in

Transboundary cooperation a potential route to sustainable development in the Indus basin

  • 1.

    Laghari, A. N., Vanham, D. & Rauch, W. The Indus basin in the framework of current and future water resources management. Hydrol. Earth Syst. Sci. 16, 1063–1083 (2012).

    Article  Google Scholar 

  • 2.

    Wada, Y. et al. Co-designing Indus water–energy–land futures. One Earth 1, 185–194 (2019).

    Article  Google Scholar 

  • 3.

    AQUASTAT Transboundary River Basin Overview—Indus (FAO, 2011); https://go.nature.com/2KxKRqB

  • 4.

    Aslam, M. Agricultural productivity current scenario, constraints and future prospects in Pakistan. Sarhad J. Agric. 32, 289–303 (2016).

    Article  Google Scholar 

  • 5.

    Karimi, P., Bastiaanssen, W. G. M., Molden, D. & Cheema, M. J. M. Basin-wide water accounting based on remote sensing data: an application for the Indus basin. Hydrol. Earth Syst. Sci. 17, 2473–2486 (2013).

    Article  Google Scholar 

  • 6.

    Akhter, M. in Imagining Industan—Overcoming Water Insecurity in the Indus Basin (eds Adeel, Z. & Wirsing, R. G.) 21–33 (Springer, 2017); https://go.nature.com/3pVNgvo

  • 7.

    Yu, W. et al. Indus Basin of Pakistan: Impacts of Climate Risks on Water and Agriculture (World Bank, 2013); https://go.nature.com/3kY7dxV

  • 8.

    Cheema, M., Immerzeel, W. & Bastiaanssen, W. Spatial quantification of groundwater abstraction in the irrigated Indus Basin. Groundwater 52, 25–36 (2014).

    CAS  Article  Google Scholar 

  • 9.

    Syvitski, J. P. et al. Anthropocene metamorphosis of the Indus Delta and lower floodplain. Anthropocene 3, 24–35 (2013).

    Article  Google Scholar 

  • 10.

    Adeel, Z. & Wirsing, R. G. in Imagining Industan—Overcoming Water Insecurity in the Indus Basin (eds Adeel, Z. & Wirsing, R. G.) 3–20 (Springer, 2017); https://go.nature.com/3pYJHF1

  • 11.

    Raman, D. Damming and infrastructural development of the Indus River basin: strengthening the provisions of the indus waters treaty. Asian J. Int. Law 8, 372–402 (2018).

    Article  Google Scholar 

  • 12.

    Archer, D. R., Forsythe, N., Fowler, H. J. & Shah, S. M. Sustainability of water resources management in the Indus Basin under changing climatic and socio economic conditions. Hydrol. Earth Syst. Sci. 14, 1669–1680 (2010).

    Article  Google Scholar 

  • 13.

    Just, R. E. & Netanyahu, S. Conflict and Cooperation on Trans-Boundary Water Resources (Springer, 1998).

  • 14.

    Qamar, M. U., Azmat, M. & Claps, P. Pitfalls in transboundary Indus Water Treaty: a perspective to prevent unattended threats to the global security. npj Clean Water 2, 22 (2019).

    Article  Google Scholar 

  • 15.

    Grill, G. et al. Mapping the world’s free-flowing rivers. Nature 569, 215–221 (2019).

    CAS  Article  Google Scholar 

  • 16.

    Wu, X. & Whittington, D. Incentive compatibility and conflict resolution in international river basins: a case study of the Nile Basin. Water Resour. Res. 42, W02417 (2006).

    Article  Google Scholar 

  • 17.

    Keskinen, M. et al. The water–energy–food nexus and the transboundary context: insights from large Asian rivers. Water 8, 193 (2016).

    Article  Google Scholar 

  • 18.

    Bhaduri, A. et al. Achieving Sustainable Development Goals from a water perspective. Front. Environ. Sci. 4, 64 (2016).

    Article  Google Scholar 

  • 19.

    Howells, M. et al. Integrated analysis of climate change, land-use, energy and water strategies. Nat. Clim. Change 3, 621–626 (2013).

    Article  Google Scholar 

  • 20.

    Liu, J. et al. Nexus approaches to global sustainable development. Nat. Sustain. 1, 466–476 (2018).

    Article  Google Scholar 

  • 21.

    Bleischwitz, R. et al. Resource nexus perspectives towards the United Nations Sustainable Development Goals. Nat. Sustain. 1, 737–743 (2018).

    Article  Google Scholar 

  • 22.

    Albrecht, T. R., Crootof, A. & Scott, C. A. The water–energy–food nexus: a systematic review of methods for Nexus assessment. Environ. Res. Lett. 13, 043002 (2018).

    Article  Google Scholar 

  • 23.

    Kaddoura, S. & El Khatib, S. Review of water–energy–food nexus tools to improve the nexus modelling approach for integrated policy making. Environ. Sci. Policy 77, 114–121 (2017).

    Article  Google Scholar 

  • 24.

