in

Drought less predictable under declining future snowpack

  • 1.

    Barnett, T. P., Adam, J. C. & Lettenmaier, D. P. Potential impacts of a warming climate on water availability in snow-dominated regions. Nature 438, 303–309 (2005).

    • CAS
    • Google Scholar
  • 2.

    Simpkins, G. Snow-related water woes. Nat. Clim. Change 8, 945 (2018).

    • Google Scholar
  • 3.

    Viviroli, D., Dürr, H. H., Messerli, B., Meybeck, M. & Weingartner, R. Mountains of the world, water towers for humanity: typology, mapping, and global significance. Water Resour. Res. 43, W07447 (2007).

    • Google Scholar
  • 4.

    Koster, R. D., Mahanama, S. P., Livneh, B., Lettenmaier, D. P. & Reichle, R. H. Skill in streamflow forecasts derived from large-scale estimates of soil moisture and snow. Nat. Geosci. 3, 613–616 (2010).

    • CAS
    • Google Scholar
  • 5.

    Wood, A. W. et al. Quantifying streamflow forecast skill elasticity to initial condition and climate prediction skill. J. Hydrometeorol. 17, 651–668 (2016).

    • Google Scholar
  • 6.

    Pagano, T. C. Hydrology: soils, snow and streamflow. Nat. Geosci. 3, 591–592 (2010).

    • CAS
    • Google Scholar
  • 7.

    Gelfan, A. N. & Motovilov, Y. G. Long-term hydrological forecasting in cold regions: retrospect, current status and prospect. Geogr. Compass 3, 1841–1864 (2009).

    • Google Scholar
  • 8.

    O’Gorman, P. A. Contrasting responses of mean and extreme snowfall to climate change. Nature 512, 416–418 (2014).

    • Google Scholar
  • 9.

    Pierce, D. W. & Cayan, D. R. The uneven response of different snow measures to human-induced climate warming. J. Clim. 26, 4148–4167 (2012).

    • Google Scholar
  • 10.

    Ashfaq, M. et al. Near‐term acceleration of hydroclimatic change in the western U.S. J. Geophys. Res. Atmos. 118, 10676–10693 (2013).

    • Google Scholar
  • 11.

    Klos, P. Z., Link, T. E. & Abatzoglou, J. T. Extent of the rain–snow transition zone in the western U.S. under historic and projected climate. Geophys. Res. Lett. 41, 4560–4568 (2014).

    • Google Scholar
  • 12.

    Lute, A. C., Abatzoglou, J. T. & Hegewisch, K. C. Projected changes in snowfall extremes and interannual variability of snowfall in the western United States. Water Resour. Res. 51, 960–972 (2015).

    • Google Scholar
  • 13.

    Pagano, T., Garen, D. & Sorooshian, S. Evaluation of official western US seasonal water supply outlooks, 1922–2002. J. Hydrometeorol. 5, 896–909 (2004).

    • Google Scholar
  • 14.

    van Dijk, A. I. J. M., Peña-Arancibia, J. L., Wood, E. F., Sheffield, J. & Beck, H. E. Global analysis of seasonal streamflow predictability using an ensemble prediction system and observations from 6192 small catchments worldwide. Water Resour. Res. 49, 2729–2746 (2013).

    • Google Scholar
  • 15.

    Georgakakos, A. P., Yao, H., Mullusky, M. G. & Georgakakos, K. P. Impacts of climate variability on the operational forecast and management of the Upper Des Moines River Basin. Water Resour. Res. 34, 799–821 (1998).

    • CAS
    • Google Scholar
  • 16.

    He, M., Russo, M. & Anderson, M. Predictability of seasonal streamflow in a changing climate in the Sierra Nevada. Climate 4, 57 (2016).

    • Google Scholar
  • 17.

    Li, D., Lettenmaier, D. P., Margulis, S. A. & Andreadis, K. The value of accurate high-resolution and spatially continuous snow information to streamflow forecasts. J. Hydrometeorol. 20, 731–749 (2019).

    • Google Scholar
  • 18.

    Garen, D. C. Improved techniques in regression‐based streamflow volume forecasting. J. Water Resour. Plan. Manag. 118, 654–670 (1992).

    • Google Scholar
  • 19.

