in

The judicious use of finite marine resources can sustain Atlantic salmon (salmo salar) aquaculture to 2100 and beyond

  • The State of World Fisheries and Aquaculture 2020: Sustainability in Action (FAO, 2020); https://doi.org/10.4060/ca9229en

  • Fish to 2030: Prospects for Fisheries and Aquaculture (World Bank, 2013).

  • OECD–FAO Agricultural Outlook 2020–2029 (OECD and FAO, 2020).

  • Turchini, G. M., Trushenski, J. T. & Glencross, B. D. Thoughts for the future of aquaculture nutrition: realigning perspectives to reflect contemporary issues related to judicious use of marine resources in aquafeeds. N. Am. J. Aquac. 81, 13–39 (2019).

    Article 

    Google Scholar 

  • Fishmeal and Fish Oil—Case Study Monthly Highlights No. 4/2019, 43 (EUMOFA, 2019).

  • Tacon, A. G. J. & Metian, M. Global overview on the use of fish meal and fish oil in industrially compounded aquafeeds: trends and future prospects. Aquaculture 285, 146–158 (2008).

    CAS 
    Article 

    Google Scholar 

  • Cao, L. et al. China’s aquaculture and the world’s wild fisheries. Science 347, 133–135 (2015).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Aranda, M. Developments on fisheries management in Peru: the new individual vessel quota system for the anchoveta fishery. Fish. Res. 96, 308–312 (2009).

    Article 

    Google Scholar 

  • Shepherd, C. J. & Jackson, A. J. Global fishmeal and fish-oil supply: inputs, outputs and markets. J. Fish Biol. 83, 1046–1066 (2013).

    CAS 
    Article 

    Google Scholar 

  • Cottrell, R. S., Blanchard, J. L., Halpern, B. S., Metian, M. & Froehlich, H. E. Global adoption of novel aquaculture feeds could substantially reduce forage fish demand by 2030. Nat. Food 1, 301–308 (2020).

    Article 

    Google Scholar 

  • Froehlich, H. E., Jacobsen, N. S., Essington, T. E., Clavelle, T. & Halpern, B. S. Avoiding the ecological limits of forage fish for fed aquaculture. Nat. Sustain. 1, 298–303 (2018).

    Article 

    Google Scholar 

  • Turchini, G. M. Fish oils, misconceptions and the environment. Am. J. Public Health 103, e4 (2013).

    Article 

    Google Scholar 

  • Schreiber, M. A. & Halliday, A. Uncommon among the commons? Disentangling the sustainability of the Peruvian anchovy fishery. Ecol. Soc. 18, 12 (2013).

    Google Scholar 

  • Tacon, A. G. J. & Metian, M. Fishing for feed or fishing for food: increasing global competition for small pelagic forage fish. Ambio 38, 294–302 (2009).

    Article 

    Google Scholar 

  • Aas, T. S., Ytrestøyl, T. & Åsgård, T. Utilization of feed resources in the production of Atlantic salmon (Salmo salar) in Norway: an update for 2016. Aquac. Rep. 15, 100216 (2019).

    Article 

    Google Scholar 

  • Shepherd, C. J., Monroig, O. & Tocher, D. R. Future availability of raw materials for salmon feeds and supply chain implications: the case of Scottish farmed salmon. Aquaculture 467, 49–62 (2017).

    Article 

    Google Scholar 

  • Tocher, D. R. Omega-3 long-chain polyunsaturated fatty acids and aquaculture in perspective. Aquaculture 449, 94–107 (2015).

    CAS 
    Article 

    Google Scholar 

  • Sissener, N. H. Are we what we eat? Changes to the feed fatty acid composition of farmed salmon and its effects through the food chain. J. Exp. Biol. 221, jeb161521 (2018).

    Article 

    Google Scholar 

  • Sprague, M., Dick, J. R. & Tocher, D. R. Impact of sustainable feeds on omega-3 long-chain fatty acid levels in farmed Atlantic salmon, 2006–2015. Sci. Rep. 6, 21892 (2016).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Hertrampf, J. W. & Piedad-Pascual, F. Handbook on Ingredients for Aquaculture Feeds (Kluwer Academic, 2000).

  • Sargent, J. & Tacon, A. Development of farmed fish: a nutritionally necessary alternative to meat. Proc. Nutr. Soc. 58, 377–383 (1999).

    CAS 
    Article 

    Google Scholar 

  • Turchini, G. M., Nichols, P. D., Barrow, C. & Sinclair, A. J. Jumping on the omega-3 bandwagon: distinguishing the role of long-chain and short-chain omega-3 fatty acids. Crit. Rev. Food Sci. Nutr. 52, 795–803 (2012).

    CAS 
    Article 

    Google Scholar 

  • Ghasemifard, S., Wang, F., Sinclair, A. J., Elliott, G. & Turchini, G. M. How does high DHA fish oil affect health? A systematic review of evidence. Crit. Rev. Food Sci. Nutr. 59, 1684–1727 (2019).

    CAS 
    Article 

    Google Scholar 

  • EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA) Scientific opinion on the tolerable upper intake level of eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA) and docosapentaenoic acid (DPA). EFSA J. 10, 2815 (2012).

  • Kris-Etherton, P. M., Grieger, J. A. & Etherton, T. D. Dietary reference intakes for DHA and EPA. Prostaglandins Leukot. Essent. Fatty Acids 81, 99–104 (2009).

    CAS 
    Article 

    Google Scholar 

  • Global Recommendations for EPA and DHA Intake (GOED, 2014).