    Siddiqi, A. & Wescoat, J. L. Energy use in large-scale irrigated agriculture in the Punjab province of Pakistan. Water Int. 38, 571–586 (2013).

    Article  Google Scholar 

  • 25.

    Stewart, J. et al. Indus River System Model (IRSM)—a Planning Tool to Explore Water Management Options in Pakistan: Model Conceptualisation, Configuration and Calibration (CSIRO Land & Water, 2018); https://go.nature.com/3q4rkyz

  • 26.

    Yang, Y. C. E., Ringler, C., Brown, C. & Mondal, M. A. H. Modeling the agricultural water–energy–food nexus in the Indus River basin, Pakistan. J. Water Resour. Plan. Manag. 142, 04016062 (2016).

    Article  Google Scholar 

  • 27.

    de Strasser, L., Lipponen, A., Howells, M., Stec, S. & Bréthaut, C. A methodology to assess the water energy food ecosystems nexus in transboundary river basins. Water 8, 59 (2016).

    Article  Google Scholar 

  • 28.

    Parrachino, I., Dinar, A. & Patrone, F. Cooperative Game Theory and its Application to Natural, Environmental, and Water Resource Issues: 3. Application to Water Resources Policy Research Working Papers (World Bank, 2006); https://go.nature.com/2UXhPCQ

  • 29.

    Singh, A., Jamasb, T., Nepal, R. & Toman, M. A. Cross-Border Electricity Cooperation in South Asia Policy Research Working Paper No. 7328 (World Bank, 2015).

  • 30.

    Hasson, R., Löfgren, Å. & Visser, M. Climate change in a public goods game: investment decision in mitigation versus adaptation. Ecol. Econ. 70, 331–338 (2010).

    Article  Google Scholar 

  • 31.

    Dalin, C., Wada, Y., Kastner, T. & Puma, M. J. Groundwater depletion embedded in international food trade. Nature 543, 700–704 (2017).

    CAS  Article  Google Scholar 

  • 32.

    Kalair, A. R. et al. Water, energy and food nexus of Indus Water Treaty: water governance. Water-Energy Nexus 2, 10–24 (2019).

    Article  Google Scholar 

  • 33.

    Vinca, A. et al. The NExus Solutions Tool (NEST) v1.0: an open platform for optimizing multi-scale energy-water-land system transformations. Geosci. Model Dev. 13, 1095–1121 (2020).

    Article  Google Scholar 

  • 34.

    Mir, K. A., Purohit, P. & Mehmood, S. Sectoral assessment of greenhouse gas emissions in Pakistan. Environ. Sci. Pollut. Res. 24, 27345–27355 (2017).

    CAS  Article  Google Scholar 

  • 35.

    Ahmad, B. & Saqlain, S. People perception regarding possible impact of urbanization on environmental degradation in Islamabad. IAU Int. J. Soc. Sci. 8, 1–10 (2018).

    Google Scholar 

  • 36.

    Scott, C. A., Vicuña, S., Blanco-Gutiérrez, I., Meza, F. & Varela-Ortega, C. Irrigation efficiency and water-policy implications for river basin resilience. Hydrol. Earth Syst. Sci. 18, 1339–1348 (2014).

    Article  Google Scholar 

  • 37.

    Grafton, R. Q. et al. The paradox of irrigation efficiency. Science 361, 748–750 (2018).

    CAS  Article  Google Scholar 

  • 38.

    Baum, R., Luh, J. & Bartram, J. Sanitation: A global estimate of sewerage connections without treatment and the resulting impact on MDG progress. Environ. Sci. Technol. 47, 1994–2000 (2013).

    CAS  Article  Google Scholar 

  • 39.

    González-villareal, F. & Schultz, B. Final Report of IPOE for Review of Studies on Water Escapages Below Kotri Barrage Technical Report (ResearchGate, 2018); https://doi.org/10.13140/RG.2.2.28670.02885

  • 40.

    Casillas, C. E. & Kammen, D. M. The energy–poverty–climate nexus. Science 26, 1181–1182 (2010).

    Article  Google Scholar 

  • 41.

    GDP (current US$)—Pakistan (World Bank, 2020); https://go.nature.com/2KCSDzB

  • 42.

    Singh, A., Jamasb, T., Nepal, R. & Toman, M. Electricity cooperation in South Asia: barriers to cross-border trade. Energy Policy 120, 741–748 (2018).

    Article  Google Scholar 

  • 43.

    Rasul, G., Neupane, N., Hussain, A. & Pasakhala, B. Beyond hydropower: towards an integrated solution for water, energy and food security in South Asia. Int. J. Water Resour. Dev. https://doi.org/10.1080/07900627.2019.1579705 (2019).

  • 44.

    Lutz, A. F., Immerzeel, W. W., Kraaijenbrink, P. D., Shrestha, A. B. & Bierkens, M. F. Climate change impacts on the upper Indus hydrology: sources, shifts and extremes. PLoS ONE 11, e0165630 (2016).

