in

Labeo rohita, a bioindicator for water quality and associated biomarkers of heavy metal toxicity

  • 1.

    Wang, W. X. Interaction of trace metals and different marine food chains. Mar. Ecol. Prog. Ser. 243, 295–309 (2002).

    CAS  Article  Google Scholar 

  • 2.

    Dautremepuits, C., Paris-Palacios, S., Betoulle, S. & Vernet, G. Modulation in hepatic and head kidney parameters of carp (Cyprinus carpio L.) induced by copper and chitosan. Comp. Biochem. Physiol. Part C 137, 325–333 (2004).

    Google Scholar 

  • 3.

    Kalay, M., Ay, P. & Canil, M. Heavy metal concentration in fish tissues from the northeast Mediterranean Sea. Bull. Environ. Contam. Toxicol. 63, 673–671 (1999).

    CAS  Article  Google Scholar 

  • 4.

    Ashraf, W. Accumulation of heavy metals in kidney and heart tissues of Epinephelus microdon fish from the Arabian Gulf. Environ. Monit. Assess. 101, 311–316 (2005).

    CAS  Article  Google Scholar 

  • 5.

    Khaled Abdel-Halim, Y. Biomarkers in ecotoxicological research trails. J. Forensic Sci. Toxicol. 1, 1005 (2018).

    Google Scholar 

  • 6.

    Javed, M., Ahmad, M. I., Usmani, N. & Ahmad, M. Multiple biomarker responses (serum biochemistry, oxidative stress, genotoxicity and histopathology) in Channa punctatus exposed to heavy metal loaded waste water. Sci. Rep. 7, 1675 (2017).

    Article  CAS  Google Scholar 

  • 7.

    WHO/IPCS. Environmental Health Criteria 155, Biomarkers and Risk Assessment: Concepts and Principles (IPCS, World Health Organization, 1993).

  • 8.

    Varô, I., Navarro, J. C., Amat, F. & Guilhermino, L. Characterization of cholinesterase and evaluation of the inhibitory potential of chlorpyrifos and dichlorvos to Artemia salina and Artemia parthenogenetica. Chemos 48, 563–569 (2001).

    Article  Google Scholar 

  • 9.

    Eggen, R. I., Behra, R., Burkhardt-Holm, P., Escher, B. I. & Schweigert, N. Challenges in ecotoxicology. Environ. Sci. Technol. 38, 58–64 (2004).

    Article  Google Scholar 

  • 10.

    Moore, M. N., Depledge, M. H., Readman, J. W. & Paul Leonard, D. R. An integrated biomarker-based strategy for ecotoxicological evaluation of risk in environmental management. Mutat. Res. 552, 247–268 (2004).

    CAS  Article  Google Scholar 

  • 11.

    Ferrando, S. et al. Gut morphology and metallothionein immunoreactivity in Liza aurata from different heavy metal polluted environments. Ital. J. Zool. 73, 7–14 (2006).

    CAS  Article  Google Scholar 

  • 12.

    Au, D. W. The application of histo-cytopathological biomarkers in marine pollution monitoring: a review. Mar. Pollut. Bull. 48, 817–834 (2004).

    CAS  Article  Google Scholar 

  • 13.

    Van der Van der Oost, R., Beyer, J. & Vermeulen, N. P. E. Fish bioaccumulation and biomarkers in environmental risk assessment: a review. Environ. Toxicol. Pharmacol. 13, 57–149 (2003).

    Article  Google Scholar 

  • 14.

    Turan, F., Eken, M., Ozyilmaz, G., Karan, S. & Uluca, H. Heavy metal bioaccumulation, oxidative stress and genotoxicity in African catfish Clarias gariepinus from Orontes river. Ecotoxicology 29, 1522–1537 (2020).

    CAS  Article  Google Scholar 

  • 15.

