather also posed its own set of challenges. “Environmental conditions were big factors on the structure and design of our devices,” says Yong Yan (Crystal) Liang, a rising junior majoring in EECS. “We incorporated humidity and temperature sensors into our data to show the weather at individual stops. Additionally, we also considered how our enclosure may be affected by extreme heat or potential hurricanes.”

    The heat variable proved problematic in multiple ways. “People detection was especially difficult, for in the Miami heat, thermal cameras may not be able to distinguish human body temperature from the surrounding air temperature, and the glare of the sun off of other surfaces in the area makes most forms of imaging very buggy,” says Katherine Mohr ’23. “My team had considered using mmWave sensors to get around these constraints, but we found the processing to be too difficult, and (like the rest of the class), we decided to only move forward with Wi-Fi/BLE [Bluetooth Low Energy] sniffers.”

    The most valuable component of the new class may well have been the students’ exposure to real-world hardware/software engineering product development, where limitations on time and budget always exist, and where client requests must be carefully considered.  “Having an actual client to work with forced us to learn how to turn their wants into more specific technical specifications,” says Mohr. “We chose deliverables each week to complete by Friday, prioritizing tasks which would get us to a minimum viable product, as well as tasks that would require extra manufacturing time, like designing the printed-circuit board and enclosure.”

    Play video

    Joel Voldman, who co-designed 6.900 (Engineering For Impact) with Joe Steinmeyer and MIT’s Priscilla King Gray (PKG) Public Service Center, describes how the course allowed students help develop systems for the public good. Voldman is the winner of the 2023 Teaching with Digital Technology Award, which is co-sponsored by MIT Open Learning and the Office of the Vice Chancellor. Video: MIT Open Learning

    Crystal Liang counted her conversations with city representatives as among her most valuable 6.900 experiences. “We generated a lot of questions and were able to communicate with the community leaders of this project from Miami-Dade, who made time to answer all of them and gave us ideas from the goals they were trying to achieve,” she reports. “This project gave me a new perspective on problem-solving because it taught me to see things from the community members’ point of view.” Some of those community leaders, including Marta Viciedo, co-founder of Transit Alliance Miami, joined the class’s final session on May 16 to review the students’ proposed solutions. 

    The students’ thoughtful approach paid off when it was time to present the heat monitors to the class’s client. In a group conference call with Miami-Dade officials toward the end of the semester, the student teams shared their findings and the prototypes they’d created, along with videos of the devices at work. Juan Felipe Visser was among those in attendance. “This is a lot of work,” he told the students following their presentation. “So first of all, thank you for doing that, and for presenting to us. I love the concept. I took the bus this morning, as I do every morning, and was battered by the sun and the heat. So I personally appreciated the focus.” 

    Cruz-Casas agreed: “I am pleasantly surprised by the diverse approach the students are taking. We presented a challenge, and they have responded to it and managed to think beyond the problem at hand. I’m very optimistic about how the outcomes of this project will have a long-lasting impact for our community. At a minimum, I’m thinking that the more awareness we raise about this topic, the more opportunities we have to have the brightest minds seeking for a solution.”

    The creators of 6.900 agree, and hope that their class helps more MIT engineers to broaden their perspective on the meaning and application of their work. 

    “We are really excited about students applying their skills within a real-world, complex environment that will impact real people,” says Bassett. “We are excited that they are learning that it’s not just the design of technology that matters, but that climate; environment and built environment; and issues around socioeconomics, race, and equity, all come into play. There are layers and layers to the creation and deployment of technology in a demographically diverse multilingual community that is at the epicenter of climate change.” More

  • in

    Paula Hammond wins faculty’s Killian Award for 2023-24

    Paula Hammond, a leading innovator in nanotechnology and head of MIT’s Department of Chemical Engineering, has been named the recipient of the 2023-2024 James R. Killian Jr. Faculty Achievement Award.

    Hammond, an MIT Institute Professor, was honored for her work designing novel polymers and nanomaterials, which have extensive applications in fields including medicine and energy.

    “Professor Hammond is a pioneer in nanotechnology research, with a program that spans from basic science to translational research in medicine and energy. She has introduced new approaches for the design and development of complex drug delivery systems for cancer treatment and non-invasive imaging,” according to the award citation, which was read at the May 17 faculty meeting by Laura Kiessling, the chair of the Killian Award Selection Committee and the Novartis Professor of Chemistry at MIT.

    Established in 1971 to honor MIT’s 10th president, James Killian, the Killian Award recognizes extraordinary professional achievements by an MIT faculty member.

    “I’ve been to past Killian Award lectures, and I’ve always thought these were the ultimate achievers at MIT in terms of their work and their science,” Hammond says. “I am incredibly honored and overwhelmed to be considered even close to a part of that group.”

    Hammond, who earned her bachelor’s degree from MIT in 1984, worked as an engineer before returning to the Institute four years later to earn a PhD, which she received in 1993. After two years as a postdoc at Harvard University, she returned to MIT again as a faculty member in 1995.

    “In a world where it isn’t always cool to be heavy into your science and your work, MIT was a place where I felt like I could just be completely myself, and that was an amazing thing,” she says.

    Since joining the faculty, Hammond has pioneered techniques for creating thin polymer films and other materials using layer-by-layer assembly. This approach can be used to build polymers with highly controlled architectures by alternately exposing a surface to positively and negatively charged particles.

    Hammond’s lab uses this technique to design materials for many different applications, including drug delivery, regenerative medicine, noninvasive imaging, and battery technology.

    Her accomplishments include designing nanoparticles that can zoom in on tumors and release their cargo when they associate with cancer cells. She has also developed nanoparticles and thin polymer films that can carry multiple drugs to a specific site and release the drugs in a controlled or staggered fashion. In recent years, much of that work has focused on potential treatments and diagnostics for ovarian cancer.

    “We’ve really had a focus on ovarian cancer over the past several years. My hope is that our work will move us in the direction of understanding how we can treat ovarian cancer, and, in collaboration with my colleagues, how we can detect it more effectively,” says Hammond, who is a member of MIT’s Koch Institute for Integrative Cancer Research.

    The award committee also cited Hammond’s record of service, both to MIT and the national scientific community. She currently serves on the President’s Council of Advisors on Science and Technology, and she is a former member of the U.S. Secretary of Energy Scientific Advisory Board. At MIT, Hammond chaired the Initiative on Faculty Race and Diversity, and co-chaired the Academic and Professional Relationships Working Group and the Implementation Team of the MIT response to the National Academies’ report entitled “Sexual Harassment of Women.”

    Among her many honors, Hammond is one of only 25 scientists who have been elected to the National Academies of Engineering, Sciences, and Medicine.

    Hammond has also been recognized for her dedication to teaching and mentoring. As a reflection of her excellence in those areas, Hammond was awarded the Irwin Sizer Award for Significant Improvements to MIT Education, the Henry Hill Lecturer Award in 2002, and the Junior Bose Faculty Award in 2000. She also co-chaired the recent Ad Hoc Committee on Faculty Advising and Mentoring, and has been selected as a “Committed to Caring” honoree for her work mentoring students and postdocs in her research group.

