in

Preparation and water desalination properties of bridged polysilsesquioxane membranes with divinylbenzene and divinylpyridine units

  • 1.

    Misdan N, Lau WJ, Ismail AF. Seawater reverse osmosis (SWRO) desalination by a thin-film composite membrane—current development, challenges and future prospects. Desalination. 2012;287:228–37.

    CAS  Article  Google Scholar 

  • 2.

    Li D, Wang H. Recent developments in reverse osmosis desalination membranes. J Mater Chem. 2010;20:4551–66.

    CAS  Article  Google Scholar 

  • 3.

    Shintani T, Matsuyama H, Kurata N. Development of a chlorineresistant polyamide reverse osmosis membrane. Desalination. 2007;207:340–8.

    CAS  Article  Google Scholar 

  • 4.

    Daer S, Kharraz J, Giwa A, Hasan SW. Recent applications of nanomaterials in water desalination: a critical review and future opportunities. Desalination. 2015;367:37–48.

    CAS  Article  Google Scholar 

  • 5.

    Mayyahi AA. Important approaches to enhance reverse osmosis (RO) thin film composite (TFC) membranes performance. Membranes. 2018;8:68. https://doi.org/10.3390/membranes8030068.

    Article  PubMed Central  Google Scholar 

  • 6.

    Xue SM, Ji CH, Xu ZL, Tang YJ, Li RH. Chlorine resistant TFN nanofiltration membrane incorporated with octadecylamine-grafted GO and fluorine-containing monomer. J Membr Sci. 2018;545:185–95.

    CAS  Article  Google Scholar 

  • 7.

    Aljundi IH. Desalination characteristics of TFN-RO membrane incorporated with ZIF-8 nanoparticles. Desalination. 2017;420:12–20.

    CAS  Article  Google Scholar 

  • 8.

    Xu R, Wang J, Kanezashi M, Yoshioka T, Tsuru T. Development of robust organosilica membranes for reverse osmosis. Langmuir. 2011;27:13996–9.

    CAS  Article  Google Scholar 

  • 9.

    Yamamoto K, Ohshita J. Bridged polysilsesquioxane membranes for water desalination. Polym J. 2019;51:1103–16.

    CAS  Article  Google Scholar 

  • 10.

    Xu R, Kanezashi M, Yoshioka T, Okuda T, Ohshita J, Tsuru T. Tailoring the Affinity of organosilica membranes by introducing polarizable ethenylene bridges and aqueous ozone modification. ACS Appl Mater Interfaces. 2013;5:6147–54.

    CAS  Article  Google Scholar 

  • 11.

    Xu R, Ibrahim SM, Kanezashi M, Yoshioka T, Ito K, Ohshita J, et al. New Insights into the microstructure-separation properties of organosilica membranes with ethane, ethylene, and acetylene bridges. ACS Appl Mater Interfaces. 2014;6:9357–64.

    CAS  Article  Google Scholar 

  • 12.

    Zhao L, Ho WSW. Novel reverse osmosis membranes incorporated with a hydrophilic additive for seawater desalination. J Membr Sci. 2014;455:44–54.

    CAS  Article  Google Scholar 

  • 13.

    Waki M, Mizoshita N, Ohsuna T, Tani T, Inagaki S. Crystal-like periodic mesoporous organosilica bearing pyridine units within the framework. Chem Commun. 2010;46:8163–5.

    CAS  Article  Google Scholar 

  • 14.

    Li Y, Li S, Zhang K. Influence of hydrophilic carbon dots on polyamide thin film nanocomposite reverse osmosis membranes. J Membr Sci. 2017;537:42–53.

    CAS  Article  Google Scholar 

  • 15.

    Ohshita J, Muragishi H, Yamamoto K, Mizumo T, Kanezashi M, Tsuru T. Preparation and separation properties of porous norbornane-bridged silica membrane. J Sol Gel Sci Technol. 2015;73:365–70.

    CAS  Article  Google Scholar 

  • 16.

    Mizumo T, Muragishi H, Yamamoto K, Ohshita J, Kanezashi M, Tsuru T. Preparation and separation properties of oxalylurea-bridged silica membranes. Appl Organomet Chem. 2015;29:433–8.

    CAS  Article  Google Scholar 

  • 17.

    Yamamoto K, Koge S, Sasahara K, Mizumo T, Kaneko Y, Kanezashi M, et al. Preparation of bridged polysilsesquioxane membranes from bis [3-(triethoxysilyl) propyl] amine for water desalination. Bull Chem Soc Jpn. 2017;90:1035–40.

  • 18.

    Yamamoto K, Muragishi H, Mizumo T, Gunji T, Kanezashi M, Tsuru T, et al. Diethylenedioxane-bridged microporous organosilica membrane for gas and water separation. Sep Purif Technol. 2018;207:370–6.

    CAS  Article  Google Scholar 

  • 19.

    Yamamoto K, Kanezashi M, Tsuru T, Ohshita J. Preparation of bridged polysilsesquioxane-based membranes containing 1, 2, 3-triazole moieties for water desalination. Polym J. 2017;49:401–6.

    CAS  Article  Google Scholar 

  • 20.

    Liu Y, Tan J, Choi W, Hsu JH, Han DS, Han A, et al. Influence of nanoparticle inclusions on the performance of reverse osmosis membranes. Environ Sci Water Res. 2018;4:411–20.

    CAS  Article  Google Scholar 

  • 21.

    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, et al. Gaussian 09, revision A.02. Wallingford, CT: Gaussian, Inc; 2009.

    Google Scholar 

  • 22.

    Guo M, Kanezashi M, Nagasawa H, Yu L, Yamamoto K, Gunji T, et al. Tailoring the microstructure and permeation properties of bridged organosilica membranes via control of the bond angles. J Membr Sci. 2019;84:56–65.

    Article  Google Scholar 

  • 23.

    Asay DB, Kim SHJ. Evolution of the adsorbed water layer structure on silicon oxide at room temperature. Phys Chem B. 2005;109:16760–3.

    CAS  Article  Google Scholar 

  • 24.

    Marsmann HC. Silicon-29 NMR. eMagRes, Wiley 2011. https://doi.org/10.1002/9780470034590.emrstm0505.pub2.

  • 25.

    Wang J, Kanezashi M, Yoshioka T, Tsuru T. Effect of calcination temperature on the PV dehydration performance of alcohol aqueous solutions through BTESE-derived silica membranes. J Membr Sci. 2012;415–416:810–5.

    Article  Google Scholar 


  • Source: Resources - nature.com

    Novel gas-capture approach advances nuclear fuel management

    Confirmation of ovarian follicles in an enantiornithine (Aves) from the Jehol biota using soft tissue analyses