    Maurya, P. K. et al. Bioaccumulation and potential sources of heavy metal contamination in fish species in River Ganga basin: possible human health risks evaluation. Toxicol. Rep. 6, 472–481 (2019).

    CAS  Article  Google Scholar 

  • 16.

    Alshkarchy, S. S., Raesen, A. K. & Najim, S. M. Physiological effect of some metals on blood parameters of common carp Cyprinus carpio, reared in cages and wild in the Euphrates river, Babil, Iraq. Life Sci. Arch. 6(1932), 1907 (2020).

    Google Scholar 

  • 17.

    Dane, H. & Sisman, T. Effects of heavy metal pollution on hepatosomatic ındex and vital organ histology in Alburnus mossulensis from Karasu River. Turk. J. Vet. Anim. Sci. 44, 607–617 (2020).

    CAS  Google Scholar 

  • 18.

    Javed, M., Ahmad, I., Usmani, N. & Ahmad, M. Bioaccumulation, oxidative stress and genotoxicity in fish (Channa punctatus) exposed to a thermal power plant effluent. Ecotoxicol. Environ. Saf. 127, 163–169 (2016).

    CAS  Article  Google Scholar 

  • 19.

    Stern, B. R. Essentiality and toxicity in copper health risk assessment: overview, update, and regulatory considerations. Toxicol. Environ. Health 73, 114–127 (2010).

    CAS  Article  Google Scholar 

  • 20.

    Agency for Toxic Substances and Disease Registry (ATSDR). Toxicological Profile for Copper (Centers for Disease Control, 2002).

  • 21.

    Kumar, D., Malik, D. S. & Gupta, V. Fish metallothionein gene expression: a good bioindicator for assessment of heavy metal pollution in aquatic ecosystem. Int. Res. J. Environ. Sci. 6, 58–62 (2017).

    CAS  Google Scholar 

  • 22.

    Irato, P., Santovito, G., Piccinni, E. & Albergoni, V. Oxidative burst and metallothionein as a scavenger in macrophages. Immunol. Cell Biol. 79, 251–254 (2001).

    CAS  Article  Google Scholar 

  • 23.

    Kumar, N. et al. Validation of growth enhancing, immunostimulatory and disease resistance properties of Achyranthes aspera in Labeo rohita fry in pond conditions. Heliy 5, e01246 (2019).

    Article  Google Scholar 

  • 24.

    Chakrabarti, R. et al. Effect of seeds of Achyranthes aspera on the immune responses and expression of some immune-related genes in carp Catla catla. Fish Shellfish Immunol. 41, 64–69 (2014).

    CAS  Article  Google Scholar 

  • 25.

    BIS (Bureau of Indian Standard). Drinking Water Specification IS: 10500: 1992 (BIS New Delhi, 1992).

  • 26.

    UNEPGEMS (United Nations Environment Programme Global Environment Monitoring System/Water Programme). Adapted for Water Quality and Ecosystem Health (UNEPGEMS (United Nations Environment Programme Global Environment Monitoring System/Water Programme), 2006).

  • 27.

    Pengfei, L. et al. Heavy metal bioaccumulation and health azard assessment for three fish species from Nansi Lake, China. Bull. Environ. Contam. Toxicol. 94, 431–436 (2015).

    Article  CAS  Google Scholar 

  • 28.

    Ahmed, A. S. S. et al. Bioaccumulation of heavy metals in some commercially important fishes from a tropical river estuary suggests higher potential health risk in children than adults. PLoS ONE 14, e0219336 (2019).

    CAS  Article  Google Scholar 

  • 29.

    Fernandes, C. et al. Heavy metals in water, sediment and tissues of Liza saliens from Esmoriz-Paramos lagoon Port. Environ. Monit. Assess. 136, 267–275 (2008).

    CAS  Article  Google Scholar 

  • 30.

    Islam, A. et al. Assessment of heavy metals concentration in water and tengra fish (Mystus vittatus) of Surma River in Sylhet region of Bangladesh. Arch. Agric. Environ. Sci. 4, 151–156 (2019).