    “The Selection Committee is delighted to have this opportunity to honor Professor Paula Hammond, not only for her tremendous professional achievements and contributions, but also for her genuine warmth and humanity, her thoughtfulness and effective leadership, and her empathy and ethics. She is someone worth emulating. Indeed, simply put, she is the best of us,” the award committee wrote in its citation. More

  • in

    Solve at MIT 2023: Collaboration and climate efforts are at the forefront of social impact

    “The scale, complexity, the global nature of the problems we’re dealing with are so big that no single institution, industry, or country can deal with them alone,” MIT President Sally Kornbluth stated in her first remarks to the Solve community.

    Over 300 social impact leaders from around the world convened on MIT’s campus for Solve at MIT 2023 to celebrate the 2022 Solver class and to discuss some of the world’s greatest challenges and how we can tackle them with innovation, entrepreneurship, and technology.

    These challenges can be complicated and may even feel insurmountable, but Solve at MIT leaves us with the hope, tools, and connections needed to find solutions together.

    Hala Hanna, executive director of MIT Solve, shared what keeps her inspired and at the front line of social impact: “Optimism isn’t about looking away from the issues but looking right at them, believing we can create the solutions and putting in the work. So, anytime I need a dose of optimism, I look to the innovators we work with,” Hanna shared during the opening plenary, Unlocking our Collective Potential.

    Over the course of three days, more than 300 individuals from around the world convened to celebrate the 2022 Solver class, create partnerships that lead to progress, and address solutions to pressing world issues in real-time.

    Every technologist, philanthropist, investor, and innovator present at Solve at MIT left with their own takeaway, but three main themes seemed to underscore the overall discussions.

    Technology and innovation are as neutral as the makers

    Having bias is a natural part of what makes us human. However, being aware of our predispositions is necessary to transform our lived experiences into actionable solutions for others to benefit from. 

    We’ve largely learned that bias can be both unavoidable and applied almost instantly. Sangbae Kim, director of the Biomimetic Robotics Laboratory and professor of mechanical engineering at MIT, proved this through robotics demonstrations where attendees almost unanimously were more impressed with a back-flipping MIT robot compared to one walking in circles. As it turns out, it took one individual three days to program a robot to do a flip and over two weeks for a full team to program one to walk. “We judge through the knowledge and bias we have based on our lived experiences,” Kim pointed out.

    Bias and lived experiences don’t have to be bad things. The solutions we create based on our own lives are what matter. 

    2022 Solver Atif Javed, co-founder and executive director of Tarjimly, began translating for his grandmother as a child and learned about the struggles that come with being a refugee. This led him to develop a humanitarian language-translation application, which connects volunteer translators with immigrants, refugees, nongovernmental organizations (NGOs), and more, on demand. 

    Vanessa Castañeda Gill, 2022 Solver and co-founder and CEO of Social Cipher, transformed her personal experience with ADHD and autism to develop Ava, a video game empowering neuro-divergent youth and facilitating social-emotional learning.

    For Kelsey Wirth, co-founder and chair of Mothers Out Front, the experience of motherhood and the shared concerns for the well-being of children are what unite her with other moms. 

    Whitney Wolf Herd, founder and CEO of Bumble, shared that as a leader in technology and a person who witnessed toxic online spaces, she sees it as her responsibility to spearhead change. 

    During the plenary, “Bringing us Together or Tearing us Apart?” Wolf Herd asked, “What if we could use technology to be a force for positivity?” She shared her vision for equality and respect to be part of the next digital wave. She also called for technology leaders to join her to ensure “guardrails and ground rules” are in place to make sure this goal becomes a reality.

    Social innovation must be intersectional and intergenerational

    During Solve at MIT, industry leaders across sectors, cultures, ages, and expertise banded together to address pressing issues and to form relationships with innovators looking for support in real time.

    Adam Bly, founder and CEO of System Inc., discussed the interconnected nature of all things and why his organization is on a mission to show the links, “We’re seeing rising complexity in the systems that make up life on earth, and it impacts us individually and globally. The way we organize the information and data we need to make decisions about those systems [is highly] siloed and highly fragmented, and it impairs our ability to make decisions in the most systemic, holistic, rational way.”

    President and CEO of the National Resources Defense Council Manish Bapna shared his advocacy for cross-sector work: “Part of what I’ve seen really proliferate and expand in a good way over the past 10 to 15 years are collaborations involving startups in the private sector, governments, and NGOs. No single stakeholder or organization can solve the problem, but by coming together, they bring different perspectives and skills in ways that can create the innovation we need to see.”

    For a long time, STEM (science, technology, engineering, and math) were seen as the subjects that would resolve our complex issues, but as it turns out, art also holds a tremendous amount of power to transcend identity, borders, status, and concerns, to connect us all and aid us in global unity. Artists Beatie Wolfe, Norhan Bayomi, Aida Murad, and Nneka Jones showed us how to bring healing and awareness to topics like social and environmental injustice through their music, embroidery, and painting.

    The 2023 Solv[ED] Innovators, all age 24 or under, have solutions that are improving communication for individuals with hearing loss, transforming plastic waste into sustainable furniture, and protecting the Black birthing community, among other incredible feats.

    Kami Dar, co-founder and CEO of Uniti Networks, summarizes the value of interconnected problem-solving: “My favorite SDG [sustainable development goal] is SDG number 17— the power of partnership. Look for the adjacent problem-solvers and make sure we are not reinventing the wheel.”

    Relationships and the environment connect us all

    Solve is working to address global challenges on an ongoing basis connected to climate, economic prosperity, health, and learning. Many of these focus areas bleed into one another, but social justice and climate action served as a backdrop for many global issues addressed during Solve at MIT.

    “When we started addressing climate change, we saw it primarily as technical issues to bring down emissions … There’s inequality, there’s poverty, there are social tensions that are rising … We are not going to address climate change without addressing the social tensions that are embedded,” said Lewis Akenji, managing director of the Hot or Cool Institute. Akenji sees food, mobility, and housing as the most impactful areas to focus solutions on first.

    During the “Ensuring a Just Transition to Net Zero” plenary, Heather Clancy, vice president and editorial director at Greenbiz, asked panelists what lessons they have learned from their work. Janelle Knox Hayes, ​​professor of economic geography and planning at MIT, shared that listening to communities, especially front-line and Indigenous communities, is needed before deploying solutions to the energy crisis. “Climate work has this sense of urgency, like it rapidly has to be done … to do really engaged environmental justice work, we have to slow down and realize even before we begin, we need a long period of time to plan. But before we even do that, we have to rebuild relationships and trust and reciprocity … [This] will lead to better and longer-lasting solutions.”

    Hina Baloch, executive director and global head of climate change and sustainability strategy and communication at General Motors, asked Chéri Smith, founder of Indigenous Energy Initiative, to share her perspective on energy sovereignty as it relates to Indigenous communities. Smith shared, “Tribes can’t be sovereign if they’re relying on outside sources for their energy. We were founded to support the self-determination of tribes to revamp their energy systems and rebuild, construct, and maintain them themselves.”

    Smith shared an example of human and tribal-centered innovation in the making. Through the Biden administration’s national electronic vehicle (EV) initiative, Indigenous Energy Initiative and Native Sun Community Power Development will collaborate and create an inter-tribal EV charging network. “The last time we built out an electric grid, it deliberately skipped over tribal country. This time, we want to make sure that we not only have a seat at the table, but that we build out the tables and invite everyone to them,” said Smith.

