More stories

  • in

    On batteries, teaching, and world peace

    Over his long career as an electrochemist and professor, Donald Sadoway has earned an impressive variety of honors, from being named one of Time magazine’s 100 most influential people in 2012 to appearing on “The Colbert Report,” where he talked about “renewable energy and world peace,” according to Comedy Central.

    What does he personally consider to be his top achievements?

    “That’s easy,” he says immediately. “For teaching, it’s 3.091,” the MIT course on solid-state chemistry he led for some 18 years. An MIT core requirement, 3.091 is also one of the largest classes at the Institute. In 2003 it was the largest, with 630 students. Sadoway, who retires this year after 45 years in the Department of Materials Science and Engineering, estimates that over the years he’s taught the course to some 10,000 undergraduates.

    A passion for teaching

    Along the way he turned the class into an MIT favorite, complete with music, art, and literature. “I brought in all that enrichment because I knew that 95 percent of the students in that room weren’t going to major in anything chemical and this might be the last class they’d take in the subject. But it’s a requirement. So they’re 18 years old, they’re very smart, and many of them are very bored. You have to find a hook [to reach them]. And I did.”

    In 1995, Sadoway was named a Margaret MacVicar Faculty Fellow, an honor that recognizes outstanding classroom teaching at the Institute. Among the communications in support of his nomination:

    “His contributions are enormous and the class is in rapt attention from beginning to end. His lectures are highly articulate yet animated and he has uncommon grace and style. I was awed by his ability to introduce playful and creative elements into a core lecture…”

    Bill Gates would agree. In the early 2000s Sadoway’s lectures were shared with the world through OpenCourseWare, the web-based publication of MIT course materials. Gates was so inspired by the lectures that he asked to meet with Sadoway to learn more about his research. (Sadoway initially ignored Gates’ email because he thought his account had been hacked by MIT pranksters.)

    Research breakthroughs

    Teaching is not Sadoway’s only passion. He’s also proud of his accomplishments in electrochemistry. The discipline that involves electron transfer reactions is key to everything from batteries to the primary extraction of metals like aluminum and magnesium. “It’s quite wide-ranging,” says the John F. Elliott Professor Emeritus of Materials Chemistry.

    Sadoway’s contributions include two battery breakthroughs. First came the liquid metal battery, which could enable the large-scale storage of renewable energy. “That represents a huge step forward in the transition to green energy,” said António Campinos, president of the European Patent Office, earlier this year when Sadoway won the 2022 European Inventor Award for the invention in the category for Non-European Patent Office Countries.

    On “The Colbert Report,” Sadoway alluded to that work when he told Stephen Colbert that electrochemistry is the key to world peace. Why? Because it could lead to a battery capable of storing energy from the sun when the sun doesn’t shine and otherwise make renewables an important part of the clean energy mix. And that in turn could “plummet the price of petroleum and depose dictators all over the world without one shot being fired,” he recently recalled.

    The liquid metal battery is the focus of Ambri, one of six companies based on Sadoway’s inventions. Bill Gates was the first funder of the company, which formed in 2010 and aims to install its first battery soon. That battery will store energy from a reported 500 megawatts of on-site renewable generation, the same output as a natural gas power plant.

    Then, in August of this year, Sadoway and colleagues published a paper in Nature about “one of the first new battery chemistries in 30 years,” Sadoway says. “I wanted to invent something that was better, much better,” than the expensive lithium-ion batteries used in, for example, today’s electric cars.

    That battery is the focus of Avanti, one of three Sadoway companies formed just last year. The other two are Pure Lithium, to commercialize his inventions related to that element, and Sadoway Labs. The latter, a nonprofit, is essentially “a space to try radical innovations. We’re gonna start working on wild ideas.”

    Another focus of Sadoway’s research: green steel. Steelmaking produces huge amounts of greenhouse gases. Enter Boston Metal, another Sadoway company. This one is developing a new approach to producing steel based on research begun some 25 years ago. Unlike the current technology for producing steel, the Boston Metal approach — molten oxide electrolysis — does not use the element at the root of steel’s problems: carbon. The principal byproduct of the new system? Oxygen.

    In 2012, Sadoway gave a TED talk to 2,000 people on the liquid metal battery. He believes that that talk, which has now been seen by almost 2.5 million people, led to the wider publicity of his work — and science overall — on “The Colbert Report” and elsewhere. “The moral here is that if you step out of your comfort zone, you might be surprised at what can happen,” he concludes.

    Colleagues’ reflections

    “I met Don in 2006 when I was working for the iron and steel industry in Europe on ways to reduce greenhouse gas emissions from the production of those materials,” says Antoine Allanore, professor of metallurgy, Department of Materials Science and Engineering. “He was the same Don Sadoway that you see in recordings of his lectures: very elegant, very charismatic, and passionate about the technical solutions and underlying science of the process we were all investigating; electrolysis. A few years later, when I decided to pursue an academic career, I contacted Don and became a postdoctoral associate in his lab. That ultimately led to my becoming an MIT professor. People don’t believe me, but before I came to MIT the only thing I knew about the Institute was that Noam Chomsky was there … and Don Sadoway. And I felt, that’s a great place to be. And I stayed because I saw the exceptional things that can be accomplished at MIT and Don is the perfect example of that.”

