More stories

  • in

    Author Correction: Priority list of biodiversity metrics to observe from space

    Faculty of Geo-Information Science and Earth Observation (ITC), University of Twente, Enschede, the NetherlandsAndrew K. Skidmore, Elnaz Neinavaz, Abebe Ali, Roshanak Darvishzadeh, Marcelle C. Lock & Tiejun WangDepartment of Earth and Environmental Science, Macquarie University, Sydney, New South Wales, AustraliaAndrew K. Skidmore & Marcelle C. LockDepartment of Forest Resources Management, University of British Columbia, Vancouver, British Columbia, CanadaNicholas C. CoopsDepartment of Geography and Environmental Studies, Wollo University, Dessie, EthiopiaAbebe AliRemote Sensing Laboratories, Department of Geography, University of Zurich, Zurich, SwitzerlandMichael E. SchaepmanEuropean Space Research Institute (ESRIN), European Space Agency, Frascati, ItalyMarc PaganiniInstitute for Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, Amsterdam, the NetherlandsW. Daniel KisslingBiodiversity Centre, Finnish Environment Institute (SYKE), Helsinki, FinlandPetteri VihervaaraInstitute of Geographical Sciences, Freie Universität Berlin, Berlin, GermanyHannes FeilhauerRemote Sensing Center for Earth System Research, University of Leipzig, Leipzig, GermanyHannes FeilhauerNatureServe, Arlington, VA, USAMiguel FernandezGeorge Mason University, Fairfax, VA, USAMiguel FernandezGerman Centre for Integrative Biodiversity Research (iDiv), Leipzig, GermanyNéstor FernándezInstitute of Biology, Martin Luther University Halle-Wittenberg, Halle (Saale), GermanyNéstor FernándezGoogle, Zurich, SwitzerlandNoel GorelickTour du Valat, Arles, FranceIlse GeijzendorfferEarth Observation Center (EOC), Remote Sensing Technology Institute, German Aerospace Center (DLR), Oberpfaffenhofen, GermanyUta Heiden & Stefanie HolzwarthDepartment of Visitor Management and National Park Monitoring, Bavarian Forest National Park Administration, Grafenau, GermanyMarco HeurichAlbert Ludwigs University of Freiburg, Freiburg, GermanyMarco HeurichGBIF Secretariat, Copenhagen, DenmarkDonald HobernCollege of Marine Science, University of South Florida, St Petersburg, FL, USAFrank E. Muller-KargerFlemish Institute for Technological Research (VITO), Mol, BelgiumRuben Van De KerchoveComputational Landscape Ecology, Helmholtz Centre for Environmental Research (UFZ), Leipzig, GermanyAngela LauschGeography Department, Humboldt University of Berlin, Berlin, GermanyAngela LauschTechnische Universität Braunschweig, Braunschweig, GermanyPedro J. LeitãoHumboldt-Universität zu Berlin, Berlin, GermanyPedro J. LeitãoWageningen Environmental Research, Wageningen University & Research, Wageningen, the NetherlandsCaspar A. MücherUN Environment World Conservation Monitoring Centre, Cambridge, UKBrian O’ConnorDepartment of Biological, Geological and Environmental Sciences, University of Bologna, Bologna, ItalyDuccio RocchiniDepartment of Applied Geoinformatics and Spatial Planning, Faculty of Environmental Sciences, Czech University of Life Sciences, Prague, Czech RepublicDuccio RocchiniEarth Science Division, NASA, Washington DC, USAWoody TurnerUnilever Europe B.V., Rotterdam, the NetherlandsJan Kees VisInstitute of Geography and Geology, University of Wuerzburg, Würzburg, GermanyMartin WegmannLand Systems and Sustainable Land Management, Geographisches Institut, Universität Bern, Bern, SwitzerlandVladimir Wingate More

  • in

    Effects of long-term integrated agri-aquaculture on the soil fungal community structure and function in vegetable fields

    Effects of the two planting systems on soil fungal diversityIn this study, 561,254 sequences were generated from 15 samples obtained from 5 treatments. Base sequences with a length of 201–300 bp accounted for 97.82% of all sequences (Table S1a,b). Rarefaction curves at a similarity level of 97% indicated that the number of sequences extracted from most samples tended to plateau above 10,000. The number of sequences extracted in the test exceeded 30,000, suggesting that the sequencing data were close to saturation, sequencing depth was reasonable, and the results reflected true sample conditions (Fig. 1). The coverage of all samples was above 99.84%. The range of reads in each sample was between 34,390 and 43,510. The range of Operational Taxonomic Units (OTUs) in each sample was between 145 and 318 (Table 1).Figure 1α-Diversity comparison. Rarefaction curves for OTUs were calculated using Mothur (v1.27.0) with reads normalized to more than 30,000 for each sample using a distance of 0.03 OTU.Full size imageTable 1 Comparison of α-diversity indices in TPP and VEE soil samples.Full size tableThe analysis of alpha diversity showed that with increasing planting time, soil fungal OTUs, the Chao index, and the ACE index in TPP-treated plots increased and then decreased with time. In the VEE-IPBP-treated plots, these 3 indexes increased with time and were 56.94%, 33.81%, and 32.50% higher than those in the TPP-treated plots, respectively, after 6 years of implementation (p  More

  • in

    Distinguishing anthropogenic and natural contributions to coproduction of national crop yields globally

    1.Pellegrini, P. & Fernández, R. J. Crop intensification, land use, and on-farm energy-use efficiency during the worldwide spread of the green revolution. Proc. Natl. Acad. Sci. U. S. A. 115(10), 2335–2340 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    2.Ray, D. K., Ramankutty, N., Mueller, N. D., West, P. C. & Foley, J. A. Recent patterns of crop yield growth and stagnation. Nat. Commun. 3(1), 1293 (2012).ADS 
    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    3.Palomo, I., Felipe-Lucia, M. R., Bennett, E. M., Martín-López, B. & Pascual, U. Chapter six—disentangling the pathways and effects of ecosystem service co-production. In Advance Ecology Research (eds Woodward, G. & Bohan, D. A.) 245–283 (Academic Press, 2016).
    Google Scholar 
    4.Lavorel, S., Locatelli, B., Colloff, M. J. & Bruley, E. Co-producing ecosystem services for adapting to climate change. Philos. T. Roy. Soc. B. 375(1794), 20190119 (2020).Article 