    Solve at MIT led to meaningful discussions about climate change, intersectional and accessible innovation, and the power that human connection has to unite everyone. Entrepreneurship and social change are the paths forward. And although the challenges ahead of us can be daunting, with community, collaboration, and a healthy dose of bravery, global challenges will continue to be solved by agile impact entrepreneurs all around the world. 

    As Adrianne Haslet, a professional ballroom dancer and Boston Marathon bombing survivor, reminded attendees, “What will get you to the finish line is nothing compared to what got you to the start line.” More

  • in

    Exploring new sides of climate and sustainability research

    When the MIT Climate and Sustainability Consortium (MCSC) launched its Climate and Sustainability Scholars Program in fall 2022, the goal was to offer undergraduate students a unique way to develop and implement research projects with the strong support of each other and MIT faculty. Now into its second semester, the program is underscoring the value of fostering this kind of network — a community with MIT students at its core, exploring their diverse interests and passions in the climate and sustainability realms.Inspired by MIT’s successful SuperUROP [Undergraduate Research Opportunities Program], the yearlong MCSC Climate and Sustainability Scholars Program includes a classroom component combined with experiential learning opportunities and mentorship, all centered on climate and sustainability topics.“Harnessing the innovation, passion, and expertise of our talented students is critical to MIT’s mission of tackling the climate crisis,” says Anantha P. Chandrakasan, dean of the School of Engineering, Vannevar Bush Professor of Electrical Engineering and Computer Science, and chair of the MCSC. “The program is helping train students from a variety of disciplines and backgrounds to be effective leaders in climate and sustainability-focused roles in the future.”

    “What we found inspiring about MIT’s existing SuperUROP program was how it provides students with the guidance, training, and resources they need to investigate the world’s toughest problems,” says Elsa Olivetti, the Esther and Harold E. Edgerton Associate Professor in Materials Science and Engineering and MCSC co-director. “This incredible level of support and mentorship encourages students to think and explore in creative ways, make new connections, and develop strategies and solutions that propel their work forward.”The first and current cohort of Climate and Sustainability Scholars consists of 19 students, representing MIT’s School of Engineering, MIT Schwarzman College of Computing, School of Science, School of Architecture and Planning, and MIT Sloan School of Management. These students are learning new perspectives, approaches, and angles in climate and sustainability — from each other, MIT faculty, and industry professionals.Projects with real-world applicationsStudents in the program work directly with faculty and principal investigators across MIT to develop their research projects focused on a large scope of sustainability topics.

    “This broad scope is important,” says Desirée Plata, MIT’s Gilbert W. Winslow Career Development Professor in Civil and Environmental Engineering, “because climate and sustainability solutions are needed in every facet of society. For a long time, people were searching for a ‘silver bullet’ solution to the climate change problems, but we didn’t get to this point with a single technological decision. This problem was created across a spectrum of sociotechnological activities, and fundamentally different thinking across a spectrum of solutions is what’s needed to move us forward. MCSC students are working to provide those solutions.”

    Undergraduate student and physics major M. (MG) Geogdzhayeva is working with Raffaele Ferrari, Cecil and Ida Green Professor of Oceanography in the Department of Earth, Atmospheric and Planetary Sciences, and director of the Program in Atmospheres, Oceans, and Climate, on their project “Using Continuous Time Markov Chains to Project Extreme Events under Climate.” Geogdzhayeva’s research supports the Flagship Climate Grand Challenges project that Ferrari is leading along with Professor Noelle Eckley Selin.

    “The project I am working on has a similar approach to the Climate Grand Challenges project entitled “Bringing computation to the climate challenge,” says Geogdzhayeva. “I am designing an emulator for climate extremes. Our goal is to boil down climate information to what is necessary and to create a framework that can deliver specific information — in order to develop valuable forecasts. As someone who comes from a physics background, the Climate and Sustainability Scholars Program has helped me think about how my research fits into the real world, and how it could be implemented.”

    Investigating technology and stakeholders

    Within technology development, Jade Chongsathapornpong, also a physics major, is diving into photo-modulated catalytic reactions for clean energy applications. Chongsathapornpong, who has worked with the MCSC on carbon capture and sequestration through the Undergraduate Research Opportunities Program (UROP), is now working with Harry Tuller, MIT’s R.P. Simmons Professor of Ceramics and Electronic Materials. Louise Anderfaas, majoring in materials science and engineering, is also working with Tuller on her project “Robust and High Sensitivity Detectors for Exploration of Deep Geothermal Wells.”Two other students who have worked with the MCSC through UROP include Paul Irvine, electrical engineering and computer science major, who is now researching American conservatism’s current relation to and views about sustainability and climate change, and Pamela Duke, management major, now investigating the use of simulation tools to empower industrial decision-makers around climate change action.Other projects focusing on technology development include the experimental characterization of poly(arylene ethers) for energy-efficient propane/propylene separations by Duha Syar, who is a chemical engineering major and working with Zachary Smith, the Robert N. Noyce Career Development Professor of Chemical Engineering; developing methods to improve sheet steel recycling by Rebecca Lizarde, who is majoring in materials science and engineering; and ion conduction in polymer-ceramic composite electrolytes by Melissa Stok, also majoring in materials science and engineering.

    Melissa Stok, materials science and engineering major, during a classroom discussion.

    Photo: Andrew Okyere

    Previous item
    Next item

    “My project is very closely connected to developing better Li-Ion batteries, which are extremely important in our transition towards clean energy,” explains Stok, who is working with Bilge Yildiz, MIT’s Breene M. Kerr (1951) Professor of Nuclear Science and Engineering. “Currently, electric cars are limited in their range by their battery capacity, so working to create more effective batteries with higher energy densities and better power capacities will help make these cars go farther and faster. In addition, using safer materials that do not have as high of an environmental toll for extraction is also important.” Claire Kim, a chemical engineering major, is focusing on batteries as well, but is honing in on large form factor batteries more relevant for grid-scale energy storage with Fikile Brushett, associate professor of chemical engineering.Some students in the program chose to focus on stakeholders, which, when it comes to climate and sustainability, can range from entities in business and industry to farmers to Indigenous people and their communities. Shivani Konduru, an electrical engineering and computer science major, is exploring the “backfire effects” in climate change communication, focusing on perceptions of climate change and how the messenger may change outcomes, and Einat Gavish, mathematics major, on how different stakeholders perceive information on driving behavior.Two students are researching the impact of technology on local populations. Anushree Chaudhuri, who is majoring in urban studies and planning, is working with Lawrence Susskind, Ford Professor of Urban and Environmental Planning, on community acceptance of renewable energy siting, and Amelia Dogan, also an urban studies and planning major, is working with Danielle Wood, assistant professor of aeronautics and astronautics and media arts and sciences, on Indigenous data sovereignty in environmental contexts.

    “I am interviewing Indigenous environmental activists for my project,” says Dogan. “This course is the first one directly related to sustainability that I have taken, and I am really enjoying it. It has opened me up to other aspects of climate beyond just the humanity side, which is my focus. I did MIT’s SuperUROP program and loved it, so was excited to do this similar opportunity with the climate and sustainability focus.”

    Other projects include in-field monitoring of water quality by Dahlia Dry, a physics major; understanding carbon release and accrual in coastal wetlands by Trinity Stallins, an urban studies and planning major; and investigating enzyme synthesis for bioremediation by Delight Nweneka, an electrical engineering and computer science major, each linked to the MCSC’s impact pathway work in nature-based solutions.

