in

Sustainable polyethylene fabrics with engineered moisture transport for passive cooling

  • 1.

    The price of fast fashion. Nat. Clim. Change 8, 1 (2018).

  • 2.

    Shirvanimoghaddam, K., Motamed, B., Ramakrishna, S. & Naebe, M. Death by waste: fashion and textile circular economy case. Sci. Total Environ. 718, 137317 (2020).

    CAS  Article  Google Scholar 

  • 3.

    Boriskina, S. V. An ode to polyethylene. MRS Energy Sustain. 6, E14 (2019).

    Article  Google Scholar 

  • 4.

    Grigore, M. Methods of recycling, properties and applications of recycled thermoplastic polymers. Recycling 2, 24 (2017).

    Article  Google Scholar 

  • 5.

    Ragaert, K., Delva, L. & Van Geem, K. Mechanical and chemical recycling of solid plastic waste. Waste Manag. 69, 24–58 (2017).

    CAS  Article  Google Scholar 

  • 6.

    Zhang, Z. et al. Recovering waste plastics using shape-selective nano-scale reactors as catalysts. Nat. Sustain. 2, 39–42 (2019).

    Article  Google Scholar 

  • 7.

    Tong, J. K. et al. Infrared-transparent visible-opaque fabrics for wearable personal thermal management. ACS Photonics 2, 769–778 (2015).

    CAS  Article  Google Scholar 

  • 8.

    Hsu, P.-C. et al. Radiative human body cooling by nanoporous polyethylene textile. Science 353, 1019–1023 (2016).

    CAS  Article  Google Scholar 

  • 9.

    Boriskina, S. V. Nanoporous fabrics could keep you cool. Science 353, 986–987 (2016).

    CAS  Article  Google Scholar 

  • 10.

    Peng, Y. et al. Nanoporous polyethylene microfibres for large-scale radiative cooling fabric. Nat. Sustain. 1, 105–112 (2018).

    Article  Google Scholar 

  • 11.

    Boriskina, S. V., Zandavi, H., Song, B., Huang, Y. & Chen, G. Heat is the new light. Opt. Photonics News 28, 26–33 (2017).

    Article  Google Scholar 

  • 12.

    Higg Materials Sustainability Index (Higg Co., accessed 27 October 2020); https://msi.higg.org/

  • 13.

    Muthu, S. S., Li, Y., Hu, J. Y. & Mok, P. Y. Recyclability potential index (RPI): the concept and quantification of RPI for textile fibres. Ecol. Indic. 18, 58–62 (2012).

    CAS  Article  Google Scholar 

  • 14.

    Allwood, J. M., Laursen, S. E., Rodríguez, C. M. de & Bocken, N. M. P. Well Dressed? The Present and Future Sustainability of Clothing and Textiles in the United Kingdom (Cambridge Univ. Press, 2006).

  • 15.

    van der Velden, N. M., Kuusk, K. & Köhler, A. R. Life cycle assessment and eco-design of smart textiles: the importance of material selection demonstrated through e-textile product redesign. Mater. Des. 84, 313–324 (2015).

    Article  Google Scholar 

  • 16.

    Steinberger, J. K., Friot, D., Jolliet, O. & Erkman, S. A spatially explicit life cycle inventory of the global textile chain. Int. J. Life Cycle Assess. 14, 443–455 (2009).

    CAS  Article  Google Scholar 

  • 17.

    Shimel, M. et al. Enhancement of wetting and mechanical properties of UHMWPE-based composites through alumina atomic layer deposition. Adv. Mater. Interfaces 5, 14 (2018).

    Article  Google Scholar 

  • 18.

    Yousif, E. & Haddad, R. Photodegradation and photostabilization of polymers, especially polystyrene: review. SpringerPlus 2, 398 (2013).

    Article  Google Scholar 

  • 19.

    Hawkins, W. L. in Polymer Degradation and Stabilization (ed. Harwood, H. J.) 3–34 (Springer, 1984).

  • 20.

    Abusrafa, A. E., Habib, S., Krupa, I., Ouederni, M. & Popelka, A. Modification of polyethylene by RF plasma in different/mixture gases. Coatings 9, 145 (2019).

    Article  Google Scholar 

  • 21.

    Princen, H. M. Capillary phenomena in assemblies of parallel cylinders. II. Liquid columns between horizontal parallel cylinders. J. Colloid Interface Sci. 30, 359–371 (1969).

    Article  Google Scholar 

  • 22.

    Zhang, J. & Han, Y. Shape-gradient composite surfaces: water droplets move uphill. Langmuir 23, 6136–6141 (2007).

    CAS  Article  Google Scholar 

  • 23.