    “I had the joy of meeting Don when I first arrived on the MIT campus in 1994,” recalls Felice Frankel, research scientist in the MIT departments of Chemical Engineering and Mechanical Engineering. “I didn’t have to talk him into the idea that researchers needed to take their images and graphics more seriously.  He got it — that it wasn’t just about pretty pictures. He was an important part of our five-year National Science Foundation project — Picturing to Learn — to bring that concept into the classroom. How lucky that was for me!”

    “Don has been a friend and mentor since we met in 1995 when I was an MIT senior,” says Luis Ortiz, co-founder and chief executive officer, Avanti Battery Co. “One story that is emblematic of Don’s insistence on excellence is from when he and I met with Bill Gates about the challenges in addressing climate change and how batteries could be the linchpin in solving them. I suggested that we create our presentation in PowerPoint [Microsoft software]. Don balked. He insisted that we present using Keynote on his MacBook Air, because ‘it looks so much better.’ I was incredulous that he wanted to walk into that venue exclusively using Apple products. Of course, he won the argument, but not without my admonition that there had better not be even a blip of an issue. In the meeting room, Microsoft’s former chief technology officer asked Don if he needed anything to hook up to the screen, ‘we have all those dongles.’ Don declined, but gave me that knowing look and whispered, ‘You see, they know, too.’ I ate my crow and we had a great long conversation without any issues.”

    “I remember when I first started working with Don on the liquid metal battery project at MIT, after I had chosen it as the topic for my master’s of engineering thesis,” adds David Bradwell, co-founder and chief technology officer, Ambri. “I was a wide-eyed graduate student, sitting in his office, amongst his art deco decorations, unique furniture, and historical and stylistic infographics, and from our first meeting, I could see Don’s passion for coming up with new and creative, yet practical scientific ideas, and for working on hard problems, in service of society. Don’s approaches always appear to be unconventional — wanting to stand out in a crowd, take the path less trodden, both based on his ideas, and his sense of style. It’s been an amazing journey working with him over the past decade-and-a-half, and I remain excited to see what other new, unconventional ideas, he can bring to this world.” More

  • in

    Simplifying the production of lithium-ion batteries

    When it comes to battery innovations, much attention gets paid to potential new chemistries and materials. Often overlooked is the importance of production processes for bringing down costs.

    Now the MIT spinout 24M Technologies has simplified lithium-ion battery production with a new design that requires fewer materials and fewer steps to manufacture each cell. The company says the design, which it calls “SemiSolid” for its use of gooey electrodes, reduces production costs by up to 40 percent. The approach also improves the batteries’ energy density, safety, and recyclability.

    Judging by industry interest, 24M is onto something. Since coming out of stealth mode in 2015, 24M has licensed its technology to multinational companies including Volkswagen, Fujifilm, Lucas TVS, Axxiva, and Freyr. Those last three companies are planning to build gigafactories (factories with gigawatt-scale annual production capacity) based on 24M’s technology in India, China, Norway, and the United States.

    “The SemiSolid platform has been proven at the scale of hundreds of megawatts being produced for residential energy-storage systems. Now we want to prove it at the gigawatt scale,” says 24M CEO Naoki Ota, whose team includes 24M co-founder, chief scientist, and MIT Professor Yet-Ming Chiang.

    Establishing large-scale production lines is only the first phase of 24M’s plan. Another key draw of its battery design is that it can work with different combinations of lithium-ion chemistries. That means 24M’s partners can incorporate better-performing materials down the line without substantially changing manufacturing processes.

    The kind of quick, large-scale production of next-generation batteries that 24M hopes to enable could have a dramatic impact on battery adoption across society — from the cost and performance of electric cars to the ability of renewable energy to replace fossil fuels.

    “This is a platform technology,” Ota says. “We’re not just a low-cost and high-reliability operator. That’s what we are today, but we can also be competitive with next-generation chemistry. We can use any chemistry in the market without customers changing their supply chains. Other startups are trying to address that issue tomorrow, not today. Our tech can address the issue today and tomorrow.”

    A simplified design

    Chiang, who is MIT’s Kyocera Professor of Materials Science and Engineering, got his first glimpse into large-scale battery production after co-founding another battery company, A123 Systems, in 2001. As that company was preparing to go public in the late 2000s, Chiang began wondering if he could design a battery that would be easier to manufacture.

    “I got this window into what battery manufacturing looked like, and what struck me was that even though we pulled it off, it was an incredibly complicated manufacturing process,” Chiang says. “It derived from magnetic tape manufacturing that was adapted to batteries in the late 1980s.”

    In his lab at MIT, where he’s been a professor since 1985, Chiang started from scratch with a new kind of device he called a “semi-solid flow battery” that pumps liquids carrying particle-based electrodes to and from tanks to store a charge.

