Junk, W. J. Long-term environmental trends and the future of tropical wetlands. Environ. Conserv. 29, 414–435 (2002).
Tockner, K. & Stanford, J. A. Riverine flood plains: present state and future trends. Environ. Conserv. 29, 308–330 (2002).
Grill, G. et al. Mapping the world’s free-flowing rivers. Nature 569, 215–221 (2019).
Google Scholar
Ziv, G., Baran, E., Nam, S., Rodríguez-Iturbe, I. & Levin, S. A. Trading-off fish biodiversity, food security, and hydropower in the Mekong River Basin. Proc. Natl Acad. Sci. USA 109, 5609–5614 (2012).
Google Scholar
Poff, N. L., Olden, J. D., Merritt, D. M. & Pepin, D. M. Homogenization of regional river dynamics by dams and global biodiversity implications. Proc. Natl Acad. Sci. USA 104, 5732–5737 (2007).
Google Scholar
Junk, W. J., Bayley, P. B. & Sparks, R. E. et al. The flood pulse concept in river–floodplain systems. Can. J. Fish. Aquat. Sci. 106, 110–127 (1989).
Winemiller, K. O. et al. Balancing hydropower and biodiversity in the Amazon, Congo, and Mekong. Science 351, 128–129 (2016).
Google Scholar
McIntyre, P. B., Liermann, C. A. R. & Revenga, C. Linking freshwater fishery management to global food security and biodiversity conservation. Proc. Natl Acad. Sci. USA 113, 12880–12885 (2016).
Google Scholar
O’Connor, J. E., Duda, J. J. & Grant, G. E. 1,000 dams down and counting. Science 348, 496–497 (2015).
Baumann, P. & Stevanella, G. Fish passage principles to be considered for medium and large dams: the case study of a fish passage concept for a hydroelectric power project on the Mekong mainstem in Laos. Ecol. Eng. 48, 79–85 (2012).
Moran, E. F., Lopez, M. C., Moore, N., Müller, N. & Hyndman, D. W. Sustainable hydropower in the 21st century. Proc. Natl Acad. Sci. USA 115, 11891–11898 (2018).
Google Scholar
Poff, N. L. & Schmidt, J. C. How dams can go with the flow. Science 353, 1099–1100 (2016).
Google Scholar
Poff, N. L. et al. The ecological limits of hydrologic alteration (ELOHA): a new framework for developing regional environmental flow standards. Freshwater Biol. 55, 147–170 (2010).
Acreman, M. et al. Environmental flows for natural, hybrid, and novel riverine ecosystems in a changing world. Front. Ecol. Environ. 12, 466–473 (2014).
Palmer, M. & Ruhi, A. Linkages between flow regime, biota, and ecosystem processes: implications for river restoration. Science 365, eaaw2087 (2019).
Google Scholar
Poff, N. L. et al. The natural flow regime. BioScience 47, 769–784 (1997).
Jumani, S. et al. River fragmentation and flow alteration metrics: a review of methods and directions for future research. Environ. Res. Lett. 15, 123009 (2020).
Olden, J. D. et al. Are large-scale flow experiments informing the science and management of freshwater ecosystems? Front. Ecol. Environ. 12, 176–185 (2014).
Opperman, J. J., Kendy, E. & Barrios, E. Securing environmental flows through system reoperation and management: lessons from case studies of implementation. Front. Environ. Sci. 7, 104 (2019).
Sabo, J. L. et al. Designing river flows to improve food security futures in the Lower Mekong basin. Science 358, eaao1053 (2017).
Chen, W. & Olden, J. D. Designing flows to resolve human and environmental water needs in a dam-regulated river. Nat. Commun. 8, 2158 (2017).
Merme, V., Ahlers, R. & Gupta, J. Private equity, public affair: hydropower financing in the Mekong basin. Glob. Environ. Change 24, 20–29 (2014).
Owusu, A., Mul, M., Van Der Zaag, P. & Slinger, J. May the odds be in your favor: why many attempts to reoperate dams for the environment stall. J. Water Resour. Plann. Manage. 148, 04022009 (2022).