    Google Scholar 
    5.Boerema, A., Rebelo, A. J., Bodi, M. B., Esler, K. J. & Meire, P. Are ecosystem services adequately quantified?. J. Appl. Ecol. 54(2), 358–370 (2017).Article 

    Google Scholar 
    6.Maes, J. et al. An indicator framework for assessing ecosystem services in support of the EU Biodiversity Strategy to 2020. Ecosyst. Serv. 17, 14–23 (2016).Article 

    Google Scholar 
    7.Jones, L. et al. Stocks and flows of natural and human-derived capital in ecosystem services. Land Use Policy 52, 151–162 (2016).Article 

    Google Scholar 
    8.Barot, S., Yé, L., Abbadie, L., Blouin, M. & Frascaria-Lacoste, N. Ecosystem services must tackle anthropized ecosystems and ecological engineering. Ecol. Eng. 99, 486–495 (2017).Article 

    Google Scholar 
    9.Remme, R. P., Edens, B., Schröter, M. & Hein, L. Monetary accounting of ecosystem services: a test case for Limburg province, the Netherlands. Ecol. Econ. 112, 116–128 (2015).Article 

    Google Scholar 
    10.Gaiser, T. & Stahr, K. Soil organic carbon, soil formation and soil fertility. In Ecosystem Services and Carbon Sequestration in the Biosphere (eds Lal, R. et al.) 407–418 (Springer, 2013).
    Google Scholar 
    11.FAO and ITPS. Status of the World’s Soil Resources (SWSR)—Main Report (Food and Agriculture Organization of the United Nations and Intergovernmental Technical Panel on Soils, 2015).
    Google Scholar 
    12.Dainese, M. et al. A global synthesis reveals biodiversity-mediated benefits for crop production. Sci. Adv. 5(10), eaax0121 (2019).ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    13.Bommarco, R., Kleijn, D. & Potts, S. G. Ecological intensification: harnessing ecosystem services for food security. Trends Ecol. Evol. 28(4), 230–238 (2013).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    14.Zabel, F., Putzenlechner, B. & Mauser, W. Global agricultural land resources—a high resolution suitability evaluation and its perspectives until 2100 under climate change conditions. PLoS ONE 9(9), e107522 (2014).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    15.Pelletier, N. et al. Energy intensity of agriculture and food systems. Annu. Rev. Environ. Resour. 36(1), 223–246 (2011).Article 

    Google Scholar 
    16.Díaz, S. et al. The IPBES conceptual framework—connecting nature and people. Curr. Opin. Environ. Sustain. 14, 1–16 (2015).Article 

    Google Scholar 
    17.Bennett, E. M. Research frontiers in ecosystem service science. Ecosystems 20(1), 31–37 (2017).Article 

    Google Scholar 
    18.Woods, J., Williams, A., Hughes, J. K., Black, M. & Murphy, R. Energy and the food system. Philos. T. Roy. Soc. B. 365(1554), 2991–3006 (2010).Article 

    Google Scholar 
    19.Foley, J. A. et al. Global consequences of land use. Science 309(5734), 570–574 (2005).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    20.Seppelt, R., Manceur, A. M., Liu, J., Fenichel, E. P. & Klotz, S. Synchronized peak-rate years of global resources use. Ecol. Soc. 19(4), 50 (2014).Article 

    Google Scholar 
    21.Meyfroidt, P. et al. Middle-range theories of land system change. Glob. Environ. Chang. 53, 52–67 (2018).Article 

    Google Scholar 
    22.Fitter, A. H. Are ecosystem services replaceable by technology?. Environ. Res. Econ. 55(4), 513–524 (2013).Article 

    Google Scholar 
    23.Cohen, F., Hepburn, C. J. & Teytelboym, A. Is natural capital really substitutable?. Annu. Rev. Environ. Resour. 44(1), 425–448 (2019).Article 

    Google Scholar 
    24.Ekins, P., Simon, S., Deutsch, L., Folke, C. & De Groot, R. A framework for the practical application of the concepts of critical natural capital and strong sustainability. Ecol. Econ. 44(2–3), 165–185 (2003).Article 

    Google Scholar 
    25.Lassaletta, L., Billen, G., Grizzetti, B., Anglade, J. & Garnier, J. 50 year trends in nitrogen use efficiency of world cropping systems: the relationship between yield and nitrogen input to cropland. Environ. Res. Lett. 9(10), 105011 (2014).ADS 
    Article 

    Google Scholar 
    26.Levers, C., Butsic, V., Verburg, P. H., Müller, D. & Kuemmerle, T. Drivers of changes in agricultural intensity in Europe. Land Use Policy 58, 380–393 (2016).Article 

    Google Scholar 
    27.Coomes, O. T., Barham, B. L., MacDonald, G. K., Ramankutty, N. & Chavas, J.-P. Leveraging total factor productivity growth for sustainable and resilient farming. Nat. Sustain. 2(1), 22–28 (2019).Article 

    Google Scholar 
    28.Fuglie, K. R&D capital, RD spillovers, and productivity growth in world agriculture. Appl. Econ. Perspect. Policy 40(3), 421–444 (2018).Article 

    Google Scholar 
    29.Mueller, N. D. et al. Closing yield gaps through nutrient and water management. Nature 490, 254 (2012).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    30.German, R. N., Thompson, C. E. & Benton, T. G. Relationships among multiple aspects of agriculture’s environmental impact and productivity: a meta-analysis to guide sustainable agriculture. Biol. Rev. 92(2), 716–738 (2017).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    31.Lee, H. & Lautenbach, S. A quantitative review of relationships between ecosystem services. Ecol. Indic. 66, 340–351 (2016).Article 

    Google Scholar 
    32.Lobell, D. B., Schlenker, W. & Costa-Roberts, J. Climate trends and global crop production since 1980. Science 333(6042), 616–620 (2011).ADS 
    CAS 
    Article 