    The wide range of research topics underscores the Climate and Sustainability Program’s goal of bringing together diverse interests, backgrounds, and areas of study even within the same major. For example, Helena McDonald is studying pollution impacts of rocket launches, while Aviva Intveld is analyzing the paleoclimate and paleoenvironment background of the first peopling of the Americas. Both students are Earth, atmospheric and planetary sciences majors but are researching climate impacts from very different perspectives. Intveld was recently named a 2023 Gates Cambridge Scholar.

    “There are students represented from several majors in the program, and some people are working on more technical projects, while others are interpersonal. Both approaches are really necessary in the pursuit of climate resilience,” says Grace Harrington, who is majoring in civil and environmental engineering and whose project investigates ways to optimize the power of the wind farm. “I think it’s one of the few classes I’ve taken with such an interdisciplinary nature.”

    Shivani Konduru, electrical engineering and computer science major, during a classroom lecture

    Photo: Andrew Okyere

    Previous item
    Next item

    Perspectives and guidance from MIT and industry expertsAs students are developing these projects, they are also taking the program’s course (Climate.UAR), which covers key topics in climate change science, decarbonization strategies, policy, environmental justice, and quantitative methods for evaluating social and environmental impacts. The course is cross-listed in departments across all five schools and is taught by an experienced and interdisciplinary team. Desirée Plata was central to developing the Climate and Sustainability Scholars Programs and course with Associate Professor Elsa Olivetti, who taught the first semester. Olivetti is now co-teaching the second semester with Jeffrey C. Grossman, the Morton and Claire Goulder and Family Professor in Environmental Systems, head of the Department of Materials Science and Engineering, and MCSC co-director. The course’s writing instructors are Caroline Beimford and David Larson.  

    “I have been introduced to a lot of new angles in the climate space through the weekly guest lecturers, who each shared a different sustainability-related perspective,” says Claire Kim. “As a chemical engineering major, I have mostly looked into the technologies for decarbonization, and how to scale them, so learning about policy, for example, was helpful for me. Professor Black from the Department of History spoke about how we can analyze the effectiveness of past policy to guide future policy, while Professor Selin talked about framing different climate policies as having co-benefits. These perspectives are really useful because no matter how good a technology is, you need to convince other people to adopt it, or have strong policy in place to encourage its use, in order for it to be effective.”

    Bringing the industry perspective, guests have presented from MCSC member companies such as PepsiCo, Holcim, Apple, Cargill, and Boeing. As an example, in one class, climate leaders from three companies presented together on their approaches to setting climate goals, barriers to reaching them, and ways to work together. “When I presented to the class, alongside my counterparts at Apple and Boeing, the student questions pushed us to explain how can collaborate on ways to achieve our climate goals, reflecting the broader opportunity we find within the MCSC,” says Dana Boyer, sustainability manager at Cargill.

    Witnessing the cross-industry dynamics unfold in class was particularly engaging for the students. “The most beneficial part of the program for me is the number of guest lectures who have come in to the class, not only from MIT but also from the industry side,” Grace Harrington adds. “The diverse range of people talking about their own fields has allowed me to make connections between all my classes.”Bringing in perspectives from both academia and industry is a reflection of the MCSC’s larger mission of linking its corporate members with each other and with the MIT community to develop scalable climate solutions.“In addition to focusing on an independent research project and engaging with a peer community, we’ve had the opportunity to hear from speakers across the sustainability space who are also part of or closely connected to the MIT ecosystem,” says Anushree Chaudhuri. “These opportunities have helped me make connections and learn about initiatives at the Institute that are closely related to existing or planned student sustainability projects. These connections — across topics like waste management, survey best practices, and climate communications — have strengthened student projects and opened pathways for future collaborations.

    Basuhi Ravi, MIT PhD candidate, giving a guest lecture

    Photo: Andrew Okyere

    Previous item
    Next item

    Having a positive impact as students and after graduation

    At the start of the program, students identified several goals, including developing focused independent research questions, drawing connections and links with real-world challenges, strengthening their critical thinking skills, and reflecting on their future career ambitions. A common thread throughout them all: the commitment to having a meaningful impact on climate and sustainability challenges both as students now, and as working professionals after graduation.“I’ve absolutely loved connecting with like-minded peers through the program. I happened to know most of the students coming in from various other communities on campus, so it’s been a really special experience for all of these people who I couldn’t connect with as a cohesive cohort before to come together. Whenever we have small group discussions in class, I’m always grateful for the time to learn about the interdisciplinary research projects everyone is involved with,” concludes Chaudhuri. “I’m looking forward to staying in touch with this group going forward, since I think most of us are planning on grad school and/or careers related to climate and sustainability.”

    The MCSC Climate and Sustainability Scholars Program is representative of MIT’s ambitious and bold initiatives on climate and sustainability — bringing together faculty and students across MIT to collaborate with industry on developing climate and sustainability solutions in the context of undergraduate education and research. Learn about how you can get involved. More

  • in

    Volunteer committee helps the MIT community live and work sustainably

    April 22 marks the arrival of Earth Day, which provides all of us with a good reason to think of ways to live more sustainably. For more than 20 years, the MIT Working Green Committee has helped community members do just that by encouraging the reuse and recycling of possessions.

    Made up entirely of volunteers, the committee has played an important role in promoting more sustainable operations at MIT and raising awareness of the importance of conservation.

    “We try to provide a place for people to learn how to live and work in a more environmentally friendly way,” says committee co-chair Rebecca Fowler, a senior administrative assistant in MIT’s Office of Sustainability.

    The committee hosts regular Choose to Reuse events to give MIT’s community members a chance to donate unwanted items — or find free things that just might become prized possessions. It also provides resources to help host more sustainable events, make more sustainable purchasing decisions, and learn more about recycling.

    “The recycling industry is very frustrating, so people are always asking what to do,” Fowler says. “They feel like they make the wrong decisions and just want to know how to do it. We get a lot of questions, and we’re always there to help find answers.”

    Committee members say they’ve realized devoting a little time each month to things like recycling education, and hosting events can make a big difference in reducing waste. In last month’s Choose to Reuse event, more than 100 people dropped off thousands of items including clothing, housewares, and office supplies. MIT’s always-active Reuse email lists, which the committee encourages community members to join, are another great way to pass gently used items to others who can give them new life.

    “The goal is to keep things out of landfills, and the Choose to Reuse event shows you immediate results,” says committee co-chair Gianna Hernandez-Figueroa, who is the assistant to the director at the MIT AgeLab. “It’s inspiring because people are excited to put things in the hands of someone who is going to repurpose it. It’s a circular event that’s really beautiful.”

    Choose to Reuse events are typically on the third Thursday of every other month, although the next one — the last for the spring semester — is on Monday, April 24.

    The committee is one of the only groups on campus run by support staff, whose responsibilities involve clerical duties, data processing, and library and accounting functions, among other things. It is a subcommittee of the Working Group for Support Staff.

    The committee began as the Working Group on Recycling in 2000 at a time when MIT’s recycling rate was around 11 percent. By 2006, MIT had reached a 40 percent recycling rate and received a Go Green Award from the City of Cambridge. That year the committee earned an MIT Excellence Awards for its work.

    Around 2011, the group started hosting Choose to Reuse events, which became an instant success.

    “I really believe in the gift economy, specifically in academic settings where you have a lot of international students,” Hernandez-Figueroa says. “Plus, Boston is an expensive city!”