    Article  Google Scholar 

  • 31.

    Carvalho, C. D. S. & Fernandes, M. N. Effects of copper toxicity at different pH and temperatures on the in vitro enzyme activity in blood and liver of fish, Prochilodus lineatus. Mol. Biol. Rep. 46, 4933–4942 (2019).

    Article  CAS  Google Scholar 

  • 32.

    Barisic, J., Cannon, S. & Quinn, B. Cumulative impact of anti-sea lice treatment (azamethiphos) on health status of Rainbow trout (Oncorhynchus mykiss, Walbaum 1792) in aquaculture. Sci. Rep. 9, 16217 (2019).

    Article  CAS  Google Scholar 

  • 33.

    Sokmen, B. B., Tunali, S. & Yanardag, R. Effects of vitamin U (S-methyl methionine sulphonium chloride) on valproic acid induced liver injury in rats. Food Chem. Toxicol. 50, 3562–3566 (2012).

    CAS  Article  Google Scholar 

  • 34.

    Oztopuz, O. et al. Melatonin ameliorates sodium valproate-induced hepatotoxicity in rats. Mol. Biol. Rep. 47, 317–325 (2019).

    Article  CAS  Google Scholar 

  • 35.

    Zorriehzahra, M. J., Hassan, M. D., Gholizadeh, M. & Saidi, A. A. Study of some hematological and biochemical parameters of Rainbow trout (Oncorhynchus mykiss) fry in western part of Mazandaran province, Iran. Iranian. J. Fish. Sci. 9, 185–198 (2010).

    Google Scholar 

  • 36.

    Parvathi, K., Palanivel, S., Mathan, R. & Sarasu, Sublethal effects of chromium on some biochemical profiles of the fresh water teleost, Cyprinus carpio. Int. J. Appl. Biol. Pharm. Technol. 2, 295–300 (2011).

    Google Scholar 

  • 37.

    Luckoor, P., Salehi, M. & Kunadu, A. Exceptionally high creatine kinase (CK) levels in multicausal and complicated rhabdomyolysis: a case report. Am. J. Case Rep. 18, 746–749 (2017).

    Article  Google Scholar 

  • 38.

    Oitani, Y. et al. Interpretation of acid α-glucosidase activity in creatine kinase elevation: a case of Becker muscular dystrophy. Brain Dev. 40, 837–840 (2018).

    Article  Google Scholar 

  • 39.

    Javed, M. & Usmani, N. Stress response of biomolecules (carbohydrate, protein and lipid profiles) in fish Channa punctatus inhabiting river polluted by Thermal Power Plant effluent. Saudi J. Biol. Sci. 22, 237–242 (2015).

    CAS  Article  Google Scholar 

  • 40.

    Palanisamy, P. G., Sasikala, D., Mallikaraj, N. B. & Natarajan, G. M. Electroplating industrial effluent chromium induced changes in carbohydrates metabolism in air breathing cat fish Mystus cavasius (Ham). Asian J. Exp. Biol. Sci. 2, 521–524 (2011).

    CAS  Google Scholar 

  • 41.

    Parvathi, J. & Karemungikar, A. Leucocyte variation, an insight of host defenses during hymenolepiasis and restoration with praziquantel. Indian J. Pharm. Sci. 73, 76–79 (2011).

    CAS  Article  Google Scholar 

  • 42.

    Sharma, J. & Langer, S. Effect of manganese on haematological parameters of fish, Garra gotyla gotyla. J. Entomol. Zool. Stud. 2 3, 77–81 (2014).

    CAS  Google Scholar 

  • 43.

    Gupta, N. Trypanosome Parasites of Some Fishes of Aligarh. Ph.D. Thesis, Aligarh Muslim University (1981).

  • 44.

    Lawrence, D. A. Heavy metal modulation of lymphocyte activities: I. In vitro effects of heavy metals on primary humoral immune responses. Toxicol. Appl. Pharmacol. 57, 439–451 (1981).