    Google Scholar 
    33.Erb, K.-H. et al. A conceptual framework for analysing and measuring land-use intensity. Curr. Opin. Environ. Sustain. 5(5), 464–470 (2013).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    34.Loos, J. et al. Putting meaning back into “sustainable intensification”. Front. Ecol. Environ. 12(6), 356–361 (2014).Article 

    Google Scholar 
    35.Kleijn, D. et al. Ecological intensification: bridging the gap between science and practice. Trends Ecol. Evol. 34(2), 154–166 (2019).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    36.Stirzaker, R., Biggs, H., Roux, D. & Cilliers, P. Requisite simplicities to help negotiate complex problems. Ambio 39(8), 600–607 (2010).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    37.Kuemmerle, T. et al. Challenges and opportunities in mapping land use intensity globally. Curr. Opin. Environ. Sustain. 5(5), 484–493 (2013).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    38.Garibaldi, L. A., Aizen, M. A., Klein, A. M., Cunningham, S. A. & Harder, L. D. Global growth and stability of agricultural yield decrease with pollinator dependence. Proc. Natl. Acad. Sci. U. S. A. 108(14), 5909–5914 (2011).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    39.Bengtsson, J. Biological control as an ecosystem service: partitioning contributions of nature and human inputs to yield. Ecol. Entomol. 40(S1), 45–55 (2015).Article 

    Google Scholar 
    40.Seppelt, R., Arndt, C., Beckmann, M., Martin, E. A. & Hertel, T. Deciphering the biodiversity-production mutualism in the global food security debate. Trends Ecol. Evol. https://doi.org/10.1016/j.tree.2020.06.012 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    41.Poore, J. & Nemecek, T. Reducing food’s environmental impacts through producers and consumers. Science 360(6392), 987–992 (2018).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    42.Beckmann, M. et al. Conventional land-use intensification reduces species richness and increases production: a global meta-analysis. Glob. Chang. Biol. 25(6), 1941–1956 (2019).ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    43.Garibaldi, L. A. et al. Farming approaches for greater biodiversity, livelihoods, and food security. Trends Ecol. Evol. 32(1), 68–80 (2017).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    44.Monfreda, C., Ramankutty, N. & Foley, J. A. Farming the planet: 2. Geographic distribution of crop areas, yields, physiological types, and net primary production in the year 2000. Glob. Biogeochem. Cycles 22(1), 1–19 (2008).Article 
    CAS 

    Google Scholar 
    45.IFA, IFDC, IPI, PPI, FAO. Fertilizer Use by Crop (FAO, 2002).
    Google Scholar 
    46.IFA. Assessment of Fertilizer Use by Crop at the Global Level 2006/07–2007/08 (IFA, 2009).
    Google Scholar 
    47.IFA. Assessment of Fertilizer Use by Crop at the Global Level 2010–2010/11 (IFA, 2013).
    Google Scholar 
    48.IFA and IPNI. Assessment of Fertilizer Use by Crop at the Global Level (IFA and IPNI, 2017).
    Google Scholar 
    49.FAO. Crops. http://www.fao.org/faostat/en/#data/QC (2018).50.FAO. Capital Stock. http://www.fao.org/faostat/en/#data/CS (2018).51.U.S. Bureau of Labor Statistics. CPI Inflation Calculator. https://data.bls.gov/cgi-bin/cpicalc.pl?cost1=1.00&year1=200001&year2=201401 (2020).52.FAO. Livestock Manure. http://www.fao.org/faostat/en/#data/EMN (2018).53.FAO. Food Balance Sheets: A Handbook 95 (FAO, 2001).
    Google Scholar 
    54.World Bank. The World by Income and Region. https://datatopics.worldbank.org/world-development-indicators/the-world-by-income-and-region.html (2019).55.R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2019).
    Google Scholar 
    56.RStudio Team. RStudio: Integrated Development for R (RStudio, Inc., 2018).
    Google Scholar 
    57.Cook, R. D. Detection of influential observation in linear regression. Technometrics 19(1), 15–18 (1977).MathSciNet 
    MATH 

    Google Scholar 
    58.Natural Earth. Admin 0—Countries. Version 4.0.0 (accessed 22 October 2017); https://www.naturalearthdata.com/ (2017). More

  • in

    Understanding anatomical plasticity of Argan wood features at local geographical scale in ecological and archaeobotanical perspectives