    McLaugnlin, W. Problems of the division of irrigation in forecasting water‐supplies. Eos Trans. Am. Geophys. Union 21, 131–134 (1940).

    • Google Scholar
  • 20.

    Schermerhorn & Barton, M. A Method for integrating snow survey and precipitation data. In Proc. Western Snow Conference 27–32 (1968).

  • 21.

    Stedinger, J. R., Grygier, J. & Yin, H. Seasonal Streamflow Forecasts Based upon Regression (ASCE, 1989).

  • 22.

    Zuzel, J. F. & Cox, L. M. A review of operational water supply forecasting techniques in areas of seasonal snowcover. In Proc. 46th Annual Western Snow Conference 18–20 (1978).

  • 23.

    Lettenmaier, D. P. & Waddle, T. J. Forecasting Seasonal Snowmelt Runoff: A Summary of Experience with Two Models Applied to Three Cascade Mountain, Washington Drainages Technical Report No. 59 (Office of Water Research and Technology, 1978).

  • 24.

    Day, G. N. Extended streamflow forecasting using NWSRFS. J. Water Resour. Plan. Manag. 111, 157–170 (1985).

    • Google Scholar
  • 25.

    Wood, A. W. & Lettenmaier, D. P. A test bed for new seasonal hydrologic forecasting approaches in the western United States. Bull. Am. Meteorol. Soc. 87, 1699–1712 (2006).

    • Google Scholar
  • 26.

    Mahanama, S., Livneh, B., Koster, R., Lettenmaier, D. & Reichle, R. Soil moisture, snow, and seasonal streamflow forecasts in the United States. J. Hydrometeorol. 13, 189–203 (2012).

    • Google Scholar
  • 27.

    Shukla, S. & Lettenmaier, D. P. Seasonal hydrologic prediction in the United States: understanding the role of initial hydrologic conditions and seasonal climate forecast skill. Hydrol. Earth Syst. Sci. 15, 3529–3538 (2011).

    • Google Scholar
  • 28.

    Pappenberger, F., Thielen, J. & Del Medico, M. The impact of weather forecast improvements on large scale hydrology: analysing a decade of forecasts of the European Flood Alert System. Hydrol. Process. 25, 1091–1113 (2011).

    • Google Scholar
  • 29.

    Hamlet, A. F. & Lettenmaier, D. P. Effects of 20th century warming and climate variability on flood risk in the western U.S. Water Resour. Res. 43, W06427 (2007).

    • Google Scholar
  • 30.

    Hartmann, H. C., Pagano, T. C., Sorooshian, S. & Bales, R. Confidence builders. Bull. Am. Meteorol. Soc. 83, 683–698 (2002).

    • Google Scholar
  • 31.

    Cuo, L., Pagano, T. C. & Wang, Q. J. A review of quantitative precipitation forecasts and their use in short- to medium-range streamflow forecasting. J. Hydrometeorol. 12, 713–728 (2011).

    • Google Scholar
  • 32.

    Garen, D. C. & Pagano, T. C. Statistical Techniques Used in the VIPER Water Supply Forecasting Software Technical Note 210-2 (NRCS, 2010).

  • 33.

    Bierkens, M. F. P. & van Beek, L. P. H. Seasonal predictability of European discharge: NAO and hydrological response time. J. Hydrometeorol. 10, 953–968 (2009).

    • Google Scholar
  • 34.

    Page, R. & Dilling, L. The critical role of communities of practice and peer learning in scaling hydro-climatic information adoption. Weather Clim. Soc. 11, 851–862 (2019).

    • Google Scholar
  • 35.

    Li, D., Wrzesien, M. L., Durand, M., Adam, J. & Lettenmaier, D. P. How much runoff originates as snow in the western United States, and how will that change in the future? Geophys. Res. Lett. 44, 6163–6172 (2017).

    • Google Scholar
  • 36.

    Musselman, K. N., Clark, M. P., Liu, C., Ikeda, K. & Rasmussen, R. Slower snowmelt in a warmer world. Nat. Clim. Change 7, 214–219 (2017).

    • Google Scholar
  • 37.

    Downscaled CMIP3 and CMIP5 Climate and Hydrology Projections: Release of Hydrology Projections, Comparison with Preceding Information, and Summary of User Needs (Bureau of Reclamation, 2014).

  • 38.