Hetch, J. S., Lacombe, G., Arias, M. E., Dang, T. D. & Piman, T. Hydropower dams of the Mekong River basin: a review of their hydrological impacts. J. Hydrol. 568, 285–300 (2019).
Dang, H. et al. Hydrologic balance and inundation dynamics of Southeast Asia’s largest inland lake altered by hydropower dams in the Mekong River basin. Sci. Total Environ. 831, 154833 (2022).
Google Scholar
Latrubesse, E. M. et al. Dam failure and a catastrophic flood in the Mekong basin (Bolaven Plateau), southern Laos, 2018. Geomorphology 362, 107221 (2020).
Chowdhury, A. K., Dang, T. D., Nguyen, H. T., Koh, R. & Galelli, S. The greater Mekong’s climate–water–energy nexus: how ENSO-triggered regional droughts affect power supply and CO2 emissions. Earth’s Future 9, e2020EF001814 (2021).
Schmitt, R. J., Bizzi, S., Castelletti, A., Opperman, J. & Kondolf, G. M. Planning dam portfolios for low sediment trapping shows limits for sustainable hydropower in the Mekong. Sci. Adv. 5, eaaw2175 (2019).
Google Scholar
Cochrane, T. A., Arias, M. E. & Piman, T. Historical impact of water infrastructure on water levels of the Mekong River and the Tonle Sap system. Hydrol. Earth Syst. Sci. 18, 4529–4541 (2014).
Dang, T. D., Cochrane, T. A., Arias, M. E., Van, P. D. T. & de Vries, T. T. Hydrological alterations from water infrastructure development in the Mekong floodplains. Hydrol. Processes 30, 3824–3838 (2016).
Räsänen, T. A. et al. Observed river discharge changes due to hydropower operations in the Upper Mekong basin. J. Hydrol. 545, 28–41 (2017).
Halls, A. S. & Hortle, K. G. Flooding is a key driver of the Tonle Sap dai fishery in Cambodia. Sci. Rep. 11, 3806 (2021).
Google Scholar
Richter, B. D., Baumgartner, J. V., Powell, J. & Braun, D. P. A method for assessing hydrologic alteration within ecosystems. Conserv. Biol. 10, 1163–1174 (1996).
Arias, M. E., Piman, T., Lauri, H., Cochrane, T. A. & Kummu, M. Dams on Mekong tributaries as significant contributors of hydrological alterations to the Tonle Sap floodplain in Cambodia. Hydrol. Earth Syst. Sci. 18, 5303–5315 (2014).
Williams, J. M. Is three a crowd? River basin institutions and the governance of the Mekong River. Int. J. Water Resour. Dev. 37, 720–740 (2021).
Tiezzi, S. Facing Mekong drought, China to release water from Yunnan Dam. The Diplomat https://thediplomat.com/2016/03/facing-mekong-drought-china-to-release-water-from-yunnan-dam/ (2016).
Johnson, K. China commits to share year-round water data with Mekong River Commission. Reuters https://www.reuters.com/article/us-mekong-river/china-commits-to-share-year-round-water-data-with-mekong-river-commission-idINKBN277135 (2020).
Ulibarri, N. Tracing process to performance of collaborative governance: a comparative case study of federal hydropower licensing. Policy Stud. J. 43, 283–308 (2015).
Pool, T. et al. Fish assemblage composition within the floodplain habitat mosaic of a tropical lake (Tonle Sap, Cambodia). Freshwater Biol. 64, 2026–2036 (2019).
Arthington, A. H., Bunn, S. E., Poff, N. L. & Naiman, R. J. The challenge of providing environmental flow rules to sustain river ecosystems. Ecol. Appl. 16, 1311–1318 (2006).
Halls, A. S. & Welcomme, R. L. Dynamics of river fish populations in response to hydrological conditions: a simulation study. River Res. Appl. 20, 985–1000 (2004).
Ngor, P. B. et al. Evidence of indiscriminate fishing effects in one of the world’s largest inland fisheries. Sci. Rep. 8, 8947 (2018).