    Sampling, preparation and treatment of modern reference materialA total of 53 modern wood samples were analyzed. The modern reference samples were collected in 2014 during the annual archaeological field mission, from 36 individuals (Table S1). For some trees, two wood samples of different diameters were collected in order to take into account anatomical variability within individual.The collected individuals showed different conditions of growth described in the introduction section and detailed in the Table 1. With the agreement of the Tifigit inhabitants and local authorities, wood sampling was achieved but samples were not collected from trunks, to avoid injuring trees of major symbolic, ecological and economic importance. Only section samples with perfect axial symmetry were retained to avoid any impact of biomechanical constraints (formation of reaction wood) on wood characters.Once collected, the samples were air-dried during a month at the laboratory. The samples were separately wrapped in tin foil and buried in the sand and then charred without oxygen, at 450 °C for 15 to 20 min depending on the size of the sample. As a result, samples were enriched in carbon (content  > 90%)20,26, reached their maximal shrinkage27, and thus are considered to become morphologically comparable to charcoal produced in medieval fires27,28,29,30,31. The minimum and the maximum diameter of wood samples were measured (mm) using a digital measuring calliper before and after carbonization. The diameter used in the following analyses is the mean of the two measurements carried out before carbonization.Archaeological materialTwenty archaeological charcoal fragments of Argan tree identified during a previous analysis session13 were included in this study (Table S2). All the Argan charcoal fragments were collected in the medieval archaeological deposits of Îgîlîz13. They come from various contexts, for the most part from living units, and belong to the period of highest human activity at the site, between the late 11th and early thirteenth centuries.Quantitative eco-anatomical analysis of wood applied to the Argan treeThe approach consists in measuring constitutive elements of wood and aims to understand variations according to intrinsic (inferred by the branch diameter mainly age of tree18, linked to the existence of growth rings that are often difficult to distinguish) and environmental parameters affecting the cambial activity and thus, rate of growth and wood development20,28,29,30. This high resolution analysis of wood structure, particularly of conductive elements, allows addressing numerous questions that have been successfully solved in the case of the olive tree and the grapevine, such as phenology, ecology, climate, impact of human activities and agricultural practices20,24,25,31,32,33.Argania spinosa wood is diffuse-porous with a dendritic and diagonal arrangement of vessel elements in transversal section34. The axial parenchyma bands are in tangential alignment and composed of multicellular strands. In radial alignment, woody rays are 1–3 cells wide and of heterocellular composition (Fig. 6).Figure 6Wood anatomical features of the Argan tree (in blue) and measured anatomical characters (in red).Full size imageTo apply a quantitative eco-anatomy approach to the Argan tree, both modern charred samples and archaeological charcoal are broken manually in transverse anatomical section. The following wood constitutive elements and anatomical characters related to sap conduction and reserve storage are observed and measured under a reflected-light microscope connected with an image analysis system (DFC300 FX Leica camera and LAS Leica software) (Fig. 6): (1) vessel density (DVS—number of vessels / mm2), (2) vessel surface area (SVS, µm2), (3) ray density (DRA—number of rays / mm2), (4) axial parenchyma density (DPA, number of bands / mm2), (5) Density of wood fenestrated zones bordered on one side by the radial alignment of axial parenchyma cells and on the other side, tangentially, by rays (DWF—number of fenestrated zones / mm2).These anatomical features were measured several times (see ‘Statistical analyses’ section) following radial lines from the cambium inwards the sample and crossing a small number of growth rings (i.e. functional rings from a sap conduction point of view). Moreover, the hydraulic conductivity or vascular conductivity (CD) was assessed using the following formula: CD = (SVS/π)2/DVS (after32,35,36,37). Finally, the ratio ‘Conductive surface / total wood area’ (SC) was calculated.Statistical analysesIn order to determine the number of measurements required for an optimal assessment of anatomical features, a rarefaction method was carried out from the analysis of test wood samples. For each one, repeated measurements of anatomical characters (Surface vessel area (SVS), Density of vessels (DVS), Ray density (DRA), Axial parenchyma density (DPA) and Density of wood fenestrated zones (DWF)) were performed following the aforementioned method and the cumulative mean value was then calculated for each character20,29. For each test sample and anatomical character, the number of measurements of a character required for an optimal assessment was quantified as the minimum number of measurements required to stabilize the mean value (rarefaction curve or cumulative mean curve).Furthermore, different measurement sessions were carried out with the aim of testing possible errors and reproducibility of measurements taken by one or various observers, respectively. The data sets produced were tested using the PCA performed to evaluate the Argan anatomical variability. The ARG8-2 sample was used as test sample. In addition to the initial measurements. The ARG8-2 sample was analyzed 4 times: twice by one operator (ARG8-2 (1-OP1) and ARG8-2 (2-OP1)) and twice by another (ARG8-2 (3-OP2) and ARG8-2 (3-OP2)) at different times. The additional data were incorporated into the PCA as additional individuals for comparison with initial anatomical features of ARG8-2.After showing that measurement errors have no impact on the validity of results and the measurements are reproducible, quantitative eco-anatomical data were processed using a principal component analysis (PCA) in order to evaluate anatomical plasticity in the reference modern material, to appreciate relationships between characters and wood sample caliber and to confront archaeological data to the reference model. PCA was applied on 53 reference modern samples and 7 quantitative variables (anatomical characters) to: (1) validate the hypothesis that there is a significant relationship between the size of the branch and anatomy, as previously demonstrated by analyses of wood development and structure18,20,38 and dendrochronology39; (2) identify the anatomical characters most affected by the age of the branch and, in that case, model the ‘anatomical characters—caliber of the branch’ relationship; (3) develop predictive model that might estimate the minimum branch caliber from eco-anatomical data of archaeological charcoal.Finally, data from analysis of the 20 archaeological charcoal fragments were included in PCA as additional statistical samples. They do not contribute to the development of the reference model, but are compared to the modern reference samples in order to infer the ecological conditions under which Argan trees grew during the Middle Ages. More

  • in

    Changes in taxonomic and functional diversity of plants in a chronosequence of Eucalyptus grandis plantations

    1.Sala, O. E. et al. Global biodiversity scenarios for the year 2100. Science (80- ) 287, 1770–1774 (2000).CAS 
    Article 

    Google Scholar 
    2.Wall, D. H. & Nielsen, U. N. Biodiversity and ecosystem services: is it the same below ground?. Nat. Educ. Knowl. 12, 3–8 (2012).
    Google Scholar 
    3.FAO. Global Forest Resources Assessment 2015: Desk Reference. http://www.fao.org/3/a-i4808e.pdf (2015).4.Filloy, J., Zurita, G. A., Corbelli, J. M. & Bellocq, M. I. On the similarity among bird communities: testing the influence of distance and land use. Acta Oecol. 36, 333–338 (2010).ADS 
    Article 

    Google Scholar 
    5.Santoandré, S., Filloy, J., Zurita, G. A. & Bellocq, M. I. Ant taxonomic and functional diversity show differential response to plantation age in two contrasting biomes. For. Ecol. Manag. 437, 304–313 (2019).Article 

    Google Scholar 
    6.Calviño-Cancela, M. Effectiveness of eucalypt plantations as a surrogate habitat for birds. For. Ecol. Manag. 310, 692–699 (2013).Article 

    Google Scholar 
    7.Santoandré, S., Filloy, J., Zurita, G. A. & Bellocq, M. I. Taxonomic and functional β-diversity of ants along tree plantation chronosequences differ between contrasting biomes. Basic Appl. Ecol. 41, 1–12 (2019).Article 

    Google Scholar 
    8.Corbelli, J. M. et al. Integrating taxonomic, functional and phylogenetic beta diversities: interactive effects with the biome and land use across taxa. PLoS ONE 10, 1–17 (2015).Article 
    CAS 