    In 2010, Chiang partnered with W. Craig Carter, who is MIT’s POSCO Professor of Materials Science and Engineering, and the two professors supervised a student, Mihai Duduta ’11, who explored flow batteries for his undergraduate thesis. Within a month, Duduta had developed a prototype in Chiang’s lab, and 24M was born. (Duduta was the company’s first hire.)

    But even as 24M worked with MIT’s Technology Licensing Office (TLO) to commercialize research done in Chiang’s lab, people in the company including Duduta began rethinking the flow battery concept. An internal cost analysis by Carter, who consulted for 24M for several years, ultimately lead the researchers to change directions.

    That left the company with loads of the gooey slurry that made up the electrodes in their flow batteries. A few weeks after Carter’s cost analysis, Duduta, then a senior research scientist at 24M, decided to start using the slurry to assemble batteries by hand, mixing the gooey electrodes directly into the electrolyte. The idea caught on.

    The main components of batteries are the positive and negatively charged electrodes and the electrolyte material that allows ions to flow between them. Traditional lithium-ion batteries use solid electrodes separated from the electrolyte by layers of inert plastics and metals, which hold the electrodes in place.

    Stripping away the inert materials of traditional batteries and embracing the gooey electrode mix gives 24M’s design a number of advantages.

    For one, it eliminates the energy-intensive process of drying and solidifying the electrodes in traditional lithium-ion production. The company says it also reduces the need for more than 80 percent of the inactive materials in traditional batteries, including expensive ones like copper and aluminum. The design also requires no binder and features extra thick electrodes, improving the energy density of the batteries.

    “When you start a company, the smart thing to do is to revisit all of your assumptions  and ask what is the best way to accomplish your objectives, which in our case was simply-manufactured, low-cost batteries,” Chiang says. “We decided our real value was in making a lithium-ion suspension that was electrochemically active from the beginning, with electrolyte in it, and you just use the electrolyte as the processing solvent.”

    In 2017, 24M participated in the MIT Industrial Liaison Program’s STEX25 Startup Accelerator, in which Chiang and collaborators made critical industry connections that would help it secure early partnerships. 24M has also collaborated with MIT researchers on projects funded by the Department of Energy.

    Enabling the battery revolution

    Most of 24M’s partners are eyeing the rapidly growing electric vehicle (EV) market for their batteries, and the founders believe their technology will accelerate EV adoption. (Battery costs make up 30 to 40 percent of the price of EVs, according to the Institute for Energy Research).

    “Lithium-ion batteries have made huge improvements over the years, but even Elon Musk says we need some breakthrough technology,” Ota says, referring to the CEO of EV firm Tesla. “To make EVs more common, we need a production cost breakthrough; we can’t just rely on cost reduction through scaling because we already make a lot of batteries today.”

    24M is also working to prove out new battery chemistries that its partners could quickly incorporate into their gigafactories. In January of this year, 24M received a grant from the Department of Energy’s ARPA-E program to develop and scale a high-energy-density battery that uses a lithium metal anode and semi-solid cathode for use in electric aviation.

    That project is one of many around the world designed to validate new lithium-ion battery chemistries that could enable a long-sought battery revolution. As 24M continues to foster the creation of large scale, global production lines, the team believes it is well-positioned to turn lab innovations into ubiquitous, world-changing products.

    “This technology is a platform, and our vision is to be like Google’s Android [operating system], where other people can build things on our platform,” Ota says. “We want to do that but with hardware. That’s why we’re licensing the technology. Our partners can use the same production lines to get the benefits of new chemistries and approaches. This platform gives everyone more options.” More

  • in

    MADMEC winner identifies sustainable greenhouse-cooling materials

    The winners of this year’s MADMEC competition identified a class of materials that could offer a more efficient way to keep greenhouses cool.

    After Covid-19 put the materials science competition on pause for two years, on Tuesday SmartClime, a team made up of three MIT graduate students, took home the first place, $10,000 prize.

    The team showed that a type of material that changes color in response to an electric voltage could reduce energy usage and save money if coated onto the panes of glass in greenhouses.

    “This project came out of our love of gardening,” said SmartClime team member and PhD candidate Isabella Caruso in the winning presentation. “Greenhouses let you grow things year-round, even in New England, but even greenhouse pros need to use heating furnaces in the winter and ventilation in the summer. All of that can be very labor- and energy-intensive.”

    Current options to keep greenhouses cool include traditional air conditioning units, venting and fans, and simple cloth. To develop a better solution, the team looked through scientific papers to find materials with the right climate control properties.

    Two classes of materials that looked promising were thermochromic coatings, which change color based on temperature, and electrochromic solutions, which change color based on electric voltage.

    Creating both the thermochromic and electrochromic solutions required the team to assemble nanoparticles and spin-coat them onto glass substrates. In lab tests, the electrochromic material performed well, turning a deep bluish hue to reduce the heat coming into the greenhouse while also letting in enough light for plants. Specifically, the electrochromic cell kept its test box about 1 to 3 degrees Celsius cooler than the test box coated in regular glass.

    The team estimated that greenhouse owners could make back the added costs of the electrochromic paneling through savings on other climate-control measures. Additional benefits of using the material include reducing heat-related crop losses, increasing crop yields, and reducing water requirements.

