Margat, J. F. & Gun, Jvd. Groundwater Around the World: A Geographic Synopsis (CRC Press, Boca Raton, 2013).
Siebert, S. et al. Groundwater use for irrigation—a global inventory. Hydrol. Earth Syst. Sci. 14, 1863–1880 (2010).
Scanlon, B. R. et al. Groundwater depletion and sustainability of irrigation in the US High Plains and Central Valley. Proc. Natl. Acad. Sci. USA 109, 9320–9325 (2012).
Dalin, C., Wada, Y., Kastner, T. & Puma, M. J. Groundwater depletion embedded in international food trade. Nature 543, 700–704 (2017).
Gleeson, T., Wada, Y., Bierkens, M. F. P. & van Beek, L. P. H. Water balance of global aquifers revealed by groundwater footprint. Nature 488, 197–200 (2012).
Aeschbach-Hertig, W. & Gleeson, T. Regional strategies for the accelerating global problem of groundwater depletion. Nat. Geosci. 5, 853–861 (2012).
Richey, A. S. et al. Uncertainty in global groundwater storage estimates in a Total Groundwater Stress framework. Water Resour. Res. 51, 5198–5216 (2015).
Richey, A. S. et al. Quantifying renewable groundwater stress with GRACE. Water Resour. Res. 51, 5217–5238 (2015).
Rodell, M. et al. Emerging trends in global freshwater availability. Nature 557, 651 (2018).
Long, D. et al. Global analysis of spatiotemporal variability in merged total water storage changes using multiple GRACE products and global hydrological models. Remote Sens. Environ. 192, 198–216 (2017).
Ashraf, B. et al. Quantifying anthropogenic stress on groundwater resources. Sci. Rep. 7, 12910 (2017).
Rodell, M., Velicogna, I. & Famiglietti, J. S. Satellite-based estimates of groundwater depletion in India. Nature 460, 999–1002 (2009).
Famiglietti, J. S. et al. Satellites measure recent rates of groundwater depletion in California’s Central Valley. Geophys. Res. Lett. 38, L03403 (2011).
Longuevergne, L., Scanlon, B. R. & Wilson, C. R. GRACE hydrological estimates for small basins: evaluating processing approaches on the High Plains Aquifer, USA. Water Resour. Res. 46, 11517 (2010).
Voss, K. A. et al. Groundwater depletion in the Middle East from GRACE with implications for transboundary water management in the Tigris-Euphrates-Western Iran region. Water Resour. Res. 49, 904–914 (2013).
Feng, W. et al. Evaluation of groundwater depletion in North China using the Gravity Recovery and Climate Experiment (GRACE) data and ground-based measurements. Water Resour. Res. 49, 2110–2118 (2013).
Huang, Z. Y. et al. Subregional-scale groundwater depletion detected by GRACE for both shallow and deep aquifers in North China Plain. Geophys. Res. Lett. 42, 1791–1799 (2015).
Liu, C. M., Yu, J. J. & Kendy, E. Groundwater exploitation and its impact on the environment in the North China Plain. Water Int. 26, 265–272 (2001).
Chaussard, E., Wdowinski, S., Cabral-Cano, E. & Amelung, F. Land subsidence in central Mexico detected by ALOS InSAR time-series. Remote Sens. Environ. 140, 94–106 (2014).
Döll, P., Müller Schmied, H., Schuh, C., Portmann, F. T. & Eicker, A. Global-scale assessment of groundwater depletion and related groundwater abstractions: combining hydrological modeling with information from well observations and GRACE satellites. Water Resour. Res. 50, 5698–5720 (2014).
Famiglietti, J. S. The global groundwater crisis. Nat. Clim. Change 4, 945–948 (2014).
Wada, Y., Wisser, D. & Bierkens, M. F. P. Global modeling of withdrawal, allocation and consumptive use of surface water and groundwater resources. Earth Syst. Dynam. 5, 15–40 (2014).
Chen, M. et al. Imaging land subsidence induced by groundwater extraction in Beijing (China) using satellite radar interferometry. Remote Sens. 8, 468 (2016).
Gleeson, T. et al. Groundwater sustainability strategies. Nat. Geosci. 3, 378–379 (2010).
Condon, L. E. & Maxwell, R. M. Simulating the sensitivity of evapotranspiration and streamflow to large-scale groundwater depletion. Sci. Adv. 5, eaav4574 (2019).
Beijing Water Authority. Beijing Water Resources Bulletin 2003–2016 (Beijing Water Authority, 2016).