    Lott, N. & Ross, T. Tracking and Evaluating US Billion Dollar Weather Disasters, 1980-2005 (NOAA, 2006).

  • 39.

    Prudhomme, C. et al. Hydrological droughts in the 21st century, hotspots and uncertainties from a global multimodel ensemble experiment. Proc. Natl Acad. Sci. USA 111, 3262–3267 (2014).

    • CAS
    • Google Scholar
  • 40.

    Pagano, T. C., Garen, D. C., Perkins, T. R. & Pasteris, P. A. Daily updating of operational statistical seasonal water supply forecasts for the western US. J. Am. Water Resour. Assoc. 45, 767–778 (2009).

    • Google Scholar
  • 41.

    Jennings, K. S., Winchell, T. S., Livneh, B. & Molotch, N. P. Spatial variation of the rain–snow temperature threshold across the Northern Hemisphere. Nat. Commun. 9, 1148 (2018).

    • Google Scholar
  • 42.

    Berghuijs, W. R., Woods, R. A. & Hrachowitz, M. A precipitation shift from snow towards rain leads to a decrease in streamflow. Nat. Clim. Change 4, 583–586 (2014).

    • Google Scholar
  • 43.

    Barnhart, T. B. et al. Snowmelt rate dictates streamflow. Geophys. Res. Lett. 43, 8006–8016 (2016).

    • Google Scholar
  • 44.

    Cherry, J., Cullen, H., Visbeck, M., Small, A. & Uvo, C. Impacts of the North Atlantic Oscillation on Scandinavian hydropower production and energy markets. Water Resour. Manag. 19, 673–691 (2005).

    • Google Scholar
  • 45.

    Sankarasubramanian, A. & Lall, U. Flood quantiles in a changing climate: seasonal forecasts and causal relations. Water Resour. Res. 39, 1134 (2003).

    • Google Scholar
  • 46.

    Werner, K., Brandon, D., Clark, M. & Gangopadhyay, S. Climate index weighting schemes for NWS ESP-based seasonal volume forecasts. J. Hydrometeorol. 5, 1076–1090 (2004).

    • Google Scholar
  • 47.

    McGuire, M., Wood, A. W., Hamlet, A. F. & Lettenmaier, D. P. Use of satellite data for streamflow and reservoir storage forecasts in the Snake River Basin. J. Water Resour. Plan. Manag. 132, 97–110 (2006).

    • Google Scholar
  • 48.

    Tang, Q. & Lettenmaier, D. P. Use of satellite snow-cover data for streamflow prediction in the Feather River Basin, California. Int. J. Remote Sens. 31, 3745–3762 (2010).

    • Google Scholar
  • 49.

    Minder, J. R., Letcher, T. W. & Liu, C. The character and causes of elevation-dependent warming in high-resolution simulations of Rocky Mountain climate change. J. Clim. 31, 2093–2113 (2017).

    • Google Scholar
  • 50.

    Group, M. R. I. E. W. et al. Elevation-dependent warming in mountain regions of the world. Nat. Clim. Change 5, 424–430 (2015).

    • Google Scholar
  • 51.

    Moradkhani, H. & Meier, M. Long-lead water supply forecast using large-scale climate predictors and independent component analysis. J. Hydrol. Eng. 15, 744–762 (2010).

    • Google Scholar
  • 52.

    Perkins, T. R., Pagano, T. C. & Garen, D. C. Innovative operational seasonal water supply forecasting technologies. J. Soil Water Conserv. 64, 15A–17A (2009).

    • Google Scholar
  • 53.

    Golub, G. H. & Reinsch, C. Singular value decomposition and least squares solutions. Numer. Math. 14, 403–420 (1970).

    • Google Scholar
  • 54.

    Falcone, J. A. GAGES-II: Geospatial Attributes of Gages for Evaluating Streamflow (USGS, 2011).

  • 55.

    Lins, H. F. USGS Hydro-Climatic Data Network 2009 (HCDN-2009) Fact Sheet 3047 (USGS, 2012).

  • 56.

    Harpold, A. A., Sutcliffe, K., Clayton, J., Goodbody, A. & Vazquez, S. Does including soil moisture observations improve operational streamflow forecasts in snow-dominated watersheds? J. Am. Water Resour. Assoc. 53, 179–196 (2017).

    • Google Scholar
  • 57.