    Google Scholar 
    9.Phifer, C. C., Knowlton, J. L., Webster, C. R., Flaspohler, D. J. & Licata, J. A. Bird community responses to afforested eucalyptus plantations in the Argentine pampas. Biodivers. Conserv. https://doi.org/10.1007/s10531-016-1126-6 (2016).Article 

    Google Scholar 
    10.Tererai, F., Gaertner, M., Jacobs, S. M. & Richardson, D. M. Eucalyptus invasions in riparian forests: effects on native vegetation community diversity, stand structure and composition. For. Ecol. Manag. 297, 84–93 (2013).Article 

    Google Scholar 
    11.Brancalion, P. H. S. et al. Intensive silviculture enhances biomass accumulation and tree diversity recovery in tropical forest restoration. Ecol. Appl. 29, 1–12 (2019).Article 

    Google Scholar 
    12.Zhang, C., Liu, G., Xue, S. & Wang, G. Soil bacterial community dynamics reflect changes in plant community and soil properties during the secondary succession of abandoned farmland in the Loess Plateau. Soil Biol. Biochem. 97, 40–49 (2016).CAS 
    Article 

    Google Scholar 
    13.Zhu, Y., Wang, Y. & Chen, L. Effects of non-native tree plantations on the diversity of understory plants and soil macroinvertebrates in the Loess Plateau of China. Plant Soil 446, 357–368 (2019).Article 
    CAS 

    Google Scholar 
    14.Zhang, W. et al. Plant functional composition and species diversity affect soil C, N, and P during secondary succession of abandoned farmland on the Loess Plateau. Ecol. Eng. 122, 91–99 (2018).Article 

    Google Scholar 
    15.Munévar, A., Rubio, G. D. & Andrés, G. Changes in spider diversity through the growth cycle of pine plantations in the semi-deciduous Atlantic forest: the role of prey availability and abiotic conditions. For. Ecol. Manag. 424, 536–544 (2018).Article 

    Google Scholar 
    16.Vega, E., Baldi, G., Jobbágy, E. G. & Paruelo, J. Land use change patterns in the Río de la Plata grasslands: the influence of phytogeographic and political boundaries. Agric. Ecosyst. Environ. 134, 287–292 (2009).Article 

    Google Scholar 
    17.Ntshuxeko, V. E. & Ruwanza, S. Physical properties of soil in Pine elliottii and Eucalyptus cloeziana plantations in the Vhembe biosphere, Limpopo Province of South Africa. J. For. Res. https://doi.org/10.1007/s11676-018-0830-3 (2018).Article 

    Google Scholar 
    18.Kerr, T. F. & Ruwanza, S. Does Eucalyptus grandis invasion and removal affect soils and vegetation in the Eastern Cape Province, South Africa?. Austral. Ecol. 41, 328–338 (2016).Article 

    Google Scholar 
    19.Zhang, D. J., Zhang, J., Yang, W. Q. & Wu, F. Z. Potential allelopathic effect of Eucalyptus grandis across a range of plantation ages. Ecol. Res. 25, 13–23 (2010).Article 

    Google Scholar 
    20.Díaz, S. & Cabido, M. Vive la difference: plant functional diversity matters to ecosystem processes: plant functional diversity matters to ecosystem processes. Trends Ecol. Evol. 16, 646–655 (2001).Article 

    Google Scholar 
    21.Petchey, O. L. & Gaston, K. J. Functional diversity: back to basics and looking forward. Ecol. Lett. 9, 741–758 (2006).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    22.Luck, G. W., Lavorel, S., Mcintyre, S. & Lumb, K. Improving the application of vertebrate trait-based frameworks to the study of ecosystem services. J. Anim. Ecol. 81, 1065–1076 (2012).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    23.Lindenmayer, D. et al. Richness is not all: how changes in avian functional diversity reflect major landscape modification caused by pine plantations. Divers. Distrib. 21, 836–847 (2015).Article 

    Google Scholar 
    24.Whittaker, R. H. Vegetation of the Siskiyou Mountains, Oregon and California. Ecol. Monogr. 30, 280–338 (1960).Article 

    Google Scholar 
    25.Swenson, N. G. Functional and Phylogenetic Ecology in R. Use R! (2014). https://doi.org/10.1007/978-1-4614-9542-0.26.Vaccaro, A. S., Filloy, J. & Bellocq, M. I. What land use better preserves taxonomic and functional diversity of birds in a grassland biome?. Avian Conserv. Ecol. 14, 1 (2019).Article 

    Google Scholar 
    27.Blair, J., Nippert, J. & Briggs, J. Grassland Ecology. Ecology and the Environment vol. 8 (Springer, 2014).28.Nic Lughadha, E. et al. Measuring the fate of plant diversity: towards a foundation for future monitoring and opportunities for urgent action. Philos. Trans. R. Soc. B Biol. Sci. 360, 359–372 (2005).CAS 
    Article 

    Google Scholar 
    29.Marteinsdóttir, B. & Eriksson, O. Trait-based filtering from the regional species pool into local grassland communities. J. Plant Ecol. 7, 347–355 (2014).Article 

    Google Scholar 
    30.Salgado Negret, B. La Ecología Funcional como aproximación al estudio, manejo y conservación de la biodiversidad: protocolos y aplicaciones. La ecología funcional como aproximación al estudio, manejo y conservación de la biodiversidad: protocolos y aplicaciones (2015).31.Barbier, S., Gosselin, F. & Balandier, P. Influence of tree species on understory vegetation diversity and mechanisms involved—a critical review for temperate and boreal forests. For. Ecol. Manag. 254, 1–15 (2008).Article 

    Google Scholar 
    32.Zhang, D., Zhang, J., Yang, W., Wu, F. & Huang, Y. Plant and soil seed bank diversity across a range of ages of Eucalyptus grandis plantations afforested on arable lands. Plant Soil 376, 307–325 (2014).CAS 
    Article 

    Google Scholar 
    33.Zhang, C. & Fu, S. Allelopathic effects of eucalyptus and the establishment of mixed stands of eucalyptus and native species. For. Ecol. Manag. 258, 1391–1396 (2009).Article 