    CAS  Article  Google Scholar 

  • 45.

    Dalmo, R. A., Ingebrigtsen, K. & Bøgwald, J. Non-specific defence mechanisms in fish, with particular reference to the reticuloendothelial system (RES). J. Fish. Dis. 20, 241–273 (1997).

    CAS  Article  Google Scholar 

  • 46.

    Secombes, C. J. The nonspecific immune system: cellular defences. In The Fish Immune System: Organism, Pathogen and Environment (eds, Iwama, G., Nakanishi, N.) 63–103 (Academic Press Inc., 1996).

  • 47.

    Sakai, M., Taniguchi, K., Mamoto, K., Ogawa, H. & Tabata, M. Immunostimulant effect of nucleotide isolated from yeast RNA on carp, Cyprinus carpio L. J. Fish. Dis. 24, 33–38 (2001).

    Article  Google Scholar 

  • 48.

    Rombout, J. H. W. M., Huttenhuis, H. B. T., Picchietti, S. & Scapigliati, G. Phylogeny and ontogeny of fish leucocytes. Fish. Shellfish Immunol. 19, 441–455 (2005).

    CAS  Article  Google Scholar 

  • 49.

    Kono, Y. & Fridovich, I. Superoxide radicals inhibit catalase. J. Biol. Chem. 257, 5751–5754 (1982).

    CAS  Article  Google Scholar 

  • 50.

    Ahmad, Z. et al. Accumulations of heavy metals in the fish Orecochromis niloticus, and Poecilia latipinna and their concentration in water and sediment of Dam Lake of Wadi Namar, Saudi Arabia. J. Environ. Biol. 36, 295–299 (2015).

    Google Scholar 

  • 51.

    Ameur, W. B. et al. Oxidative stress, genotoxicity and histopathology biomarker responses in Mugil cephalus and Dicentrarchus labrax gill exposed to persistent pollutants. A field study in the Bizerte Lagoon: Tunisia. Chemosphere 135, 67–74 (2015).

    CAS  Article  Google Scholar 

  • 52.

    Livingstone, D. R. Oxidative stress in aquatic organisms in relation to pollution and agriculture. Rev. Vet. 154, 427–430 (2003).

    CAS  Google Scholar 

  • 53.

    Hermenean, A. et al. Histopathological alterations and oxidative stress in liver and kidney of Leuciscus cephalus following exposure to heavy metals in the Tur River, North Western Romania. Ecotoxicol. Environ. Saf. 119, 198–205 (2015).

    CAS  Article  Google Scholar 

  • 54.

    Lopez, E. L., Sedeño-Díaz, JacintoElías, Claudia, S. & Liliana, F. Responses of antioxidant enzymes, lipid peroxidation, and Naþ/Kþ-ATPase in liver of the fish Goodea atripinnis exposed to Lake Yuriria water. Fish. Physiol. Biochem. 37, 511–522 (2011).

    Article  CAS  Google Scholar 

  • 55.

    Francisco, P. et al. Oxidative stress responses and histological hepatic alterations in barbel, Barbus bocagei, from Vizela river, Portugal. Rev. Int. Contam. Ambie. 29, 29–38 (2013).

    Google Scholar 

  • 56.

    Sunjog, K. et al. Heavy metal accumulation and the genotoxicity in barbel (Barbus barbus) as indicators of the Danube River pollution. Sci. World J. 2012:351074, 1–6 (2012).

    Article  CAS  Google Scholar 

  • 57.

    Ahmed, M. K. et al. Genetic damage induced by lead chloride in different tissues of fresh water climbing perch Anabas testudineus (Bloch). Environ. Monit. Assess. 182, 197–204 (2011).

    CAS  Article  Google Scholar 

  • 58.