    Wallenberger, F. T. The effect of absorbed water on the properties of cotton and fibers from hydrophilic polyester block copolymers. Text. Res. J. 48, 577–581 (1978).

    CAS  Article  Google Scholar 

  • 24.

    Shamey, R. in Polyolefin Fibres: Structure, Properties and Industrial Applications (ed. Ugbolue, S. C. O.) 359–388 (Woodhead Publishing, 2017).

  • 25.

    Lozano, L. M. et al. Optical engineering of polymer materials and composites for simultaneous color and thermal management. Opt. Mater. Express 9, 1990–2005 (2019).

    Article  Google Scholar 

  • 26.

    Cai, L. et al. Temperature regulation in colored infrared-transparent polyethylene textiles. Joule 3, 1478–1486 (2019).

    CAS  Article  Google Scholar 

  • 27.

    Workman, J. J. Jr in Encyclopedia of Analytical Chemistry (eds Meyers, R. A. & Provder, T.) https://doi.org/10.1002/9780470027318.a2021 (John Wiley & Sons, Ltd, 2006).

  • 28.

    Geyer, R., Jambeck, J. R. & Law, K. L. Production, use, and fate of all plastics ever made. Sci. Adv. 3, e1700782 (2017).

    Article  Google Scholar 

  • 29.

    A New Textiles Economy: Redesigning Fashion’s Future (Ellen Macarthur Foundation, 2017); https://www.ellenmacarthurfoundation.org/publications/a-new-textiles-economy-redesigning-fashions-future

  • 30.

    Bisinella, V., Albizzati, P. F., Astrup, T. F. & Damgaard, A. Life Cycle Assessment of Grocery Carrier Bags (Danish Environmental Protection Agency, 2018); https://www.researchgate.net/publication/326735612_Life_Cycle_Assessment_of_grocery_carrier_bags

  • 31.

    Ni, G. W. et al. A salt-rejecting floating solar still for low-cost desalination. Energy Environ. Sci. 11, 1510–1519 (2018).

    CAS  Article  Google Scholar 

  • 32.

    Alberghini, M. et al. Multistage and passive cooling process driven by salinity difference. Sci. Adv. 6, eaax5015 (2020).

    CAS  Article  Google Scholar 

  • 33.

    Lal Basediya, A., Samuel, D. V. K. & Beera, V. Evaporative cooling system for storage of fruits and vegetables – a review. J. Food Sci. Technol. 50, 429–442 (2013).

    Article  Google Scholar 

  • 34.

    McLain, V. C. Final report on the safety assessment of polyethylene. Int. J. Toxicol. 26, 115–127 (2007).

    Google Scholar 

  • 35.

    Suhardi, V. J. et al. A fully functional drug-eluting joint implant. Nat. Biomed. Eng. 1, 0080 (2017).

  • 36.

    Halden, R. U. Plastics and health risks. Annu. Rev. Public Health 31, 179–194 (2010).

    Article  Google Scholar 

  • 37.

    Terinte, N., Manda, B. M. K., Taylor, J., Schuster, K. C. & Patel, M. K. Environmental assessment of coloured fabrics and opportunities for value creation: spin-dyeing versus conventional dyeing of modal fabrics. J. Clean. Prod. 72, 127–138 (2014).

    Article  Google Scholar 

  • 38.

    Bombgardner, M. Greener textile dyeing. C&EN Glob. Enterp. 96, 28–33 (2018).

  • 39.

    Carroll, B. J. Accurate measurement of contact angle, phase contact areas, drop volume, and Laplace excess pressure in drop-on-fibre systems. J. Colloid Interface Sci. 57, 488–495 (1976).

    CAS  Article  Google Scholar 

  • 40.

    Kralchevsky, P. A., Paunov, V. N., Ivanov, I. B. & Nagayama, K. Capillary meniscus interaction between colloidal particles attached to a liquid–fluid interface. J. Colloid Interface Sci. 151, 79–94 (1992).

    Article  Google Scholar 

  • 41.

    Masoodi, R. & Pillai, K. M. Wicking in Porous Materials: Traditional and Modern Modeling Approaches (CRC Press and Taylor & Francis, 2012).

  • 42.

    Princen, H. M. Capillary phenomena in assemblies of parallel cylinders. I. Capillary rise between two cylinders. J. Colloid Interface Sci. 30, 69–75 (1969).

  • 43.

    R Core Team R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2019).


  • Source: Resources - nature.com

    An integrative approach sheds new light onto the systematics and ecology of the widespread ciliate genus Coleps (Ciliophora, Prostomatea)

    Fungal decomposition of river organic matter accelerated by decreasing glacier cover