    For a long time, the group was run by Ruth Davis, who served as MIT’s manager for recycling and materials management and retired last year. Since Davis left, others have stepped up.

    “A lot of the volunteers have been around since the first Choose to Reuse event 13 years ago,” Fowler says, adding that the committee is always looking for more volunteers. “They’re all very committed to the event and to the cause.”

    The organization is also a way for support staff to gain new skills. Fowler credits her experience working on the committee with improving her project management and website design abilities.

    “We really emphasize capacity building,” Fowler says. “If there’s a skill a volunteer would like to develop, we can explore ways to do that through the committee. That’s something I’d like to continue: finding people’s strengths and helping them build their careers.”

    Overall, Fowler says the committee aligns with MIT’s commitment to make an impact.

    The group’s long history “shows a commitment to environmentalism and sustainability and a yearning to do more beyond what is in your job responsibilities,” she says. “It really shows the commitment to volunteerism of MIT’s staff members.” More

  • in

    Podcast: Curiosity Unbounded, Episode 1 — How a free-range kid from Maine is helping green-up industrial practices

    The Curiosity Unbounded podcast is a conversation between MIT President Sally Kornbluth and newly-tenured faculty members. President Kornbluth invites us to listen in as she dives into the research happening in MIT’s labs and in the field. Along the way, she and her guests discuss pressing issues, as well as what inspires the people running at the world’s toughest challenges at one of the most innovative institutions on the planet.

    In this episode, President Kornbluth sits down with Desirée Plata, a newly tenured associate professor of civil and environmental engineering. Her work focuses on making industrial processes more environmentally friendly, and removing methane — a key factor in global warming — from the air.

    FULL TRANSCRIPT:

    Sally Kornbluth: Hello, I’m Sally Kornbluth, president of MIT, and I’m thrilled to welcome you to this MIT community podcast, Curiosity Unbounded. In my first few months at MIT, I’ve been particularly inspired by talking with members of our faculty who recently earned tenure. Like their colleagues, they are pushing the boundaries of knowledge. Their passion and brilliance, their boundless curiosity, offer a wonderful glimpse of the future of MIT.

    Today, I’m talking with Desirée Plata, associate professor of civil and environmental engineering. Desirée’s work is focused on predicting the environmental impact of  industrial processes and translating that research to real-world technologies. She describes herself as an environmental chemist. Tell me a little more about that. What led you to this work either personally or professionally?

    Desirée Plata: I guess I always loved chemistry, but before that, I was just a kid growing up in the state of Maine. I like to describe myself as a free-range kid. I ran around and talked to the neighbors and popped into the local businesses. One thing I observed in my grandparents’ town was that there were a whole lot of sick people. Not everybody, but maybe every other house. I remember being about seven or eight years old and driving home with my mom to our apartment one day and saying, “It’s got to be something everybody shares. The water, maybe something in the food or the air.” That was really my first environmental hypothesis.

    Sally: You had curiosity unbounded even when you were a child. 

    Desirée: That’s right. I spent the next several decades trying to figure it out and ultimately discovered that there was something in the water where my grandmother lived. In that time, I had earned a chemistry degree and came to MIT to do my grad work at MIT in the Woods Hole Oceanographic in environmental chemistry and chemical oceanography.

    Sally: You saw a pattern, you thought about it, and it took some time to get the tools to actually address the questions, but eventually you were there. That is great. As I understand it, you have two distinct areas of interest. One is getting methane out of the atmosphere to mitigate climate warming, and the other is making industrial processes more environmentally sound. Do you see these two as naturally connected?

    Desirée: I’ll start by saying that when I was young and thinking about this chemical contamination that I hypothesized was there in my grandmother’s neighborhood, one of the things—when I finally found out there was a Superfund site there—one of the things I discovered was that it was owned by close family friends. They were our neighbors. The decisions that they made as part of their industrial practice were just part of standard operating procedure. That’s when it clicked for me that industry is just going along, hoping to innovate to make the world a better place. When these environmental impacts occur, it’s often because they didn’t have enough information or know the right questions to ask. I was in graduate school at the time and said, “I’m at one of the most innovative places on planet Earth. I want to go knock on the doors of other labs and say, ‘What are you making and how can I help you make it better?'”

    If we all flash back to around 2008 or so, hydraulic fracturing was really taking off in this country and there was a lot of hypotheses about the number of chemicals being used in that process. It turns out that there are many hundreds of chemicals being used in the hydraulic fracturing process. My group has done an immense amount of work to study every groundwater we could get our hands on across the Appalachian region of the eastern United States, which is where a lot of this development took place and is still taking place. One of the things we discovered was that some of the biggest environmental impacts are actually not from the injected chemicals but from the released methane that’s coming into the atmosphere. Methane is growing at an exorbitant rate and is responsible for about as much warming as CO2 over the next 10 years. I started realizing that we, as engineers and scientists, would need a way to get these emissions back. To take them back from the atmosphere, if you will. To abate methane at very dilute concentrations. That’s what led to my work in methane abatement and methane mitigation.

    Sally: Interesting. Am I wrong about when we think about the impact of agriculture on the environment, that methane is a big piece of that as well?

    Desirée: You are certainly not wrong there. If you look at anthropogenic emissions or human-derived emissions, more than half are associated with agricultural practices. The cultivation of meat and dairy in particular. Cows and sheep are what are known as enteric methane formers. Part of their digestion process actually leads to the formation of methane. It’s estimated that about 28% of the global methane cycle is associated with enteric methane formers in our agricultural practices as humans. There’s another 18% that’s associated with fossil energy extraction.

    Sally: That’s really interesting. Thinking about your work then, particularly in agriculture, part of the equation has got to be how people live, what they eat, and production of methane as part of the sustainability of agriculture. The other part then seems to be how you actually, if you will, mitigate what we’ve already bought in terms of methane in the environment.

    Desirée: Yes, this is a really important topic right now.

    Sally: Tell me a little bit about, maybe in semi-lay terms, about how you think about removal of methane from the environment.

    Desirée: Recently, over 120 countries signed something called the Global Methane Pledge, which is essentially a pledge to reduce 45% of methane emissions by 2030. If you can do that, you can save about 0.5 degree centigrade warming by 2100. That’s a full third of the 1.5 degrees that politicians speak about. We can argue about whether or not that’s really the full extent of the warming we’ll see, but the point is that methane impacts near-term warming in our lifetimes. It’s one of the unique greenhouse gases that can do that.

    It’s called a short-lived climate pollutant. What that means is that it lives in the atmosphere for about 12 years before it’s removed. That means if you take it out of the atmosphere, you’re going to have a rapid reduction in the total warming of planet Earth, the total radiative forcing. Your question more specifically was about, how do we grapple with this? We’ve already omitted so much methane. How do we think about, as technologists, getting it back? It’s a really hard problem, actually. In the air in the room in front of us that we’re breathing, only two of the million molecules in front of us are methane. 417 or so are CO2. If you think direct air capture of CO2 is hard, direct air capture of methane is that much harder.