    Schaefer, J. T. The critical success index as an indicator of warning skill. Weather Forecast. 5, 570–575 (1990).

    • Google Scholar
  • 58.

    Gilbert, G. K. Finley’s tornado predictions. Am. Meteorol. J. 1, 166 (1884).

    • Google Scholar
  • 59.

    Hogan, R. J., Ferro, C. A. T., Jolliffe, I. T. & Stephenson, D. B. Equitability revisited: why the “equitable threat score” is not equitable. Weather Forecast. 25, 710–726 (2009).

    • Google Scholar
  • 60.

    Taylor, K. E. et al. CMIP5 Data Reference Syntax (DRS) and Controlled Vocabularies (PCMDI, 2011).

  • 61.

    Liang, X., Lettenmaier, D. P., Wood, E. F. & Burges, S. J. A simple hydrologically based model of land surface water and energy fluxes for general circulation models. J. Geophys. Res. Atmos. 99, 14415–14428 (1994).

    • Google Scholar
  • 62.

    Brekke, L., Thrasher, B. L., Maurer, E. P. & Pruitt, T. Downscaled CMIP3 and CMIP5 Climate Projections: Release of Downscaled CMIP5 Climate Projections, Comparison with Preceding Information, and Summary of User Needs (Bureau of Reclamation, 2013).

  • 63.

    Hidalgo, H. G., Dettinger, M. D. & Cayan, D. R. Downscaling with Constructed Analogues: Daily Precipitation and Temperature Fields over the United States PIER Final Project Report CEC-500-2007-123 (California Energy Commission, 2008).

  • 64.

    Wood, A. W., Leung, L. R., Sridhar, V. & Lettenmaier, D. P. Hydrologic implications of dynamical and statistical approaches to downscaling climate model outputs. Climatic Change 62, 189–216 (2004).

    • Google Scholar
  • 65.

    Gutmann, E. D. et al. A comparison of statistical and dynamical downscaling of winter precipitation over complex terrain. J. Clim. 25, 262–281 (2011).

    • Google Scholar
  • 66.

    van Vuuren, D. P. et al. The representative concentration pathways: an overview. Climatic Change 109, 5–31 (2011).

    • Google Scholar
  • 67.

    Cherkauer, K. A., Bowling, L. C. & Lettenmaier, D. P. Variable infiltration capacity cold land process model updates. Glob. Planet. Change 38, 151–159 (2003).

    • Google Scholar
  • 68.

    Maurer, E. P., Wood, A. W., Adam, J. C., Lettenmaier, D. P. & Nijssen, B. A long-term hydrologically based dataset of land surface fluxes and states for the conterminous United States. J. Clim. 15, 3237–3251 (2002).

    • Google Scholar
  • 69.

    Huang, S. et al. The asymmetric impact of global warming on US drought types and distributions in a large ensemble of 97 hydro-climatic simulations. Sci. Rep. 7, 5891 (2017).

    • Google Scholar
  • 70.

    Chen, F. et al. Modeling seasonal snowpack evolution in the complex terrain and forested Colorado Headwaters region: a model intercomparison study. J. Geophys. Res. Atmos. 119, 13795–13819 (2014).

    • Google Scholar
  • 71.

    Feng, X. et al. The impact of snow model complexity at three CLPX sites. J. Hydrometeorol. 9, 1464–1481 (2008).

    • Google Scholar
  • 72.

    Mote, P. W. Climate-driven variability and trends in mountain snowpack in western North America. J. Clim. 19, 6209–6220 (2006).

    • Google Scholar
  • 73.

    Mote, P. W., Hamlet, A. F., Clark, M. P. & Lettenmaier, D. P. Declining mountain snowpack in western North America. Bull. Am. Meteorol. Soc. 86, 39–50 (2005).

    • Google Scholar
  • 74.

    Livneh, B., Deems, J. S., Schneider, D., Barsugli, J. J. & Molotch, N. P. Filling in the gaps: inferring spatially distributed precipitation from gauge observations over complex terrain. Water Resour. Res. 50, 8589–8610 (2014).

    • Google Scholar

  • Source: Resources - nature.com

    Local food crop production can fulfil demand for less than one-third of the population

    FiCli, the Fish and Climate Change Database, informs climate adaptation and management for freshwater fishes