    Hosted by MIT’s Department of Materials Science and Engineering (DMSE), the competition was the culmination of team projects that began last spring and included a series of design challenges throughout the summer. Each team received guidance, access to equipment and labs, and up to $1,000 in funding to build and test their prototypes.

    “It’s great to be back and to have everyone here in person,” Mike Tarkanian, a senior lecturer in DMSE and coordinator of MADMEC, said at the event. “I’ve enjoyed getting back to normal, doing the design challenges over the summer and celebrating with everyone here today.”

    The second-place prize was split between YarnZ, which identified a nanofiber yarn that is more sustainable than traditional textile fibers, and WasteAway, which has developed a waste bin monitoring device that can identify the types of items thrown into trash and recycling bins and flag misplaced items.

    YarnZ (which stands for Yarns Are Really NanofiberZ), developed a nanofiber yarn that is more degradable than traditional microfiber yarns without sacrificing on performance.

    A large chunk of the waste and emissions in the clothing industry come from polyester, a slow-degrading polymer that requires an energy-intensive melt spinning process before it’s spun into the fibers of our clothes.

    “The biggest thing I want to impress upon you today is that the textile industry is a major greenhouse gas-producing entity and also produces a huge amount of waste,” YarnZ member and PhD candidate Natalie Mamrol said in the presentation.

    To replace polyester, the team developed a continuous process in which a type of nanofiber film collects in a water bath before being twisted into yarn. In subsequent tests, the nanofiber-based yarn degraded more quicky than traditional microfibers and showed comparable durability. YarnZ believes this early data should encourage others to explore nanofibers as a viable replacement in the clothing industry and to invest in scaling the approach for industrial settings.

    WasteAway’s system includes a camera that sits on top of trash bins and uses artificial intelligence to recognize items that people throw away.

    Of the 300 million tons of waste generated in the U.S. each year, more than half ends up in landfills. A lot of that waste could have been composted or recycled but was misplaced during disposal.

    “When someone throws something into the bin, our sensor detects the motion and captures an image,” explains WasteAway’s Melissa Stok, an undergraduate at MIT. “Those images are then processed by our machine-learning algorithm to find contamination.”

    Each device costs less than $30, and the team says that cost could go down as parts are bought at larger scales. The insights gleaned from the device could help waste management officials identify contaminated trash piles as well as inform education efforts by revealing common mistakes people make.

    Overall, Tarkanian believes the competition was a success not only because of the final results, but because of the experience the students got throughout the MADMEC program, which included several smaller, hands-on competitions involving laser cutters, 3-D printers, soldering irons, and other equipment many students said they had never used before.

    “They end up getting into the lab through these design challenges, which have them compete in various engineering tasks,” Tarkanian says. “It helps them get comfortable designing and prototyping, and they often end up using those tools in their research later.” More

  • in

    3 Questions: Janelle Knox-Hayes on producing renewable energy that communities want

    Wind power accounted for 8 percent of U.S. electricity consumption in 2020, and is growing rapidly in the country’s energy portfolio. But some projects, like the now-defunct Cape Wind proposal for offshore power in Massachusetts, have run aground due to local opposition. Are there ways to avoid this in the future?

    MIT professors Janelle Knox-Hayes and Donald Sadoway think so. In a perspective piece published today in the journal Joule, they and eight other professors call for a new approach to wind-power deployment, one that engages communities in a process of “co-design” and adapts solutions to local needs. That process, they say, could spur additional creativity in renewable energy engineering, while making communities more amenable to existing technologies. In addition to Knox-Hayes and Sadoway, the paper’s co-authors are Michael J. Aziz of Harvard University; Dennice F. Gayme of Johns Hopkins University; Kathryn Johnson of the Colorado School of Mines; Perry Li of the University of Minnesota; Eric Loth of the University of Virginia; Lucy Y. Pao of the University of Colorado; Jessica Smith of the Colorado School of Mines; and Sonya Smith of Howard University.

    Knox-Hayes is the Lister Brothers Associate Professor of Economic Geography and Planning in MIT’s Department of Urban Studies and Planning, and an expert on the social and political context of renewable energy adoption; Sadoway is the John F. Elliott Professor of Materials Chemistry in MIT’s Department of Materials Science and Engineering, and a leading global expert on developing new forms of energy storage. MIT News spoke with Knox-Hayes about the topic.

    Q: What is the core problem you are addressing in this article?

    A: It is problematic to act as if technology can only be engineered in a silo and then delivered to society. To solve problems like climate change, we need to see technology as a socio-technical system, which is integrated from its inception into society. From a design standpoint, that begins with conversations, values assessments, and understanding what communities need.  If we can do that, we will have a much easier time delivering the technology in the end.

    What we have seen in the Northeast, in trying to meet our climate objectives and energy efficiency targets, is that we need a lot of offshore wind, and a lot of projects have stalled because a community was saying “no.” And part of the reason communities refuse projects is because they that they’ve never been properly consulted. What form does the technology take, and how would it operate within a community? That conversation can push the boundaries of engineering.