    The other thing that makes methane a challenge to abate is that activating the bonds in methane to promote its destruction or its removal is really, really tricky. It’s one of the smallest carbon-based molecules. It doesn’t have what we call “Van der Waals interactions”—there are no handles to grab onto. It’s not polar. That first destruction and that first C-H bond is what we as chemists would call “spin forbidden”. It’s hard to do and it takes a lot of energy to do that. One of the things we’ve developed in my lab is a catalyst that’s based on earth-abundant materials. There are some other groups at MIT that also work on these same types of materials. It’s able to convert methane at very low levels, down to the levels that we’re breathing in this room right now.

    Sally: That’s fascinating. do you see that as being something that will move to practical application?

    Desirée: One of the things that we’re doing to try to translate this to meaningful applications for the world is to scale the technology. We’re fortunate to have funding from several different sources, some private philanthropy groups and the United States Department of Energy. They’re helping us over the next three years try to scale this in places where it might matter most. Perhaps counterintuitive places, coal mines. Coal mines emit a lot of methane and it happens to be enriched in such a way that it releases energy. It might release enough energy to actually pay for the technology itself. Another place we’re really focused on is dairy.

    Sally: Really interesting. You mentioned at the beginning that you were at MIT, you left, you came back. I’m just wondering — I’m new to MIT and, obviously, I’m just learning it — but how do you think about the MIT community or culture in a way that is particularly helpful in advancing your work?

    Desirée: For me, I was really excited to come back to MIT because it is such an innovative place. If you’re someone who says, “I want to change the way we invent materials and processes,” it’s one of the best places you could possibly be. Because you can walk down the hall and bump into people who are making new things, new molecules, new materials, and say, “How can we incorporate the environment into our decision-making process?”

    As engineering professors, we’re guilty of teaching our students to optimize for performance and cost. They go out into their jobs, and guess what? That’s what they optimize for. We want to transition, and we’re at a point in our understanding of the earth system, that we could actually start to incorporate environmental objectives into that design process.

    Engineering professors of tomorrow should, say, optimize for performance and cost and the environment. That’s really what made me very excited to come back to MIT. Not just the great research that’s going on in every nook and corner of the Institute, but also thinking about how we might influence engineering education so that this becomes part of the fabric of how humans invent new practices and processes.

    Sally: If you look back in your past, you talked about your childhood in Maine and observing these patterns. You talked about your training and how you came to MIT and have really been, I think, thriving here. Was there a path not taken, a road not taken if you hadn’t become an environmental chemist? Was there something else you really wanted to do?

    Desirée: That’s such a great question. I have a lot of loves. I love the ocean. I love writing. I love teaching and I’m doing that, so I’m lucky there. I also love the beer business. My family’s in the beer business in Maine. I thought, as a biochemist, I would always be able to fall back on that if I needed to. My family’s not in the beer business because we’re particularly good at making beer, but because they’re interested in making businesses and creating opportunities for people. That’s been an important part of our role in the state of Maine.

    MIT really supports that side of my mind, as well. I love the entrepreneurial ecosystem that exists here. I love that when you bump into people and you have a crazy idea, instead of giving you all the reasons it won’t work, an MIT person gives you all the reasons it won’t work and then they say, “This is how we’re going to make it happen.” That’s really fun and exciting. The entrepreneurship environment that exists here is really very supportive of the translation process that has to happen to get something from the lab to the global impact that we’re looking for. That supports my mission just so much. It’s been a joy.

    Sally: That’s excellent. You weren’t actually tempted to become a yeast cell biologist in the service of beer production?

    Desirée: No, no, but I joke, “They only call me when something goes really bad.”

    Sally: That’s really funny. You experienced MIT as a student, now you’re experiencing it as a faculty member. What do you wish there was one thing about each group that the other knew?

    Desirée: I wish that, speaking with my faculty hat on, that the students knew just how much we care about them. I know that some of them do and really appreciate that. When I send an email at 3:00 in the morning, I get emails back from my colleagues at 3:00 in the morning. We work around the clock and we don’t do that for ourselves. We do that to make great sustainable systems for them and to create opportunity for them to propel themselves forward. To me, that’s one of the common unifying features of an MIT faculty member. We care really deeply about the student experience.

    As a student, I think that we’re hungry to learn. We wanted to really see the ins and outs of operation, how to run a research lab. I think sometimes faculty try to spare their students from that and maybe it’s okay to let them know just what’s going on in all those meetings that we sit through.

    Sally: That’s interesting. I think there are definitely things you find out when you become a faculty member and you’re like, “Oh, so this is what they were thinking.” With regard to the passion of the faculty about teaching, it really is remarkable here. I really think some of the strongest researchers here are so invested in teaching and you see that throughout the community.

    Desirée: It’s a labor of love for sure.

    Sally: Exactly. You talked a little bit about the passion for teaching. Were there teachers along your way that you really think impacted you and changed the direction of what you’re doing?

    Desirée: Yes, absolutely. I could name all of them. I had a kindergarten teacher who would stay after school and wait for my mom to be done work. I was raised by a single mom and her siblings and that was amazing. I had a fourth-grade teacher who helped promote me through school and taught me to love the environment. If you ask fourth graders if they saw any trash on the way to school, they’ll all say, “No.” You take them outside and give them a trash bag to fill up and it’ll be full by the end of the hour. This is something I’ve done with students in Cambridge to this day and this was many years on now. She really got me aware and thinking about environmental problems and how we might change systems.

    Sally: I think it’s really great for faculty to think about their own experiences, but also to hear people who become faculty members reflect on the great impact their own teachers had. I think the things folks are doing here are going to reverberate in their student’s minds for many, many years. It also is interesting in terms of thinking about the pipeline and when you get students interested in science. You talk about your own early years of education that really ultimately had an impact.

    It’s funny, when I became president at MIT, I got a note from my second-grade teacher. I remembered her like it was yesterday. These are people that really had an impact. It’s great that we honor teaching here at MIT and we acknowledge that this is going to have a really big impact on our student’s lives.

    Desirée: Yes, absolutely. It’s a privilege to teach these top talents. At many schools around the country, it’s just young people that have so much potential. I feel like when we walk into that classroom, we’ve got to bring inspiration with us along with the tangible, practical skills. It’s been great to see what they become.

    Sally: Tell me a little bit about what you do outside of work. When you ask faculty hobbies, sometimes I go, “Hobbies?” There must be something you spend your time on. I’m just curious.

    Desirée: We’re worried we’re going to fail this part of the Q&A. Yes. I have four children.

    Sally: You don’t need any hobbies then.

    Desirée: I know. It’s been the good graces of the academic institution. Just for those people who are out there thinking about going into academia and say, “It’s too hard. I couldn’t possibly have the work and life that I seek if I go into academia,” I don’t think that’s true anymore. I know there are a lot of women who paved the way for me, and men for that matter. I remember my PhD advisors being fully present for their children. I’ve been very fortunate to be able to do the same thing. I spend lots of time taking care of them right now. But we love being out in nature hiking, skiing, and kayaking and enjoying what the Earth gives us.

    Sally: It’s also fun to see that “aha” moment in your children when they start to learn a little bit about science and they get the idea that you really can discover things by observing closely. I don’t know if they realize they benefit from having parents who think that way, but I think that also stays with them through their lives.

    Desirée: My son is just waiting for the phone call to be able to be part of MIT’s toy design class.

    Sally: That’s fantastic.

    Desirée: As an official evaluator. Yes.

    Sally: In the last five years or so, we’ve been through the pandemic. In practical terms, how you think about your work and your life, what do you do that has improved your life? I always hate the words of “work-life balance” because they’re so intermeshed, but just for the broader community, how have you thought about that?

