in

Addressing the contribution of indirect potable reuse to inland freshwater salinization

  • 1.

    Cañedo-Argüelles, M., Kefford, B. & Schäfer, R. Salt in freshwaters: causes, effects and prospects—introduction to the theme issue. Philos. Trans. R. Soc. Lond. B 374, 20180002 (2018).

    Article 
    CAS 

    Google Scholar 

  • 2.

    Williams, W. D. Anthropogenic salinisation of inland waters. Hydrobiologia 466, 329–337 (2001).

    Article 

    Google Scholar 

  • 3.

    Dugan, H. A. et al. Salting our freshwater lakes. Proc. Natl Acad. Sci. USA 114, 4453–4458 (2017).

    CAS 
    Article 

    Google Scholar 

  • 4.

    Kaushal, S. S. et al. Increased salinization of fresh water in the northeastern United States. Proc. Natl Acad. Sci. USA 102, 13517–13520 (2005).

    CAS 
    Article 

    Google Scholar 

  • 5.

    Stets, E. G. et al. Landscape drivers of dynamic change in water quality of US rivers. Environ. Sci. Technol. 54, 4336–4343 (2020).

    CAS 
    Article 

    Google Scholar 

  • 6.

    Kaushal, S. S. et al. Freshwater salinization syndrome on a continental scale. Proc. Natl Acad. Sci. USA 115, E574–E583 (2018).

    CAS 
    Article 

    Google Scholar 

  • 7.

    Bird, D. L., Groffman, P. M., Salice, C. J. & Moore, J. Steady-state land cover but non-steady-state major ion chemistry in urban streams. Environ. Sci. Technol. 52, 13015–13026 (2018).

    CAS 
    Article 

    Google Scholar 

  • 8.

    Godwin, K., Hafner, S. & Buff, M. Long-term trends in sodium and chloride in the Mohawk River, New York: the effect of fifty years of road-salt application. Environ. Pollut. 124, 273–281 (2003).

    CAS 
    Article 

    Google Scholar 

  • 9.

    Kelly, V. R. et al. Long-term sodium chloride retention in a rural watershed: legacy effects of road salt on streamwater concentration. Environ. Sci. Technol. 42, 410–415 (2008).

    CAS 
    Article 

    Google Scholar 

  • 10.

    Overbo, A., Heger, S. & Gulliver, J. Evaluation of chloride contributions from major point and nonpoint sources in a northern U.S. state. Sci. Total Environ. 764, 144179 (2021).

    CAS 
    Article 

    Google Scholar 

  • 11.

    Olson, J. R. Predicting combined effects of land use and climate change on river and stream salinity. Philos. Trans. R. Soc. Lond. B 374, 20180005 (2018).

    Article 
    CAS 

    Google Scholar 

  • 12.

    Corsi, S. R., Cicco, L. A. D., Lutz, M. A. & Hirsch, R. M. River chloride trends in snow-affected urban watersheds: increasing concentrations outpace urban growth rate and are common among all seasons. Sci. Total Environ. 508, 488–497 (2015).

    CAS 
    Article 

    Google Scholar 

  • 13.

    Kaushal, S. S. et al. Novel ‘chemical cocktails’ in inland waters are a consequence of the freshwater salinization syndrome. Philos. Trans. R. Soc. Lond. B 374, 20180017 (2018).

    Article 
    CAS 

    Google Scholar 

  • 14.

    Moore, J., Fanelli, R. M. & Sekellick, A. J. High-frequency data reveal deicing salts drive elevated specific conductance and chloride along with pervasive and frequent exceedances of the US Environmental Protection Agency aquatic life criteria for chloride in urban streams. Environ. Sci. Technol. 54, 778–789 (2019).

    Article 
    CAS 

    Google Scholar 

  • 15.

    Löfgren, S. The chemical effects of deicing salt on soil and stream water of five catchments in southeast Sweden. Water Air Soil Pollut. 130, 863–868 (2001).

    Article 

    Google Scholar 

  • 16.

    Daley, M. L., Potter, J. D. & McDowell, W. H. Salinization of urbanizing New Hampshire streams and groundwater: effects of road salt and hydrologic variability. J. North Am. Benthol Soc. 28, 929–940 (2009).

    Article 

    Google Scholar 

  • 17.