    Q: The new paper makes the case for a new practice of “co-design” in the field of renewable energy. You call this the “STEP” process, standing for all the socio-technical-political-economic issues that an engineering project might encounter. How would you describe the STEP idea? And to what extent would industry be open to new attempts to design an established technology?

    A: The idea is to bring together all these elements in an interdisciplinary process, and engage stakeholders. The process could start with a series of community forums where we bring everyone together, and do a needs assessment, which is a common practice in planning. We might see that offshore wind energy needs to be considered in tandem with the local fishing industry, or servicing the installations, or providing local workforce training. The STEP process allows us to take a step back, and start with planners, policymakers, and community members on the ground.

    It is also about changing the nature of research and practice and teaching, so that students are not just in classrooms, they are also learning to work with communities. I think formalizing that piece is important. We are starting now to really feel the impacts of climate change, so we have to confront the reality of breaking through political boundaries, even in the United States. That is the only way to make this successful, and that comes back to how can technology be co-designed.

    At MIT, innovation is the spirit of the endeavor, and that is why MIT has so many industry partners engaged in initiatives like MITEI [the MIT Energy Initiative] and the Climate Consortium. The value of the partnership is that MIT pushes the boundaries of what is possible. It is the idea that we can advance and we can do something incredible, we can innovate the future. What we are suggesting with this work is that innovation isn’t something that happens exclusively in a laboratory, but something that is very much built in partnership with communities and other stakeholders.

    Q: How much does this approach also apply to solar power, as the other leading type of renewable energy? It seems like communities also wrestle with where to locate solar arrays, or how to compensate homeowners, communities, and other solar hosts for the power they generate.

    A: I would not say solar has the same set of challenges, but rather that renewable technologies face similar challenges. With solar, there are also questions of access and siting. Another big challenge is to create financing models that provide value and opportunity at different scales. For example, is solar viable for tenants in multi-family units who want to engage with clean energy? This is a similar question for micro-wind opportunities for buildings. With offshore wind, a restriction is that if it is within sightlines, it might be problematic. But there are exciting technologies that have enabled deep wind, or the establishment of floating turbines up to 50 kilometers offshore. Storage solutions such as hydro-pneumatic energy storage, gravity energy storage or buoyancy storage can help maintain the transmission rate while reducing the number of transmission lines needed.

    In a lot of communities, the reality of renewables is that if you can generate your own energy, you can establish a level of security and resilience that feeds other benefits. 

    Nevertheless, as demonstrated in the Cape Wind case, technology [may be rejected] unless a community is involved from the beginning. Community involvement also creates other opportunities. Suppose, for example, that high school students are working as interns on renewable energy projects with engineers at great universities from the region. This provides a point of access for families and allows them to take pride in the systems they create.  It gives a further sense of purpose to the technology system, and vests the community in the system’s success. It is the difference between, “It was delivered to me,” and “I built it.” For researchers the article is a reminder that engineering and design are more successful if they are inclusive. Engineering and design processes are also meant to be accessible and fun. More

  • in

    Passive cooling system could benefit off-grid locations

    As the world gets warmer, the use of power-hungry air conditioning systems is projected to increase significantly, putting a strain on existing power grids and bypassing many locations with little or no reliable electric power. Now, an innovative system developed at MIT offers a way to use passive cooling to preserve food crops and supplement conventional air conditioners in buildings, with no need for power and only a small need for water.

    The system, which combines radiative cooling, evaporative cooling, and thermal insulation in a slim package that could resemble existing solar panels, can provide up to about 19 degrees Fahrenheit (9.3 degrees Celsius) of cooling from the ambient temperature, enough to permit safe food storage for about 40 percent longer under very humid conditions. It could triple the safe storage time under dryer conditions.

    The findings are reported today in the journal Cell Reports Physical Science, in a paper by MIT postdoc Zhengmao Lu, Arny Leroy PhD ’21, professors Jeffrey Grossman and Evelyn Wang, and two others. While more research is needed in order to bring down the cost of one key component of the system, the researchers say that eventually such a system could play a significant role in meeting the cooling needs of many parts of the world where a lack of electricity or water limits the use of conventional cooling systems.

    The system cleverly combines previous standalone cooling designs that each provide limited amounts of cooling power, in order to produce significantly more cooling overall — enough to help reduce food losses from spoilage in parts of the world that are already suffering from limited food supplies. In recognition of that potential, the research team has been partly supported by MIT’s Abdul Latif Jameel Water and Food Systems Lab.

    “This technology combines some of the good features of previous technologies such as evaporative cooling and radiative cooling,” Lu says. By using this combination, he says, “we show that you can achieve significant food life extension, even in areas where you have high humidity,” which limits the capabilities of conventional evaporative or radiative cooling systems.

    In places that do have existing air conditioning systems in buildings, the new system could be used to significantly reduce the load on these systems by sending cool water to the hottest part of the system, the condenser. “By lowering the condenser temperature, you can effectively increase the air conditioner efficiency, so that way you can potentially save energy,” Lu says.

    Other groups have also been pursuing passive cooling technologies, he says, but “by combining those features in a synergistic way, we are now able to achieve high cooling performance, even in high-humidity areas where previous technology generally cannot perform well.”