    Desirée: I’ve been thinking about my Zoom world and how I am still able to do quite a bit of talking to my colleagues and advancing the research mission and talking to my students that I wouldn’t have been able to do. Even pre-pandemic, it would’ve been pretty hard. We’re all really trained to interact more efficiently through these media and mechanisms. I know how to give a good talk on Zoom, for better or worse. I think that that’s been something that has been great.

    In the context of environment, I think a lot of us—this might be cliched at this point—but realize that there are things that we don’t need to get up on a plane for and perhaps we can work on the computer and interact in that way. I think that’s awesome. There’s not much that can replace real, in-person human interaction, but if it means that you can juggle a few more balls in the air and have your family feel valued and yourself feel valued while you’re also valuing your work that thing that is igniting for you, I think that’s a great outcome.

    Sally: I think that’s right. Unfortunately, though, your kids may never know the meaning of a snow day.

    Desirée: You got it.

    Sally: They may be on a remote school whenever we would’ve been home building snow forts.

    Desirée: As a Mainer, I appreciate this fully, and almost had to write a note this year. Just let them go outside.

    Sally: Exactly, exactly. As we’re wrapping up, just thinking about the future of climate work and coming back to the science, I think you’ve thought a lot about what you’re doing and impact on the climate. I’m just wondering, as you look around MIT, where you think we might have some of the greatest impact? How do you think about what some of your colleagues are doing? Because I’m starting to think a lot about what MIT’s real footprint in this area is going to be.

    Desirée: The first thing I want to say is that I think for a long time, the world’s been looking for a silver bullet climate solution. That is not how we got into this problem and it’s not how we’re going to get out of it.

    Sally: Exactly.

    Desirée: We need a thousand BBs. Fortunately, at MIT, there are many thousands of minds that all have something to contribute. I like to impose, especially on the undergraduates and the graduate researchers, our student population out there, think, “How can I bring my talents to bear on this really most pressing and important problem that’s facing our world right now?” I would say just whatever your skill is and whatever your passion is, try to find a way to marry those things together and find a way to have impact.

    The other thing I would say is that we think really differently about problems. That’s what might be needed. If you’re going to break systems, you need to come at it from a different perspective or a different angle. Encouraging people to think differently, as this community does so well, I think is going to be an enormous asset in bringing some solutions to the climate change challenge.

    Sally: Excellent. If you look back over your career, and even earlier than when you became a faculty member, what do you think the best advice is that you’ve ever been given?

    Desirée: There’s so much. I’ve been fortunate to have a lot of really great mentors. What is the best piece of advice? I think this notion of balancing work and not work. I’ve gotten two really key points of advice. One is about travel. I think that ties into this concept of COVID and whether now we can actually go remote for a lot of things. It was from an MIT professor. He said, “You know, the biggest thing you can do to protect your personal life and your life with your family is to say no and travel less. Travel eats up time on the front, in the back, and it’s your family that’s paying the price for that, so be really judicious about your choices.” That was excellent advice for me.

    Another female faculty member of mine said, “You have to prioritize your family like they are an appointment on your calendar and it’s okay when you do that.” I think those have been really helpful for me as I navigate and struggle with my own very mission-oriented self where I want to keep working and put my focus there, but know that it’s okay to maybe go for a walk and talk to real people.

    Sally: Go wild.

    Desirée: Yes, that’s right.

    Sally: This issue, actually, of saying no, not only to travel but thinking about where you really place your efforts and when there’s a finite amount of time. When I think about this—and advising junior faculty in terms of service—every faculty member is going to be asked way more things than they’re going to want to do. Yet, their service to the department, service to the Institute, is important, not only for their advancement but in how we create a community. I always advise people to say yes to the things they’re truly interested in and they’re passionate about, and there will be enough of those things.

    Desirée: I have a flowchart for when to say yes and when to say no. Having an interest is at the top of the list and then feeling like you’re going to have an impact. That’s something I think, when we do this service at MIT, we really are able to have an impact. It’s not just the oldest people in the room that get to drive the bus. They’re really listening and want to hear that perspective from everybody.

    Sally: That’s excellent. Thanks again, Desirée. I really enjoyed that conversation. To our audience, thanks again for listening to Curiosity Unbounded. I very much hope you’ll all join us again. I’m Sally Kornbluth. Stay curious. More

  • in

    Recycling plastics from research labs

    In 2019, MIT’s Environment, Health, and Safety (EHS) Office collaborated with several research labs in the Department of Biology to determine the feasibility of recycling clean lab plastics. Based on early successes with waste isolation and plastics collection, EHS collaborated with GreenLabs Recycling, a local startup, to remove and recycle lab plastics from campus. It was a huge success.

    Today, EHS spearheads the campus Lab Plastics Recycling Program, and its EHS technicians regularly gather clean lab plastics from 212 MIT labs, transferring them to GreenLabs for recycling. Since its pilot stage, the number of labs participating in the program has grown, increasing the total amount of plastic gathered and recycled. In 2020, EHS collected 170 pounds of plastic waste per week from participating labs. That increased to 250 pounds per week in 2021. In 2022, EHS collected a total of 19,000 pounds, or 280 pounds of plastic per week.

    Joanna Buchthal, a research assistant with the MIT Media Lab, indicates that, prior to joining the EHS Lab Plastics Recycling Program, “our laboratory was continuously troubled by the substantial volume of plastic waste we produced and disheartened by our inability to recycle it. We frequently addressed this issue during our group meetings and explored various ways to repurpose our waste, yet we never arrived at a viable solution.”

    The EHS program now provides a solution to labs facing similar challenges with plastics use. After pickup and removal, the plastics are shredded and sold as free stock for injection mold product manufacturing. Buchthal says, “My entire lab is delighted to recycle our used tip boxes and transform them into useful items for other labs!”

    Recently, GreenLabs presented EHS with a three-gallon bucket that local manufacturers produced from 100 percent recycled plastic gathered from MIT labs. No fillers or additives were used in its production.

    Keeping it clean

    The now-growing EHS service and operation started as a pilot. In June 2019, MIT restricted which lab-generated items could be placed in single-stream recycling. MIT’s waste vendors were no longer accepting possibly contaminated waste, such as gloves, pipette tip boxes, bottles, and other plastic waste typically generated in biological research labs. The waste vendors would audit MIT’s single-stream recycling and reject items if they observed any contamination.

    Facing these challenges, the EHS coordinator for biology, John Fucillo, and several EHS representatives from the department met with EHS staff to brainstorm potential recycling solutions. Ensuring the decontamination of the plastic and coordinating its removal in an efficient way were the primary challenges for the labs, says Fucillo, who shared his and lab members’ concerns about the amount of plastic being thrown away with Mitch Galanek, EHS associate director for the Radiation Protection Program. Galanek says, “I immediately recognized the frustration expressed by John and other lab contacts as an opportunity to collaborate.”

    In July 2019, Galanek and a team of EHS technicians began segregating and collecting clean plastic waste from several labs within the biology department. EHS provided the labs with collection containers, and its technicians managed the waste removal over a four-month period, which produced a snapshot of the volume and type of waste generated. An audit of the waste determined that approximately 80 percent of the clean plastic waste generated was empty pipette tip boxes and conical tube racks.