    Cooper, C. A., Mayer, P. M. & Faulkner, B. R. Effects of road salts on groundwater and surface water dynamics of sodium and chloride in an urban restored stream. Biogeochemistry 121, 149–166 (2014).

    CAS 
    Article 

    Google Scholar 

  • 18.

    Snodgrass, J. W. et al. Influence of modern stormwater management practices on transport of road salt to surface waters. Environ. Sci. Technol. 51, 4165–4172 (2017).

    CAS 
    Article 

    Google Scholar 

  • 19.

    International Stormwater BMP Database: 2020 Summary Statistics Project No. 4968 (The Water Research Foundation, 2020).

  • 20.

    Venkatesan, A. K., Ahmad, S., Johnson, W. & Batista, J. R. Systems dynamic model to forecast salinity load to the Colorado River due to urbanization within the Las Vegas valley. Sci. Total Environ. 409, 2616–2625 (2011).

    CAS 
    Article 

    Google Scholar 

  • 21.

    Steele, M. & Aitkenhead-Peterson, J. Long-term sodium and chloride surface water exports from the Dallas/Fort Worth region. Sci. Total Environ. 409, 3021–3032 (2011).

    CAS 
    Article 

    Google Scholar 

  • 22.

    Davies, P. J., Wright, I. A., Jonasson, O. J. & Findlay, S. J. Impact of concrete and PVC pipes on urban water chemistry. Urban Water J. 7, 233–241 (2010).

    CAS 
    Article 

    Google Scholar 

  • 23.

    Wright, I. A., Davies, P. J., Findlay, S. J. & Jonasson, O. J. A new type of water pollution: concrete drainage infrastructure and geochemical contamination of urban waters. Mar. Freshw. Res. 62, 1355–1361 (2011).

    CAS 
    Article 

    Google Scholar 

  • 24.

    Moore, J., Bird, D. L., Dobbis, S. K. & Woodward, G. Nonpoint source contributions drive elevated major ion and dissolved inorganic carbon concentrations in urban watersheds. Environ. Sci. Technol. Lett. 4, 198–204 (2017).

    CAS 
    Article 

    Google Scholar 

  • 25.

    Tippler, C., Wright, I. A., Davies, P. J. & Hanlon, A. The influence of concrete on the geochemical qualities of urban streams. Mar. Freshw. Res. 65, 1009–1017 (2014).

    CAS 
    Article 

    Google Scholar 

  • 26.

    McLennan, S. M. Weathering and global denudation. J. Geol. 101, 295–303 (1993).

    Article 

    Google Scholar 

  • 27.

    Wilkinson, B. H. Humans as geologic agents: a deep-time perspective. Geology 33, 161–164 (2005).

    Article 

    Google Scholar 

  • 28.

    Schuler, M. S. et al. Regulations are needed to protect freshwater ecosystems from salinization. Philos. Trans. R. Soc. Lond. B 374, 20180019 (2018).

    Article 
    CAS 

    Google Scholar 

  • 29.

    Haq, S., Kaushal, S. S. & Duan, S. Episodic salinization and freshwater salinization syndrome mobilize base cations, carbon, and nutrients to streams across urban regions. Biogeochemistry 141, 463–486 (2018).

    CAS 
    Article 

    Google Scholar 

  • 30.

    Shanley, J. B. Effects of ion exchange on stream solute fluxes in a basin receiving highway deicing salts. J. Environ. Qual. 23, 977–986 (1994).

    CAS 
    Article 

    Google Scholar 

  • 31.

    Hong, P. K. A. & Macauley, Y. Corrosion and leaching of copper tubing exposed to chlorinated drinking water. Water Air Soil Pollut. 108, 457–471 (1998).

    CAS 
    Article 

    Google Scholar 

  • 32.

    Nguyen, C. K., Stone, K. R. & Edwards, M. A. Chloride-to-sulfate mass ratio: practical studies in galvanic corrosion of lead solder. J. Am. Water Works Assoc. 103, 81–92 (2011).

    CAS 
    Article 

    Google Scholar 

  • 33.

    Stets, E., Lee, C., Lytle, D. & Schock, M. Increasing chloride in rivers of the conterminous US and linkages to potential corrosivity and lead action level exceedances in drinking water. Sci. Total Environ. 613-614, 1498–1509 (2018).

    CAS 
    Article 

    Google Scholar 

  • 34.