Russo, T. A. & Lall, U. Depletion and response of deep groundwater to climate-induced pumping variability. Nat. Geosci. 10, 105–108 (2017).
Cuthbert, M. O. et al. Observed controls on resilience of groundwater to climate variability in sub-Saharan Africa. Nature 572, 230–234 (2019).
Hartmann, A., Gleeson, T., Wada, Y. & Wagener, T. Enhanced groundwater recharge rates and altered recharge sensitivity to climate variability through subsurface heterogeneity. Proc. Natl. Acad. Sci. USA 114, 2842–2847 (2017).
Taylor, R. G. et al. Ground water and climate change. Nat. Clim. Change 3, 322–329 (2013).
Trenberth, K. E. Changes in precipitation with climate change. Clim. Res. 47, 123–138 (2011).
Su, B. D. et al. Drought losses in China might double between the 1.5 degrees C and 2.0 degrees C warming. Proc. Natl. Acad. Sci. USA 115, 10600–10605 (2018).
Kang, S. & Eltahir, E. A. B. North China Plain threatened by deadly heatwaves due to climate change and irrigation. Nat. Commun. 9, 2894 (2018).
Scanlon, B. R., Reedy, R. C., Faunt, C. C., Pool, D. & Uhlman, K. Enhancing drought resilience with conjunctive use and managed aquifer recharge in California and Arizona. Environ. Res. Lett. 11, 035013 (2016).
Schiermeier, Q. Purification with a pinch of salt. Nature 452, 260–261 (2008).
Muller, M. Lessons from Cape Town’s drought. Nature 559, 174–176 (2018).
Tapley, B. D., Bettadpur, S., Ries, J. C., Thompson, P. F. & Watkins, M. M. GRACE measurements of mass variability in the Earth system. Science 305, 503–505 (2004).
Tapley, B. D. et al. Contributions of GRACE to understanding climate change. Nat. Clim. Chang 9, 358–369 (2019).
Xia, J., Wang, Q., Zhang, X., Wang, R. & She, D. X. Assessing the influence of climate change and inter-basin water diversion on Haihe River basin, eastern China: a coupled model approach. Hydrogeol. J. 26, 1455–1473. (2018).
Li, X., Ye, S. Y., Wei, A. H., Zhou, P. P. & Wang, L. H. Modelling the response of shallow groundwater levels to combined climate and water-diversion scenarios in Beijing-Tianjin-Hebei Plain, China. Hydrogeol. J. 25, 1733–1744 (2017).
Zhang, M. L., Hu, L. T., Yao, L. L. & Yin, W. J. Numerical studies on the influences of the South-to-North Water Transfer Project on groundwater level changes in the Beijing Plain, China. Hydrol. Process. 32, 1858–1873 (2018).
Vorosmarty, C. J., Douglas, E. M., Green, P. A. & Revenga, C. Geospatial indicators of emerging water stress: an application to Africa. Ambio 34, 230–236 (2005).
Beijing Government. in 13th Five-Year Development Plan of Water Resources in Beijing (ed. People’s Government of Beijing Municipality) (Beijing Government, Beijing, 2016).
Beijing Municipal Commission for City Planning and Land Resources Management. Beijing City Overall Planning (2016–2035) (Beijing Municipal Commission for City Planning and Land Resources Management, 2017).
Döll, P. Vulnerability to the impact of climate change on renewable groundwater resources: a global-scale assessment. Environ Res Lett 4, 035006 (2009).
Barnett, J., Rogers, S., Webber, M., Finlayson, B. & Wang, M. Transfer project cannot meet China’s water needs. Nature 527, 295–297 (2015).
AghaKouchak, A., Feldman, D., Hoerling, M., Huxman, T. & Lund, J. Water and climate: recognize anthropogenic drought. Nature 524, 409–411 (2015).
Chen, D. et al. The impact of water transfers from the lower Yangtze River on water security in Shanghai. Appl. Geogr. 45, 303–310 (2013).
Webber, M. et al. Impact of the Three Gorges Dam, the South-North Water Transfer Project and water abstractions on the duration and intensity of salt intrusions in the Yangtze River estuary. Hydrol. Earth Syst. Sci. 19, 4411–4425 (2015).
Wang, Y. G., Zhang, W. S., Zhao, Y. X., Peng, H. & Shi, Y. Y. Modelling water quality and quantity with the influence of inter-basin water diversion projects and cascade reservoirs in the Middle-lower Hanjiang River. J. Hydrol. 541, 1348–1362 (2016).