    Based on these data, EHS launched a lab plastics recycling pilot program in November 2019. Labs from the Department of Biology and the Koch Institute for Integrative Cancer Research were invited to participate by recycling their clean, uncontaminated pipette tip boxes and conical tube racks. In addition to providing these labs with collection boxes and plastic liners, EHS also developed an online waste collection request tool to submit plastic pickup requests. EHS also collected the waste containers once they were full.

    Assistant professor of biology Seychelle Vos joined the pilot program as soon as she started her lab in fall 2019. Vos shares that “we already use pipette tips boxes that produce minimal waste, and this program allows us to basically recycle any part of the box except for tips. Pipette boxes are a significant source of plastic waste. This program helps us to be more environmentally and climate friendly.” 

    Given the increased participation in the program, EHS technician Dave Pavone says that plastic pickup is now a “regular component of our work schedules.”

    Together, the EHS technicians, commonly known as “techs,” manage the pickup of nearly 300 plastic collection containers across campus. Normand Desrochers, one of the EHS techs, shares that each morning he plans his pickup route “to get the job done efficiently.” While weekly pickups are a growing part of their schedules, Desrochers notes that everyone has been “super appreciative in what we do for their labs. And what we do makes their job that much easier, being able to focus on their research.”

    Barbara Karampalas, a lab operations manager within the Department of Biological Engineering, is one of many to express appreciation for the program: “We have a fairly large lab with 35 researchers, so we generate a lot of plastic waste … [and] knowing how many tip boxes we were using concerned me. I really appreciate the effort EHS has made to implement this program to help us reduce our impact on the environment.” The program also “makes people in the lab more aware of the issue of plastic waste and MIT’s commitment to reduce its impact on the environment,” says Karampalas.

    Looking ahead

    MIT labs continue to enthusiastically embrace the EHS Lab Plastics Recycling Program: 112 faculty across 212 labs are currently participating in the program. While only empty pipette tip boxes and conical tube racks are currently collected, EHS is exploring which lab plastics could be manufactured into products for use in the labs and repeatedly recycled. Specifically, the EHS Office is considering whether recycled plastic could be used to produce secondary containers for collecting hazardous waste and benchtop transfer containers used for collecting medical waste. As Seychelle notes, “Most plastics cannot be recycled in the current schemes due to their use in laboratory science.”

    Says Fucillo, “Our hope is that this program can be expanded to include other products which could be recycled from the wet labs.” John MacFarlane, research engineer and EHS coordinator for civil and environmental engineering, echoes this sentiment: “With plastic recycling facing economic constraints, this effort by the Institute deserves to be promoted and, hopefully, expanded.”

    “Having more opportunities to recycle ’biologically clean’ plastics would help us have a smaller carbon footprint,” agrees Vos. “We love this program and hope it expands further!”

    MIT labs interested in participating in the EHS Lab Plastics Recycling Program can contact pipetip@mit.edu to learn more. More

  • in

    Celebrating a decade of a more sustainable MIT, with a focus on the future

    When MIT’s Office of Sustainability (MITOS) first launched in 2013, it was charged with integrating sustainability across all levels of campus by engaging the collective brainpower of students, staff, faculty, alumni, and partners. At the eighth annual Sustainability Connect, MITOS’s signature event, held nearly a decade later, the room was filled with MIT community members representing 67 different departments, labs, and centers — demonstrating the breadth of engagement across MIT.

    Held on Feb. 14 and hosting more than 100 staff, students, faculty, and researchers, the event was a forum on the future of sustainability leadership at MIT, designed to reflect on the work that had brought MIT to its present moment — focused on a net-zero future by 2026 and elimination of direct campus emissions by 2050 — and to plan forward.

    Director of Sustainability Julie Newman kicked off the day by reflecting on some of the questions that influenced the development of the MITOS framework, including: “How can MIT be a game-changing force for campus sustainability in the 21st century?” and “What are we solving for?” Newman shared that while these questions still drive the work of the office, considerations of the impact of this work have evolved. “We are becoming savvier at asking the follow-up question to these prompts,” she explained. “Are our solutions causing additional issues that we were remiss to ask, such as the impact on marginalized communities, unanticipated human health implications, and new forms of extraction?” Newman then encouraged attendees to think about these types of questions when envisioning and planning for the next decade of sustainability at MIT.

    While the event focused broadly on connecting the sustainability community at MIT, the day’s sessions tracked closely to the climate action plans that guided the office, 2015’s A Plan for Action on Climate Change and the current Fast Forward: MIT’s Climate Action Plan for the Decade. Both plans call for using the campus as a test bed, and at “A Model for Change: Field Reports from Campus as a Test Bed,” panelists Miho Mazereeuw, associate professor of architecture and urbanism, director of the Urban Risk Lab, and MITOS Faculty Fellow; Ken Strzepek, MITOS Faculty Fellow and research scientist at the MIT Center for Global Change Science; and Ippolyti Dellatolas graduate student and MITOS Climate Action Sustainability researcher shared ways in which they utilize the MIT campus as a test bed to design, study, and implement solutions related to flood risk, campus porosity, emissions reductions, and climate policy — efforts that can also inform work beyond MIT. Dellatolas reflected on success in this space. “With a successful campus as a test bed project, there is either output: we achieved these greenhouse gas emissions reductions or we learned something valuable in the process, so even if it fails, we understand why it failed and we can lend that knowledge to the next project,” she explained.

    Later in the morning, an “On the Horizon” panel focused on what key areas of focus, partnerships, and evolutions will propel the campus forward — anchored in the intersectional topics of decarbonization, climate justice, and experiential learning. To kick off the discussion, panelists John Fernández, director of the Environmental Solutions Initiative and professor of architecture; Joe Higgins, vice president for campus services and stewardship; Susy Jones, senior sustainability project manager; and Kate Trimble, senior associate dean for experiential learning shared which elements of their work have shifted in the last five years. Higgins commented on exciting progress being made in the space of renewables, electrification, smart thermostats, offshore wind, and other advances both at MIT and the municipal level. “You take this moment, and you think, these things weren’t in the moment five years ago when we were here on this stage. It brings a sense of abundance and optimism,” he concluded.

    Jones, for her part, shared how thinking about food and nutrition evolved over this period. “We’ve developed a lot of programming around nutrition. In the past few years, this new knowledge around the climate impact of our food system has joined the conversation,” she shared. “I think it’s really important to add that to the many years and decades of work that have been going on around food justice and food access and bring that climate conversation into that piece and acknowledge that, yes, the food system is accountable for about a quarter of global greenhouse gases.”

    Throughout the event, attendees were encouraged to share their questions and ideas for the future. In the closing workshop, “The Future of Sustainability at MIT,” attendees responded to questions such as, “What gives you hope?” and “What are we already doing well at MIT, what could we do more of?” The answers and ideas — which ranged from fusion to community co-design to a continued focus on justice — will inform MITOS’s work going forward, says Newman. “This is an activity we did within our core team, and the answers were so impactful and candid that we thought to bring it to the larger community to learn even more,” she says.

    That larger community was also recognized for their contributions with the first-ever Sustainability Awards, which honored nominated staff and students from departments across MIT for their contributions to building a more sustainable MIT. “This year we had a special opportunity to spotlight some of those individuals and teams leading transformative change at MIT,” explained Newman. “But everyone in the room and everyone working on sustainability at MIT in some way are our partners in this work. Our office could not do what we do without them.” More