  • GOED Publishes EPA and DHA Intake Recommendations (GOED, 2016).

  • Ghasemifard, S., Sinclair, A. J., Kaur, G., Lewandowski, P. & Turchini, G. M. What is the most effective way of increasing the bioavailability of dietary long chain omega-3 fatty acids—daily vs. weekly administration of fish oil? Nutrients 7, 5628–5645 (2015).

    CAS 
    Article 

    Google Scholar 

  • Cottrell, R. S. et al. Time to rethink trophic levels in aquaculture policy. Rev. Aquac. https://doi.org/10.1111/raq.12535 (2021).

  • Shepherd, C. & Little, D. Aquaculture-are the criticisms justified? Environmental impacts and use of resources with special reference to farming Atlantic salmon. World 4, 37–52 (2014).

    Google Scholar 

  • Tacon, A. G. J. & Metian, M. Feed matters: satisfying the feed demand of aquaculture. Rev. Fish. Sci. Aquac. 23, 1–10 (2015).

    Article 

    Google Scholar 

  • Mock, T. S. et al. Seasonal effects on growth and product quality in Atlantic salmon fed diets containing terrestrial oils as assessed by a long-term, on-farm growth trial. Aquac. Nutr. https://doi.org/10.1111/anu.13200 (2020).

  • Jackson, A. & Newton, R. W. Project to Model the Use of Fisheries By-products in the Production of Marine Ingredients with Special Reference to the Omega 3 Fatty Acids, EPA and DHA (IFFO, 2016).

  • Wijkström, U. N. Is feeding fish with fish a viable practice? in Farming the Waters for People and Food: Proc. Global Conference on Aquaculture 2010 (eds Subasinghe, R.P. et al.) 33–55 (FAO and NACA, 2012).

  • The Evolution of Sustainability Metrics for Marine Ingredients—New (IFFO, 2022); https://www.iffo.com/evolution-sustainability-metrics-marine-ingredients-new

  • Colombo, S. M. & Turchini, G. M. ‘Aquafeed 3.0’: creating a more resilient aquaculture industry with a circular bioeconomy framework. Rev. Aquac. 13, 1156–1158 (2021).

    Article 

    Google Scholar 

  • Asche, F. & Tveterås, S. On the relationship between aquaculture and reduction fisheries. J. Agric. Econ. 55, 245–265 (2004).

    Article 

    Google Scholar 

  • Alder, J., Campbell, B., Karpouzi, V., Kaschner, K. & Pauly, D. Forage fish: from ecosystems to markets. Annu. Rev. Environ. Resour. 33, 153–166 (2008).

    Article 

    Google Scholar 

  • Welch, A. et al. From fishing to the sustainable farming of carnivorous marine finfish. Rev. Fish. Sci. 18, 235–247 (2010).

    Article 

    Google Scholar 

  • Tanner, J. E. Southern Bluefin Tuna Aquaculture Subprogram: Tuna Environment Subproject—Development of Regional Environmental Sustainability Assessments for Tuna Sea-Cage Aquaculture Project No. 2001/104 (FRDC, 2007).

  • Jeffriess, B. A Review of Tuna Growth Performance in Ranching and Farming Operations (ASBTIA, 2015).

  • Kaushik, T. & Max, S. Taking the fish-in fish-out ratio a step further. Aquac. Eur. 35, 15–17 (2010).

    Google Scholar 

  • Bou, M. et al. Requirements of n-3 very long-chain PUFA in Atlantic salmon (Salmo salar L): effects of different dietary levels of EPA and DHA on fish performance and tissue composition and integrity. Br. J. Nutr. 117, 30–47 (2017).

    CAS 
    Article 

    Google Scholar 

  • NRC Nutrient Requirements of Fish and Shrimp (National Academies Press, 2011); https://doi.org/10.17226/13039

  • Rosenlund, G., Torstensen, B. E., Stubhaug, I., Usman, N. & Sissener, N. H. Atlantic salmon require long-chain n-3 fatty acids for optimal growth throughout the seawater period. J. Nutr. Sci. 5, e19 (2016).

    Article 

    Google Scholar 

  • Mock, T. S. et al. A systematic review and analysis of long-term growth trials on the effect of diet on omega-3 fatty acid levels in the fillet tissue of post-smolt Atlantic salmon. Aquaculture 516, 734643 (2020).

    CAS 
    Article 

    Google Scholar 

  • Mock, T. S. et al. The impact of dietary protein:lipid ratio on growth performance, fatty acid metabolism, product quality and waste output in Atlantic salmon (Salmo salar). Aquaculture 501, 191–201 (2019).

    CAS 
    Article 

    Google Scholar 

  • Sanden, M., Stubhaug, I., Berntssen, M. H. G., Lie, Ø. & Torstensen, B. E. Atlantic salmon (Salmo salar L.) as a net producer of long-chain marine ω-3 fatty acids. J. Agric. Food Chem. 59, 12697–12706 (2011).

    CAS 
    Article 

    Google Scholar 

  • Fishery and Aquaculture Statistics (FishStatJ) (FAO Fisheries and Aquaculture Division, 2022).

  • Ytrestøyl, T., Aas, T. S. & Åsgård, T. Utilisation of feed resources in production of Atlantic salmon (Salmo salar) in Norway. Aquaculture 448, 365–374 (2015).

    Article 

    Google Scholar 


  • Source: Resources - nature.com

    A dataset of road-killed vertebrates collected via citizen science from 2014–2020

    Permian hypercarnivore suggests dental complexity among early amniotes