    Google Scholar 
    34.Florentine, S. K. & Fox, J. E. D. Allelopathic effects of Eucalyptus victrix L. on Eucalyptus species and grasses. Allelopath. J. 11, 77–83 (2003).
    Google Scholar 
    35.Jobbágy, E. et al. Forestación en pastizales: hacia una visión integral de sus oportunidades y costos ecológicos. Agrociencia X, 109–124 (2006).36.Ruwanza, S., Gaertner, M., Esler, K. J. & Richardson, D. M. Allelopathic effects of invasive Eucalyptus camaldulensis on germination and early growth of four native species in the Western Cape South Africa. South. For. 77, 91–105 (2015).Article 

    Google Scholar 
    37.Suggitt, A. J. et al. Habitat microclimates drive fi ne-scale variation in extreme temperatures. Oikos https://doi.org/10.1111/j.1600-0706.2010.18270.x (2011).Article 

    Google Scholar 
    38.Zellweger, F., Roth, T., Bugmann, H. & Bollmann, K. Beta diversity of plants, birds and butterflies is closely associated with climate and habitat structure. Glob. Ecol. Biogeogr. 26, 898–906 (2017).Article 

    Google Scholar 
    39.Silveira, L. & Alonso, J. Runoff modifications due to the conversion of natural grasslands to forests in a large basin in Uruguay. Hidrol. Process. 329, 320–329 (2009).ADS 
    Article 

    Google Scholar 
    40.Mendoza, C. A., Gallardo, J. F., Turrión, M. B., Pando, V. & Aceñolaza, P. G. Dry weight loss in leaves of dominant species in a successional sequence of the Mesopotamian Espinal (Argentina). For. Syst. 26, 1–10 (2017).
    Google Scholar 
    41.Rodriguez, E. E., Aceñolaza, P. G., Perea, E. L. & Galán de Mera, A. A phytosociological analysis of Butia yatay (Arecaceae) palm groves and gallery forests in Entre Rios, Argentina. Aust. J. Bot. https://doi.org/10.1071/BT16140 (2017).Article 

    Google Scholar 
    42.Piwczyński, M., Puchałka, R. & Ulrich, W. Influence of tree plantations on the phylogenetic structure of understorey plant communities. For. Ecol. Manag. 376, 231–237 (2016).Article 

    Google Scholar 
    43.Csecserits, A. et al. Tree plantations are hot-spots of plant invasion in a landscape with heterogeneous land-use. Agric. Ecosyst. Environ. 226, 88–98 (2016).Article 

    Google Scholar 
    44.Amazonas, N. T. et al. High diversity mixed plantations of Eucalyptus and native trees: an interface between production and restoration for the tropics. For. Ecol. Manag. 417, 247–256 (2018).Article 

    Google Scholar 
    45.Verstraeten, G. et al. Understorey vegetation shifts following the conversion of temperate deciduous forest to spruce plantation. For. Ecol. Manag. 289, 363–370 (2013).Article 

    Google Scholar 
    46.Grass, I., Brandl, R., Botzat, A., Neuschulz, E. L. & Farwig, N. Contrasting taxonomic and phylogenetic diversity responses to forest modifications: comparisons of taxa and successive plant life stages in south African scarp forest. PLoS ONE 10, 1–20 (2015).Article 
    CAS 

    Google Scholar 
    47.Wu, J. et al. Should exotic Eucalyptus be planted in subtropical China: insights from understory plant diversity in two contrasting Eucalyptus chronosequences. Environ. Manag. 56, 1244–1251 (2015).ADS 
    Article 

    Google Scholar 
    48.Jin, D. et al. High risk of plant invasion in the understory of eucalypt plantations in South China. Sci. Rep. 5, 18492 (2016).ADS 
    Article 
    CAS 

    Google Scholar 
    49.Haughian, S. R. & Frego, K. A. Short-term effects of three commercial thinning treatments on diversity of understory vascular plants in white spruce plantations of northern New Brunswick. For. Ecol. Manag. 370, 45–55 (2016).Article 

    Google Scholar 
    50.Smith, G. F., Iremonger, S., Kelly, D. L., O’Donoghue, S. & Mitchell, F. J. G. Enhancing vegetation diversity in glades, rides and roads in plantation forests. Biol. Conserv. 136, 283–294 (2007).Article 

    Google Scholar 
    51.Aceñolaza, P. G., Rodriguez, E. E. & Diaz, D. Efecto de prácticas de manejo silvícola sobre la diversidad vegetal bajo plantaciones de Eucalyptus grandis. In 4to Congreso Forestal Argentino y Latinoamericano (2013).52.Connell, J. H. & Slatyer, R. O. Mechanisms of succession in natural communities and their role in community stability and organization. Am. Nat. 111, 1119–1144 (1977).Article 

    Google Scholar 
    53.Pedley, S. M. & Dolman, P. M. Multi-taxa trait and functional responses to physical disturbance. J. Anim. Ecol. 83, 1542–1552 (2014).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    54.Birkhofer, K., Smith, H. G., Weisser, W. W., Wolters, V. & Gossner, M. M. Land-use effects on the functional distinctness of arthropod communities. Ecography (Cop.) https://doi.org/10.1111/ecog.01141 (2015).Article 

    Google Scholar 
    55.Mangels, J., Fiedler, K., Schneider, F. D. & Blu, N. Diversity and trait composition of moths respond to land-use intensification in grasslands : generalists replace specialists. Biodivers. Conserv. https://doi.org/10.1007/s10531-017-1411-z (2017).Article 

    Google Scholar 
    56.Morello, J., Matteucci, S. D., Rodriguez, A. F. & Silva, M. Ecorregiones y complejos ecosistemicos argentino. (2012).57.Cabrera, Á. Fitogeografía de la República Argentina. Bol. Soc. Argent. Bot. 14, 1–42 (1971).
    Google Scholar 
    58.Rodriguez, E. E., Aceñolaza, P. G., Picasso, G. & Gago, J. Plantas del bajo Rio Uruguay: árboles, arbustos, herbáceas, lianas y epifitas. (2018).59.Bilenca, D. & Miñarro, F. Identificación de Áreas Valiosas de Pastizal (AVPs) en las Pampas y Campos de Argentina Uruguay y sur de Brasil. Vasa https://doi.org/10.1007/s13398-014-0173-7.2 (2004).Article 