    Ameur, W. B. et al. Oxidative stress, genotoxicity and histopathology biomarker responses in mullet (Mugil cephalus) and sea bass (Dicentrarchus labrax) liver from Bizerte Lagoon (Tunisia). Mar. Poll. Bull. 64, 241–251 (2012).

    Article  CAS  Google Scholar 

  • 59.

    Romeo, M., & Giamberini, L. History of biomarkers. In Ecological Biomarkers, Indicators of Ecotoxicological Effects (eds Amiard-Triquet, C., Amiard, J. C., Rainboe, P. S.) (CRC Press Taylor and Francis Group, 2013).

  • 60.

    Javed, H. et al. Efficacy of engineered GO Amberlite XAD-16 picolylamine sorbent for the trace determination of Pb (II) and Cu (II) in fishes by solid phase extraction column coupled with inductively coupled plasma optical emission spectrometry. Sci. Rep. 8, 17560 (2018).

    Article  CAS  Google Scholar 

  • 61.

    American Public Health Association (APHA), Standard Methods for the Examination of Water and Wastewater Analysis, 21st 442 edn. 289 (American Water Works Association/Water Environment Federation, 2005).

  • 62.

    Marklund, S. & Marklund, G. Involvement of the superoxide anion radical in the autoxidation of pyrogallol and a convenient assay for superoxide dismutase. Eur. J. Biochem. 47, 469–474 (1974).

    CAS  Article  Google Scholar 

  • 63.

    Aebi, H. Catalase in vitro. Methods Enzymol. 105, 121–126 (1984).

    CAS  Article  Google Scholar 

  • 64.

    Buege, J. A. & Aust, S. D. Microsomal lipid peroxidation. Methods Enzymol. 52, 302–310 (1978).

    CAS  Article  Google Scholar 

  • 65.

    Jollow, D. J. et al. Bromobenzene-induced liver necrosis. Protective role of glutathione and evidence for 3,4-bromobenzene oxide as the hepatotoxic metabolite. Pharmacology 11, 151–169 (1974).

    CAS  Article  Google Scholar 

  • 66.

    Habig, W. H., Pabst, M. J. & Jakoby, W. B. Glutathione S-transferases. The first enzymatic step in mercapturic acid formation. J. Biol. Chem. 249, 7130–7139 (1974).

    CAS  Article  Google Scholar 

  • 67.

    Singh, N. P. et al. A simple technique for quantitation of low levels of DNA damage in individual cells. Exp. Cell Res. 175, 184–191 (1988).

    CAS  Article  Google Scholar 

  • 68.

    Yildiz, S., Gurcu, B., Basimoglu, Y. K. & Koca, S. Histopathological and genotoxic effects of pollution on Anguilla anguilla in the Gediz River (Turkey). J. Anim. Vet. Adv. 9, 2890–2899 (2010).

    CAS  Article  Google Scholar 

  • 69.

    Nhiwatiwa, T., Barson, M., Harrison, A. P., Utete, B. & Cooper, R. G. Metal concentrations in water, sediment and sharptooth catfish Clarias gariepinus from three peri-urban rivers in the upper Manyame catchment, Zimbabwe. Afr. J. Aquat. Sci. 36, 243–252 (2011).

    CAS  Article  Google Scholar 

  • 70.

    Ankur, K., Siddiqui, N. A. & Gautam, A. Assessment of heavy metals and their interrelationships with some physicochemical parameters in ecoefficient rivers of Himalayan Region. Environ. Monit. Assess. 185, 2553–2563 (2013).

    Article  CAS  Google Scholar 

  • 71.

    Neeratanaphan, L. et al. Genotoxicity and oxidative stress in experimental hybrid catfish exposed to heavy metals in a municipal landfill reservoir. Int. J. Environ. Res. Public Health 17, 1980 (2020).

    CAS  Article  Google Scholar 


  • Source: Resources - nature.com

    Growing support for valuing ecosystems will help conserve the planet

    Visualizing a climate-resilient MIT