    CAS  Article  Google Scholar 

  • 45.

    Maurer, J. M., Schaefer, J. M., Rupper, S. & Corley, A. Acceleration of ice loss across the Himalayas over the past 40 years. Sci. Adv. 5, eaav7266 (2019).

    CAS  Article  Google Scholar 

  • 46.

    Immerzeel, W. W., Van Beek, L. P. & Bierkens, M. F. Climate change will affect the Asian water towers. Science 328, 1382–1385 (2010).

    CAS  Article  Google Scholar 

  • 47.

    Biemans, H. et al. Importance of snow and glacier meltwater for agriculture on the Indo-Gangetic Plain. Nat. Sustain. 2, 594–601 (2019).

    Article  Google Scholar 

  • 48.

    Majhi, B. & Kumar, A. Changing cropping pattern in Indian agriculture. J. Econ. Soc. Dev. 14, 37–45 (2018).

    Google Scholar 

  • 49.

    Burek, P. et al. Development of the Community Water Model (CWatM v1.04)—a high-resolution hydrological model for global and regional assessment of integrated water resources management. Geosci. Model Dev. 13, 3267–3298 (2020).

    Article  Google Scholar 

  • 50.

    Huppmann, D. et al. The MESSAGEix Integrated Assessment Model and the ix modeling platform (ixmp): an open framework for integrated and cross-cutting analysis of energy, climate, the environment, and sustainable development. Environ. Model. Softw. 112, 143–156 (2019).

    Article  Google Scholar 

  • 51.

    Messner, S. & Strubegger, M. User’s Guide for MESSAGE III IIASA Working Paper (IIASA, 1995).

  • 52.

    Riahi, K., Grübler, A. & Nakicenovic, N. Scenarios of long-term socio-economic and environmental development under climate stabilization. Technol. Forecast. Soc. Change 74, 887–935 (2007).

    Article  Google Scholar 

  • 53.

    Van Vliet, O. et al. Synergies in the Asian energy system: climate change, energy security, energy access and air pollution. Energy Econ. 34, S470–S480 (2012).

    Article  Google Scholar 

  • 54.

    Kiani, B. et al. Optimal electricity system planning in a large hydro jurisdiction: will British Columbia soon become a major importer of electricity? Energy Policy 54, 311–319 (2013).

    Article  Google Scholar 

  • 55.

    Salmivaara, A. et al. Exploring the modifiable areal unit problem in spatial water assessments: a case of water shortage in monsoon Asia. Water 7, 898–917 (2015).

    Article  Google Scholar 

  • 56.

    Yang, Y.-C. E., Brown, C. M., Yu, W. H. & Savitsky, A. An introduction to the IBMR, a hydro-economic model for climate change impact assessment in Pakistan’s Indus River basin. Water Int. 38, 632–650 (2013).

    Article  Google Scholar 

  • 57.

    Kahil, T. et al. A continental-scale hydroeconomic model for integrating water-energy-land nexus solutions. Water Resour. Res 54, 7511–7533 (2018).

    Article  Google Scholar 

  • 58.

    Kim, S. H. et al. Balancing global water availability and use at basin scale in an integrated assessment model. Clim. Change 136, 217–231 (2016).

    Article  Google Scholar 

  • 59.

    Payet-Burin, R., Kromann, M., Pereira-Cardenal, S., Strzepek, K. M. & Bauer-Gottwein, P. WHAT-IF: an open-source decision support tool for water infrastructure investment planning within the water–energy–food-climate nexus. Hydrol. Earth Syst. Sci. 23, 4129–4152 (2019).

    Article  Google Scholar 

  • 60.

    Sridharan, V., Shivakumar, A., Niet, T., Ramos, E. P. & Howells, M. Land, energy and water resource management and its impact on GHG emissions, electricity supply and food production- Insights from a Ugandan case study. Environ. Res. Commun. 2, 085003 (2020).

    Article  Google Scholar 

  • 61.

    Saif, Y. & Almansoori, A. An optimization framework for the climate, land, energy, and water (CLEWS) nexus by a discrete optimization model. Energy Procedia 105, 3232–3238 (2017).

    Article  Google Scholar 

  • 62.

    Smakhtin, V. U., Revenga, C. & Doll, P. Taking Into Account Environmental Water Requirements in Global-scale Water Resources Assessments IWMI Research Reports (IWMI, 2004).

  • 63.

    Van Vuuren, D. P. et al. The representative concentration pathways: an overview. Clim. Change 109, 5 (2011).

    Article  Google Scholar 

  • 64.

    O’Neill, B. C. et al. The roads ahead: narratives for shared socioeconomic pathways describing world futures in the 21st century. Glob. Environ. Change 42, 169–180 (2017).

    Article  Google Scholar 


  • Source: Resources - nature.com

    SMART researchers engineer a plant-based sensor to monitor arsenic levels in soil

    Sustainable development is key to improving global kidney health