    Google Scholar 
    60.Inta. Plan de Tecnologia Regional 2009–2011. INTA Cent. Reg. Entre Rios (2011).61.Aguerre, M. et al. Manual para productores de Eucaliptos de la Mesopotamia Argentina. (1995).62.Aparicio, J. L., Larocca, F. & Dalla Tea, F. Silvicultura de establecimiento de Eucalyptus grandis. IDIA XXI, Revista de Información sobre Investigación y Desarrollo Agropecuario 66–69 (2005).63.Vilela, E., Leite, H. G. & Jaffe, K. Level of economic damage for leaf-cutting ants (Hymenoptera: Formicidae) in Eucalyptus plantations in Brazil. Sociobiology 42, 1–10 (2015).
    Google Scholar 
    64.Larroca, F., Dalla Tea, F. & Aparicio, J. L. Técnicas de implantación y manejo de eucaliptus para pequeños y medianos forestadores en Entre Ríos y Corrientes. in XIX Jornadas Forestales de Entre Ríos. (2004).65.Burkart, A. Flora ilustrada de la provincia de Entre Ríos. (INTA, 1969).66.Burkart, A. Flora ilustrada de Entre Ríos (Argentina). Parte 2 Gramíneas. Colección Científica del INTA (1969).67.Peyras, M., Vespa, N. I., Bellocq, M. I. & Zurita, G. A. Quantifying edge effects : the role of habitat contrast and species specialization. J. Insect Conserv. 17, 807–820 (2013).Article 

    Google Scholar 
    68.Werenkraut, V., Fergnani, P. N. & Ruggiero, A. Ants at the edge: a sharp forest-steppe boundary influences the taxonomic and functional organization of ant species assemblages along elevational gradients in northwestern Patagonia (Argentina). Biodivers. Conserv. 24, 287–308 (2015).Article 

    Google Scholar 
    69.Diaz, S., Cabido, M. & Casanoves, F. Plant functional traits and environmental filters at a regional scale. J. Veg. Sci. 9, 113–122 (1998).Article 

    Google Scholar 
    70.Grime, J. P. Benefits of plant diversity to ecosystems: immediate, filter and founder effects. J. Ecol. 86, 902–910 (1998).Article 

    Google Scholar 
    71.Carreño-Rocabado, G. et al. Land-use intensification effects on functional properties in tropical plant communities. Ecol. Appl. https://doi.org/10.1007/s11548-012-0737-y (2015).Article 

    Google Scholar 
    72.Pérez-Harguindeguy, N. et al. New Handbook for standardized measurment of plant functional traits worldwide. Aust. J. Bot. 61, 167–234 (2013).Article 

    Google Scholar 
    73.Laliberté, E. & Legendre, P. A distance-based framework for measuring functional diversity from multiple traits. Ecology 91, 299–305 (2010).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    74.Legendre, P. & Legendre, L. F. J. Numerical Ecology. (Elsevier, 2012).75.Kembel, S. W. et al. Package ‘ picante ’: Integrating Phylogenies and Ecology. Cran-R 1–55 (2018). https://doi.org/10.1093/bioinformatics/btq166 >.License.76.Swenson, N. G., Anglada-Cordero, P. & Barone, J. A. Deterministic tropical tree community turnover: evidence from patterns of functional beta diversity along an elevational gradient. Proc. R. Soc. B Biol. Sci. 278, 877–884 (2011).Article 

    Google Scholar 
    77.Cribari-Neto, F. & Zeileis, A. Journal of Statistical Software. J. Stat. Softw. 34, 1–24 (2010).Article 

    Google Scholar 
    78.Burnham, K. P. & Anderson, D. R. Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach (Springer, 2002).MATH 

    Google Scholar 
    79.Zuur, A. F., Ieno, E. N. & Elphick, C. S. A protocol for data exploration to avoid common statistical problems. Methods Ecol. Evol. 1, 3–14 (2010).Article 

    Google Scholar 
    80.Grace, J. B. Structural Equation Modeling and Natural Systems. (Cambridge University Press, 2006).81.Fan, Y. et al. Applications of structural equation modeling (SEM) in ecological studies: an updated review. Ecol. Process. 5, 19 (2016).ADS 
    Article 

    Google Scholar 
    82.Lefcheck, J. S. piecewiseSEM: piecewise structural equation modelling in r for ecology, evolution, and systematics. Methods Ecol. Evol. 7, 573–579 (2016).Article 

    Google Scholar 
    83.Lefcheck, J., Byrnes, J. & Grace, J. Package ‘ piecewiseSEM ’. R (2019).84.Brown, A. M. et al. The fourth-corner solution – using predictive models to understand how species traits interact with the environment. Methods Ecol. Evol. 5, 344–352 (2014).Article 

    Google Scholar 
    85.Hastie, T., Tibshirani, R. & Friedman, J. The Elements of Statistical Learning: Data Mining, Inference and Prediction. (2009).86.Barton, K. Package ‘MuMIn’.Multi-Model Inference. (2018).87.Dawson, S. K. et al. Plant traits of propagule banks and standing vegetation reveal flooding alleviates impacts of agriculture on wetland restoration. J. Appl. Ecol. 54, 1907–1918 (2017).Article 

    Google Scholar 
    88.QGIS Development Team. QGIS Geographic Information System. Open Source Geospatial Foundation Project. (2019). http://qgis.osgeo.org More

  • in

    Impacts of sheep versus cattle livestock systems on birds of Mediterranean grasslands