    The system consists of three layers of material, which together provide cooling as water and heat pass through the device. In practice, the device could resemble a conventional solar panel, but instead of putting out electricity, it would directly provide cooling, for example by acting as the roof of a food storage container. Or, it could be used to send chilled water through pipes to cool parts of an existing air conditioning system and improve its efficiency. The only maintenance required is adding water for the evaporation, but the consumption is so low that this need only be done about once every four days in the hottest, driest areas, and only once a month in wetter areas.

    The top layer is an aerogel, a material consisting mostly of air enclosed in the cavities of a sponge-like structure made of polyethylene. The material is highly insulating but freely allows both water vapor and infrared radiation to pass through. The evaporation of water (rising up from the layer below) provides some of the cooling power, while the infrared radiation, taking advantage of the extreme transparency of Earth’s atmosphere at those wavelengths, radiates some of the heat straight up through the air and into space — unlike air conditioners, which spew hot air into the immediate surrounding environment.

    Below the aerogel is a layer of hydrogel — another sponge-like material, but one whose pore spaces filled with water rather than air. It’s similar to material currently used commercially for products such as cooling pads or wound dressings. This provides the water source for evaporative cooling, as water vapor forms at its surface and the vapor passes up right through the aerogel layer and out to the environment.

    Below that, a mirror-like layer reflects any incoming sunlight that has reached it, sending it back up through the device rather than letting it heat up the materials and thus reducing their thermal load. And the top layer of aerogel, being a good insulator, is also highly solar-reflecting, limiting the amount of solar heating of the device, even under strong direct sunlight.

    “The novelty here is really just bringing together the radiative cooling feature, the evaporative cooling feature, and also the thermal insulation feature all together in one architecture,” Lu explains. The system was tested, using a small version, just 4 inches across, on the rooftop of a building at MIT, proving its effectiveness even during suboptimal weather conditions, Lu says, and achieving 9.3 C of cooling (18.7 F).

    “The challenge previously was that evaporative materials often do not deal with solar absorption well,” Lu says. “With these other materials, usually when they’re under the sun, they get heated, so they are unable to get to high cooling power at the ambient temperature.”

    The aerogel material’s properties are a key to the system’s overall efficiency, but that material at present is expensive to produce, as it requires special equipment for critical point drying (CPD) to remove solvents slowly from the delicate porous structure without damaging it. The key characteristic that needs to be controlled to provide the desired characteristics is the size of the pores in the aerogel, which is made by mixing the polyethylene material with solvents, allowing it to set like a bowl of Jell-O, and then getting the solvents out of it. The research team is currently exploring ways of either making this drying process more inexpensive, such as by using freeze-drying, or finding alternative materials that can provide the same insulating function at lower cost, such as membranes separated by an air gap.

    While the other materials used in the system are readily available and relatively inexpensive, Lu says, “the aerogel is the only material that’s a product from the lab that requires further development in terms of mass production.” And it’s impossible to predict how long that development might take before this system can be made practical for widespread use, he says.

    The research team included Lenan Zhang of MIT’s Department of Mechanical Engineering and Jatin Patil of the Department of Materials Science and Engineering. More

  • in

    SMART Innovation Center awarded five-year NRF grant for new deep tech ventures

    The Singapore-MIT Alliance for Research and Technology (SMART), MIT’s research enterprise in Singapore has announced a five-year grant awarded to the SMART Innovation Center (SMART IC) by the National Research Foundation Singapore (NRF) as part of its Research, Innovation and Enterprise 2025 Plan. The SMART IC plays a key role in accelerating innovation and entrepreneurship in Singapore and will channel the grant toward refining and commercializing developments in the field of deep technologies through financial support and training.

    Singapore has recently expanded its innovation ecosystem to hone deep technologies to solve complex problems in areas of pivotal importance. While there has been increased support for deep tech here, with investments in deep tech startups surging from $324 million in 2020 to $861 million in 2021, startups of this nature tend to take a longer time to scale, get acquired, or get publicly listed due to increased time, labor, and capital needed. By providing researchers with financial and strategic support from the early stages of their research and development, the SMART IC hopes to accelerate this process and help bring new and disruptive technologies to the market.

    “SMART’s Innovation Center prides itself as being one of the key drivers of research and innovation, by identifying and nurturing emerging technologies and accelerating them towards commercialization,” says Howard Califano, director of SMART IC. “With the support of the NRF, we look forward to another five years of further growing the ecosystem by ensuring an environment where research — and research funds — are properly directed to what the market and society need. This is how we will be able to solve problems faster and more efficiently, and ensure that value is generated from scientific research.”

    Set up in 2009 by MIT and funded by the NRF, the SMART IC furthers SMART’s goals by nurturing promising and innovative technologies that faculty and research teams in Singapore are working on. Some emerging technologies include, but are not limited to, biotechnology, biomedical devices, information technology, new materials, nanotechnology, and energy innovations.