    Dietrich, A. M. & Burlingame, G. A. Critical review and rethinking of USEPA secondary standards for maintaining organoleptic quality of drinking water. Environ. Sci. Technol. 49, 708–720 (2015).

    CAS 
    Article 

    Google Scholar 

  • 35.

    Sodium in drinking water. In Guidelines for Drinking-Water Quality 2nd edn, Vol. 2, Health Criteria and Other Supporting Information (World Health Organization, 1996).

  • 36.

    Drinking Water Advisory: Consumer Acceptability Advice and Health Effects Analysis on Sodium EPA 822-R-03-006 (EPA, 2003).

  • 37.

    National Research Council Water Reuse: Potential for Expanding the Nation’s Water Supply Through Reuse of Municipal Wastewater (National Academies Press, 2012).

  • 38.

    Mukherjee, M. & Jensen, O. Making water reuse safe: a comparative analysis of the development of regulation and technology uptake in the US and Australia. Saf. Sci. 121, 5–14 (2020).

    Article 

    Google Scholar 

  • 39.

    EPA & CDM Smith 2017 Potable Reuse Compendium (EPA, 2017); https://www.epa.gov/sites/production/files/2018-01/documents/potablereusecompendium_3.pdf

  • 40.

    Draft National Water Reuse Action Plan (EPA, 2019); https://www.epa.gov/waterreuse/draft-national-water-reuse-action-plan

  • 41.

    Martin, B. & Via, S. Integrating water reuse into the US water supply portfolio. J. Am. Water Works Assoc. 112, 8–14 (2020).

    Article 

    Google Scholar 

  • 42.

    Freshwater: Supply Concerns Continue, and Uncertainties Complicate Planning Technical Report GAO-14-43 (GAO, 2014); https://www.gao.gov/assets/670/663343.pdf

  • 43.

    Rice, J. & Westerhoff, P. High levels of endocrine pollutants in US streams during low flow due to insufficient wastewater dilution. Nat. Geosci. 10, 587–591 (2017).

    CAS 
    Article 

    Google Scholar 

  • 44.

    Wiener, M. J., Moreno, S., Jafvert, C. T. & Nies, L. F. Time series analysis of water use and indirect reuse within a HUC-4 basin (Wabash) over a nine year period. Sci. Total Environ. 738, 140221 (2020).

    CAS 
    Article 

    Google Scholar 

  • 45.

    Harris-Lovett, S. & Sedlak, D. Protecting the sewershed. Science 369, 1429–1430 (2020).

    CAS 
    Article 

    Google Scholar 

  • 46.

    Falconer, I. R., Chapman, H. F., Moore, M. R. & Ranmuthugala, G. Endocrine-disrupting compounds: a review of their challenge to sustainable and safe water supply and water reuse. Environ. Toxicol. 21, 181–191 (2006).

    CAS 
    Article 

    Google Scholar 

  • 47.

    Novotny, E. V., Sander, A. R., Mohseni, O. & Stefan, H. G. Chloride ion transport and mass balance in a metropolitan area using road salt. Water Resour. Res. 45, W12410 (2009).

    Article 

    Google Scholar 

  • 48.

    Potter, J. D., McDowell, W. H., Helton, A. M. & Daley, M. L. Incorporating urban infrastructure into biogeochemical assessment of urban tropical streams in Puerto Rico. Biogeochemistry 121, 271–286 (2013).

    Article 
    CAS 

    Google Scholar 

  • 49.

    Kaushal, S. S. et al. Longitudinal patterns in carbon and nitrogen fluxes and stream metabolism along an urban watershed continuum. Biogeochemistry 121, 23–44 (2014).

    CAS 
    Article 

    Google Scholar 

  • 50.

    Ambient Water Quality Criteria for Chloride Technical Report EPA 440/5-88-001 (EPA, 1998).

  • 51.

    Nelsen, R. B. An Introduction to Copulas (Springer-Verlag, 2007).

  • 52.

    Comprehensive Annual Financial Report (Upper Occoquan Service Authority, 2017); https://www.uosa.org/Documents/0450_012759.pdf

  • 53.

    Tjandraatmadja, G. et al. Sources of Priority Contaminants in Domestic Wastewater: Contaminant Contribution from Household Products (CSIRO, 2008).

  • 54.

    Schwabe, K., Nemati, M., Amin, R., Tran, Q. & Jassby, D. Unintended consequences of water conservation on the use of treated municipal wastewater. Nat. Sustain. 3, 628–635 (2020).