Niswonger, R. G., Panday S. & Ibaraki, M. MODFLOW-NWT: A Newton Formulation for MODFLOW-2005 (US Geological Survey, 2005).
Cao, G., Zheng, C., Scanlon, B. R., Liu, J. & Li, W. Use of flow modeling to assess sustainability of groundwater resources in the North China Plain. Water Resour. Res. 49, 159–175 (2013).
Burek, P. et al. Development of the Community Water Model (CWatM v1.04): a high-resolution hydrological model for global and regional assessment of integrated water resources management. Geosci Model Dev Discuss 2019, 1–49. (2019).
Kendy, E. et al. A soil−water−balance approach to quantify groundwater recharge from irrigated cropland in the north China plain. Hydrol. Process. 17, 2011–2031 (2003).
Wei, M. et al. An efficient soil water balance model based on hybrid numerical and statistical methods. J. Hydrol. 559, 721–735 (2018).
Fortin, F.-A., Rainville, F.-M. D., Gardner, M.-A., Parizeau, M. & Gagné, C. DEAP: evolutionary algorithms made easy. J. Mach. Learn. Res. 13, 2171–2175 (2012).
Beijing Water Authority. Beijing Water Resource Statistics Year Book 2005–2018 (Beijing Water Authority, 2018).
Beijing Hydrology Bureau. Annual Beijing Water Monitoring Bulletins 2005–2019 (Beijing Hydrology Bureau, 2019).
Dai, Y. et al. Development of a China dataset of soil hydraulic parameters using pedotransfer functions for land surface modeling. J. Hydrometeorol. 14, 869–887 (2013).
Guo, Y. Q., Zhang, X., Yu, X. & Zou, Z. The increasing effects in energy and GHG emission caused by groundwater level declines in North China’s main food production plain. Agric. Water Manag. 203, 138–150 (2018).
Gong, P. et al. Finer resolution observation and monitoring of global land cover: First mapping results with Landsat TM and ETM+ data. Int. J. Remote Sens. 34, 2607–2654 (2013).
Wu, L. Digital Elevation Model (1 km Spatial Resolution) Dataset of China (National Basic Geographic Information Center. China 1km resolution digital elevation model dataset. National Tibetan Plateau Data Center, 2014).
Messager, M. L., Lehner, B., Grill, G., Nedeva, I. & Schmitt, O. Estimating the volume and age of water stored in global lakes using a geo-statistical approach. Nat. Commun. 7, 13603 (2016).
Gleeson, T., Moosdorf, N., Hartmann, J. & Van Beek, L. A glimpse beneath earth’s surface: GLobal HYdrogeology MaPS (GLHYMPS) of permeability and porosity. Geophys. Res. Lett. 41, 3891–3898 (2014).
Andreadis, K. M., Schumann, G. J. P. & Pavelsky, T. A simple global river bankfull width and depth database. Water Resour. Res. 49, 7164–7168 (2013).
Shen, Y. & Xiong, A. Validation and comparison of a new gauge‐based precipitation analysis over mainland China. Int. J. Climatol. 36, 252–265 (2016).
Meng, X., Wang, H., Shi, C., Wu, Y. & Ji, X. Establishment and evaluation of the China Meteorological Assimilation Driving Datasets for the SWAT model (CMADS). Water 10, 1555 (2018).
Okamoto, K.i., Ushio, T., Iguchi, T., Takahashi, N. & Iwanami, K. The global satellite mapping of precipitation (GSMaP) project. Proceedings. 2005 IEEE International Geoscience and Remote Sensing Symposium, 2005. IGARSS ’05. 2005, pp. 3414-3416 https://doi.org/10.1109/IGARSS.2005.1526575 (2004).
Weedon, G. P. et al. The WFDEI meteorological forcing data set: WATCH Forcing Data methodology applied to ERA‐Interim reanalysis data. Water Resour. Res. 50, 7505–7514 (2014).
Berrisford, P. et al. ERA-Interim Arch., version 2, 0 (2011).
Lange, S. EartH2Observe, WFDEI and ERA-Interim Data Merged and Bias-Corrected for ISIMIP (EWEMBI), V.1.1 (GFZ Data Services, 2019).
Department of Civil and Environmental Engineering at Princeton University. in Global Meteorological Forcing Dataset for Land Surface Modeling (ed. Princeton University) (Research Data Archive at the National Center for Atmospheric Research, Computational and Information Systems Laboratory, Boulder, 2006).
Kalnay, E. et al. The NCEP/NCAR 40-year reanalysis project. Bull. Am. Meteorol. Soc. 77, 437–472 (1996).
Source: Resources - nature.com