    Having trained over 300 postdocs since its inception, the SMART IC has supported the launch of 55 companies that have created over 3,300 jobs. Some of these companies were spearheaded by SMART’s interdisciplinary research groups, including biotech companies Theonys and Thrixen, autonomous vehicle software company nuTonomy, and integrated circuit company New Silicon. During the RIE 2020 period, 66 Ignition Grants and 69 Innovation Grants were awarded to SMART’s researchers, as well as faculty at other Singapore universities and research institutes.

    The following four programs are open to researchers from education and research facilities, as well as institutes of higher learning, in Singapore:

    Innovation Grant 2.0: The enhanced SMART Innovation Center’s flagship program, the Innovation Grant 2.0, is a gated three-phase program focused on enabling scientist-entrepreneurs to launch a successful venture, with training and intense monitoring across all phases. This grant program can provide up to $800,000 Singaporean dollars and is open to all areas of deep technology (engineering, artificial intelligence, biomedical, new materials, etc). The first grant call for the Innovation Grant 2.0 is open through Oct. 15. Researchers, scientists, and engineers at Singapore’s public institutions of higher learning, research centers, public hospitals, and medical research centers — especially those working on disruptive technologies with commercial potential — are invited to apply for the Innovation Grant 2.0.

    I2START Grant: In collaboration with SMART, the National Health Innovation Center Singapore, and Enterprise Singapore, this novel integrated program will develop master classes on venture building, with a focus on medical devices, diagnostics, and medical technologies. The grant amount is up to S$1,350,000. Applications are accepted throughout the year.

    STDR Stream 2: The Singapore Therapeutics Development Review (STDR) program is jointly operated by SMART, the Agency for Science, Technology and Research (A*STAR), and the Experimental Drug Development Center. The grant is available in two phases, a pre-pilot phase of S$100,000 and a Pilot phase of S$830,000, with a potential combined total of up to S$930,000. The next STDR Pre-Pilot grant call will open on Sept. 15.

    Central Gap Fund: The SMART IC is an Innovation and Enterprise Office under the NRF’s Central Gap Fund. This program helps projects that have already received an Innovation 2.0, STDR Stream 2, or I2START Grant but require additional funding to bridge to seed or Series A funding, with possible funding of up to S$5 million. Applications are accepted throughout the year.

    The SMART IC will also continue developing robust entrepreneurship mentorship programs and regular industry events to encourage closer collaboration among faculty innovators and the business community.

    “SMART, through the Innovation Center, is honored to be able to help researchers take these revolutionary technologies to the marketplace, where they can contribute to the economy and society. The projects we fund are commercialized in Singapore, ensuring that the local economy is the first to benefit,” says Eugene Fitzgerald, chief executive officer and director of SMART, and professor of materials science and engineering at MIT.

    SMART was established by MIT and the NRF in 2007 and serves as an intellectual and innovation hub for cutting-edge research of interest to both parties. SMART is the first entity in the Campus for Research Excellence and Technological Enterprise. SMART currently comprises an Innovation Center and five Interdisciplinary Research Groups: Antimicrobial Resistance, Critical Analytics for Manufacturing Personalized-Medicine, Disruptive and Sustainable Technologies for Agricultural Precision, Future Urban Mobility, and Low Energy Electronic Systems.

    The SMART IC was set up by MIT and the NRF in 2009. It identifies and nurtures a broad range of emerging technologies including but not limited to biotechnology, biomedical devices, information technology, new materials, nanotechnology, and energy innovations, and accelerates them toward commercialization. The SMART IC runs a rigorous grant system that identifies and funds promising projects to help them de-risk their technologies, conduct proof-of-concept experiments, and determine go-to-market strategies. It also prides itself on robust entrepreneurship boot camps and mentorship, and frequent industry events to encourage closer collaboration among faculty innovators and the business community. SMART’s Innovation grant program is the only scheme that is open to all institutes of higher learning and research institutes across Singapore. More

  • in

    J-WAFS awards $150K Solutions grant to Patrick Doyle and team for rapid removal of micropollutants from water

    The Abdul Latif Jameel Water and Food Systems Lab (J-WAFS) has awarded a 2022 J-WAFS Solutions grant to Patrick S. Doyle, the Robert T. Haslam Professor of Chemical Engineering at MIT, for his innovative system to tackle water pollution. Doyle will be working with co-Principal Investigator Rafael Gomez-Bombarelli, assistant professor in materials processing in the Department of Materials Science, as well as PhD students Devashish Gokhale and Tynan Perez. Building off of findings from a 2019 J-WAFS seed grant, Doyle and the research team will create cost-effective industry-scale processes to remove micropollutants from water. Project work will commence this month.

    The J-WAFS Solutions program provides one-year, renewable, commercialization grants to help move MIT technology from the laboratory to market. Grants of up to $150,000 are awarded to researchers with breakthrough technologies and inventions in water or food. Since its launch in 2015, J-WAFS Solutions grants have led to seven spinout companies and helped commercialize two products as open-source technologies. The grant program is supported by Community Jameel.