Bonnema, M., Hossain, F., Nijssen, B. & Holtgrieve, G. Hydropower’s hidden transformation of rivers in the Mekong. Environ. Res. Lett. 15, 044017 (2020).
Siala, K., Chowdhury, A. K., Dang, T. & Galelli, S. Solar energy and regional coordination as a feasible alternative to large hydropower in Southeast Asia. Nat. Commun. 12, 4159 (2021).
Google Scholar
Hauer, C., Siviglia, A. & Zolezzi, G. Hydropeaking in regulated rivers—from process understanding to design of mitigation measures. Sci. Total Environ. 579, 22–26 (2017).
Google Scholar
Ahmed, T. et al. ASEAN power grid: a secure transmission infrastructure for clean and sustainable energy for South-East Asia. Renew. Sust. Energy Rev. 67, 1420–1435 (2017).
Mohammed, I. N., Bolten, J. D., Souter, N. J., Shaad, K. & Vollmer, D. Diagnosing challenges and setting priorities for sustainable water resource management under climate change. Sci. Rep. 12, 796 (2022).
Google Scholar
Chowdhury, A. K. et al. Enabling a low-carbon electricity system for southern Africa. Joule 6, 1826–1844 (2022).
Giuliani, M., Lamontagne, J., Reed, P. & Castelletti, A. A state-of-the-art review of optimal reservoir control for managing conflicting demands in a changing world. Water Resour. Res. 57, e2021WR029927 (2021).
Turner, S. W., Ng, J. Y. & Galelli, S. Examining global electricity supply vulnerability to climate change using a high-fidelity hydropower dam model. Sci. Total Environ. 590-591, 663–675 (2017).
Google Scholar
De Stefano, L., Petersen-Perlman, J. D., Sproles, E. A., Eynard, J. & Wolf, A. T. Assessment of transboundary river basins for potential hydro-political tensions. Glob. Environ. Change 45, 35–46 (2017).
Liang, X., Lettenmaier, D. P., Wood, E. F. & Burges, S. J. A simple hydrologically based model of land surface water and energy fluxes for general circulation models. J. Geophys. Res. 99, 14415–14428 (1994).
Dang, T. D., Vu, D. T., Chowdhury, A. K. & Galelli, S. A software package for the representation and optimization of water reservoir operations in the VIC hydrologic model. Environ. Modell. Software 126, 104673 (2020).
Chowdhury, A. K., Dang, T. D., Bagchi, A. & Galelli, S. Expected benefits of Laos’ hydropower development curbed by hydro-climatic variability and limited transmission capacity: opportunities to reform. J. Water Resour. Plann. Manage. 146, 05020019 (2020).
Sheffield, J., Goteti, G. & Wood, E. F. Development of a 50-year high-resolution global dataset of meteorological forcings for land surface modeling. J. Clim. 19, 3088–3111 (2006).
Reed, P. M., Hadka, D., Herman, J. D., Kasprzyk, J. R. & Kollat, J. B. Evolutionary multiobjective optimization in water resources: the past, present, and future. Adv. Water Resour. 51, 438–456 (2013).
Shin, S. et al. High resolution modeling of river–floodplain–reservoir inundation dynamics in the Mekong River basin. Water Resour. Res. 56, e2019wr026449 (2020).
Kabir, T., Pokhrel, Y. & Felfelani, F. On the precipitation-induced uncertainties in process-based hydrological modeling in the Mekong River basin. Water Resour. Res. 58, e2021WR030828 (2022).
Piman, T., Cochrane, T., Arias, M., Green, A. & Dat, N. Assessment of flow changes from hydropower development and operations in Sekong, Sesan, and Srepok Rivers of the Mekong basin. J. Water Resour. Plann. Manage. 139, 723–732 (2013).
Chowdhury, A. K., Kern, J., Dang, T. D. & Galelli, S. PowNet: a network-constrained unit commitment/economic dispatch model for large-scale power systems analysis. J. Open Res. Software 8, 5 (2020).
Source: Resources - nature.com