    Article 

    Google Scholar 

  • 55.

    Cogswell, M. E. et al. Estimated 24-hour urinary sodium and potassium excretion in US adults. JAMA 319, 1209–1220 (2018).

    CAS 
    Article 

    Google Scholar 

  • 56.

    Gleick, P. H. Global freshwater resources: soft-path solutions for the 21st century. Science 302, 1524–1528 (2003).

    CAS 
    Article 

    Google Scholar 

  • 57.

    Grant, S. B. et al. Taking the “waste” out of “wastewater” for human water security and ecosystem sustainability. Science 337, 681–686 (2012).

    CAS 
    Article 

    Google Scholar 

  • 58.

    Liu, C. et al. Robust slippery liquid-infused porous network surfaces for enhanced anti-icing/deicing performance. ACS Appl. Mater. Interfaces 12, 25471–25477 (2020).

    CAS 
    Article 

    Google Scholar 

  • 59.

    Baldassarre, G. D. et al. Sociohydrology: scientific challenges in addressing the sustainable development goals. Water Resour. Res. 55, 6327–6355 (2019).

    Article 

    Google Scholar 

  • 60.

    Su, J. G. et al. Factors influencing whether children walk to school. Health Place 22, 153–161 (2013).

    Article 

    Google Scholar 

  • 61.

    Micron Announces Investment in Its Semiconductor Manufacturing Plant in Manassas, Virginia (Micron Technology, 2018); https://investors.micron.com/node/37386/pdf

  • 62.

    Lazarova, V., Savoye, P., Janex, M. L., Blatchley, E. R. & Pommepuy, M. Advanced wastewater disinfection technologies: state of the art and perspectives. Water Sci. Technol. 40, 203–213 (1999).

    CAS 
    Article 

    Google Scholar 

  • 63.

    Davis, M. L. Water and Wastewater Engineering: Design Principles and Practice (McGraw-Hill, 2010).

    Google Scholar 

  • 64.

    Rivera-Utrilla, J., Sánchez-Polo, M., Ferro-García, M. Á., Prados-Joya, G. & Ocampo-Pérez, R. Pharmaceuticals as emerging contaminants and their removal from water: a review. Chemosphere 93, 1268–1287 (2013).

    CAS 
    Article 

    Google Scholar 

  • 65.

    Rauch, W. & Kleidorfer, M. Replace contamination, not the pipes. Science 345, 734–735 (2014).

    CAS 
    Article 

    Google Scholar 

  • 66.

    Potts, J. The innovation deficit in public services: the curious problem of too much efficiency and not enough waste and failure. Innovation 11, 34–43 (2009).

    Article 

    Google Scholar 

  • 67.

    McKenzie-Mohr, D., Lee, N. R. & Schultz, P. W. Social Marketing to Protect the Environment: What Works (Sage, 2011).

  • 68.

    Calcagno, V. & de Mazancourt, C. glmulti: an R package for easy automated model selection with (generalized) linear models. J. Stat. Softw. 34, 1–29 (2010).

    Article 

    Google Scholar 

  • 69.

    Schwarz, G. Estimating the dimension of a model. Ann. Stat. 6, 461–464 (1978).

    Article 

    Google Scholar 

  • 70.

    Appling, A. P., Leon, M. C. & McDowell, W. H. Reducing bias and quantifying uncertainty in watershed flux estimates: the R package loadflex. Ecosphere 6, 269 (2015).

    Article 

    Google Scholar 

  • 71.

    Madadgar, S., AghaKouchak, A., Farahmand, A. & Davis, S. J. Probabilistic estimates of drought impacts on agricultural production. Geophys. Res. Lett. 44, 7799–7807 (2017).

    Article 

    Google Scholar 

  • 72.

    Sadegh, M., Ragno, E. & AghaKouchak, A. Multivariate copula analysis toolbox (MvCAT): describing dependence and underlying uncertainty using a Bayesian framework. Water Resour. Res. 53, 5166–5183 (2017).

    Article 

    Google Scholar 

  • 73.

    Racine, J. & Hyndman, R. Using R to teach econometrics. J. Appl. Econom. 17, 175–189 (2002).

    Article 

    Google Scholar 


  • Source: Resources - nature.com

    Publisher Correction: Evolutionary assembly of flowering plants into sky islands

    President Reif urges two-track strategy to achieve global climate goals in 30 years