    A widespread problem 

    Micropollutants are contaminants that occur in low concentrations in the environment, yet continuous exposure and bioaccumulation of micropollutants make them a cause for concern. According to the U.S. Environmental Protection Agency, the plastics derivative Bisphenol A (BPA), the “forever chemicals” per-and polyfluoroalkyl substances (PFAS), and heavy metals like lead are common micropollutants known to be found in more than 85 percent of rivers, ponds, and lakes in the United States. Many of these bodies of water are sources of drinking water. Over long periods of time, exposure to micropollutants through drinking water can cause physiological damage in humans, increasing the risk of cancer, developmental disorders, and reproductive failure.

    Since micropollutants occur in low concentrations, it is difficult to detect and monitor their presence, and the chemical diversity of micropollutants makes it difficult to inexpensively remove them from water. Currently, activated carbon is the industry standard for micropollutant elimination, but this method cannot efficiently remove contaminants at parts-per-billion and parts-per-trillion concentrations. There are also strong sustainability concerns associated with activated carbon production, which is energy-intensive and releases large volumes of carbon dioxide.

    A solution with societal and economic benefits

    Doyle and his team are developing a technology that uses sustainable hydrogel microparticles to remove micropollutants from water. The polymeric hydrogel microparticles use chemically anchored structures including micelles and other chelating agents that act like a sponge by absorbing organic micropollutants and heavy metal ions. The microparticles are large enough to separate from water using simple gravitational settling. The system is sustainable because the microparticles can be recycled for continuous use. In testing, the long-lasting, reusable microparticles show quicker removal of contaminants than commercial activated carbon. The researchers plan to utilize machine learning to find optimal microparticle compositions that maximize performance on complex combinations of micropollutants in simulated and real wastewater samples.

    Economically, the technology is a new offering that has applications in numerous large markets where micropollutant elimination is vital, including municipal and industrial water treatment equipment, as well as household water purification systems. The J-WAFS Solutions grant will allow the team to build and test prototypes of the water treatment system, identify the best use cases and customers, and perform technoeconomic analyses and market research to formulate a preliminary business plan. With J-WAFS commercialization support, the project could eventually lead to a startup company.

    “Emerging micropollutants are a growing threat to drinking water supplies worldwide,” says J-WAFS Director John H. Lienhard, the Abdul Latif Jameel Professor of Water at MIT. “Cost-effective and scalable technologies for micropollutant removal are urgently needed. This project will develop and commercialize a promising new tool for water treatment, with the goal of improving water quality for millions of people.” More

  • in

    MIT students contribute to success of historic fusion experiment

    For more than half a century, researchers around the world have been engaged in attempts to achieve fusion ignition in a laboratory, a grand challenge of the 21st century. The High-Energy-Density Physics (HEDP) group at MIT’s Plasma Science and Fusion Center has focused on an approach called inertial confinement fusion (ICF), which uses lasers to implode a pellet of fuel in a quest for ignition. This group, including nine former and current MIT students, was crucial to an historic ICF ignition experiment performed in 2021; the results were published on the anniversary of that success.

    On Aug. 8, 2021, researchers at the National Ignition Facility (NIF), Lawrence Livermore National Laboratory (LLNL), used 192 laser beams to illuminate the inside of a tiny gold cylinder encapsulating a spherical capsule filled with deuterium-tritium fuel in their quest to produce significant fusion energy. Although researchers had followed this process many times before, using different parameters, this time the ensuing implosion produced an historic fusion yield of 1.37 megaJoules, as measured by a suite of neutron diagnostics. These included the MIT-developed and analyzed Magnetic Recoil Spectrometer (MRS). This result was published in Physical Review Letters on Aug. 8, the one-year anniversary of the ground-breaking development, unequivocally indicating that the first controlled fusion experiment reached ignition.

    Governed by the Lawson criterion, a plasma ignites when the internal fusion heating power is high enough to overcome the physical processes that cool the fusion plasma, creating a positive thermodynamic feedback loop that very rapidly increases the plasma temperature. In the case of ICF, ignition is a state where the fusion plasma can initiate a “fuel burn propagation” into the surrounding dense and cold fuel, enabling the possibility of high fusion-energy gain.

    “This historic result certainly demonstrates that the ignition threshold is a real concept, with well-predicted theoretical calculations, and that a fusion plasma can be ignited in a laboratory” says HEDP Division Head Johan Frenje.

    The HEDP division has contributed to the success of the ignition program at the NIF for more than a decade by providing and using a dozen diagnostics, implemented by MIT PhD students and staff, which have been critical for assessing the performance of an implosion. The hundreds of co-authors on the paper attest to the collaborative effort that went into this milestone. MIT’s contributors included the only student co-authors.

    “The students are responsible for implementing and using a diagnostic to obtain data important to the ICF program at the NIF, says Frenje. “Being responsible for running a diagnostic at the NIF has allowed them to actively participate in the scientific dialog and thus get directly exposed to cutting-edge science.”

    Students involved from the MIT Department of Physics were Neel Kabadi, Graeme Sutcliffe, Tim Johnson, Jacob Pearcy, and Ben Reichelt; students from the Department of Nuclear Science and Engineering included Brandon Lahmann, Patrick Adrian, and Justin Kunimune.

    In addition, former student Alex Zylstra PhD ’15, now a physicist at LLNL, was the experimental lead of this record implosion experiment. More