    Study area and parcel selectionThe study was conducted in Castro Verde Special Protection Area (SPA), located in southern Portugal (Fig. 1). The climate is Mediterranean, with hot summers (30–35 °C on average in July) and mild winters (averaging 5–8 °C in January), and over 75% of annual rainfall (500–600 mm) concentrated in October–March. The landscape is flat or gently undulating (100–300 m), mainly dominated by open areas used for rainfed pastures (ca. 60%) and annual crops (ca. 25%), and to a less extent by open woodlands (ca. 7%)15.Figure 1(a) Location of the study area within the Castro Verde Special Protected Area (SPA), southern Portugal. (b) Distribution of the 27 sheep (dark grey polygons) and 23 cattle (light grey polygons) grazing parcels and (c) Sampling scheme applied to each parcel surveyed. Bird counts were done at the centroid of the parcel (white dot) whereas vegetation sampling was performed at the indicated 10 points (black dots). The area covered with pastures and annual crops (derived from CORINE land cover 2018—https://land.copernicus.eu/pan-european/corine-land-cover/clc2018) is shown in yellow. The map was done using the version 3.10.0 of QGIS—https://qgis.org/en/site/index.html.Full size imageSince 1995, part of the study area has benefited from a CAP agri-environment aiming to protect the traditional farming system16. This scheme provides financial support to farmers for agricultural practices considered favourable to conservation, including the traditional rotation of cereals and fallows, the maintenance of low stocking rates (usually related with sheep grazing systems), and sowing of crops benefiting grassland birds16. However, in recent years the traditional farming system has been declining, with many farmers converting to specialized livestock systems, mainly, cattle grazing systems, with an increase of stocking rates7,15.Parcel selection started by identifying grasslands grazed by either sheep or cattle, based on parcel-level statistical information from 2010 provided by the Portuguese Ministry of Agriculture7. To minimize potentially confounding effects of adjacent land uses (edge effects) and other non-crop elements within parcels on bird assemblages, we excluded parcels less than 100 m from shrubland or forested areas, with shrub and tree cover  > 5% and with a minimum size of 10 ha. In January 2019 we visited 100 pre-selected parcels which were grazed by either sheep or cattle in 2010 in order to confirm the parcel land use in the agricultural year of 2018/2019, aiming to sample a balanced proportion of 50 sheep and cattle grazed parcels. Additional livestock information for the agricultural year of 2018/2019 was obtained during systematic visits to targeted parcels (see “Grazing Regime” section from Methods). We ended up with 23 cattle parcels and 27 sheep parcels (Fig. 1).Bird and vegetation dataBreeding birds were sampled twice in each parcel during 7–16 April and 1–15 May 2019 respectively, always by the same observer (R.F.R). This was done to take into account species-specific breeding phenology in the area (early and late breeders)17 and minimize bias due to other factors (like weather or disturbance). Sampling was conducted using standardized 10 min point counts18 carried out at the central point of the parcel (Fig. 1). As the open terrain allowed for high visibility, a large detection radius was used, and all birds detected within 100 m of the central point were identified and counted. This radius is roughly similar to the one previously used for characterizing bird populations in the region19. All counts were carried out in the first four hours after sunrise and in the last two hours before sunset, with none in heavy or persistent rain, or in strong wind conditions. To estimate bird species richness and occurrences in each parcel, we pooled the data from the two counts. Species-level analyses focused on the six most common species, which occurred in  > 30% of the parcels (see Supplementary Table S1). In addition to presence/absence, we also estimated population densities, using the count which yielded the highest estimate of density for each species (assuming this is the best indicator of population density, given the potential phenology and detectability biases above mentioned). Bird densities were based on the number of males simultaneously detected and expressed as breeding pairs/10 ha or males/10 ha (in the case of Little Bustard Tetrax tetrax and Common Quail Coturnix coturnix). Categorization to the genus level was made for the Crested and Thekla larks (Galerida cristata and G. theklae) due to difficulties in correctly identifying all individuals of these two very similar species in the field.Vegetation height and cover were measured once in each parcel, between April 22 and May 6. Vegetation height was estimated in a set of ten 3 m radius plots defined inside the 100 m buffer (Fig. 1). In each plot, ten measurements of vegetation height were taken at random locations, for a total of 100 measurements per parcel. Vegetation height was measured using a 50 cm ruler and was defined as the highest point of vegetation projection within 3 cm of the ruler20. All values were estimated to the nearest half centimeter. When no vegetation was present (bare soil, soil litter, rocks or animal dung) the height was set to zero (0) but these measurements were not considered to estimate the mean height of the sward. Vegetation cover was measured inside a 50 × 50 cm quadrat placed at each of the ten grid points, by visual estimation to the nearest 5% of the percentage of the quadrat area covered by vegetation21 (Fig. 1). Vegetation height and cover measurements were averaged within each parcel.Grazing regimeThe number and type of livestock in each parcel as well as the extent of the grazing period since the start of the year (2019) were gathered from interviews (Supplementary Information S1) to land managers during 1–15 May 2019. This information was further validated, and corrected in a few cases, through field checks during regular visits (made at two-week intervals) to the parcels (see “Bird and vegetation data” section from Methods). Three grazing regime indicators were estimated for the whole period (January–May 2019): livestock type (either sheep or cattle), animal density, and grazing pressure. The animal density in each parcel was calculated as the average density (animals per hectare) of any species (regardless of being sheep or cattle) that grazed the parcel during the 5-months period. Stocking Rate translated animal density into livestock unit (LU) per hectare (LU/ha), between January and May, according to the following criteria: one adult bovine = 1 LU; bovine aged  More

  • in

    Global data on earthworm abundance, biomass, diversity and corresponding environmental properties

    German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstrasse 4, 04103, Leipzig, GermanyHelen R. P. Phillips, Joanne M. Bennett, Rémy Beugnon, Olga Ferlian, Carlos A. Guerra, Birgitta König-Ries, Julia J. Krebs, Ulrich Brose & Nico EisenhauerInstitute of Biology, Leipzig University, Puschstrasse 4, 04103, Leipzig, GermanyHelen R. P. Phillips, Rémy Beugnon, Olga Ferlian, Julia J. Krebs & Nico EisenhauerDepartment of Environmental Science, Saint Mary’s University, Halifax, Nova Scotia, CanadaHelen R. P. Phillips & Erin K. CameronGlobal Soil Biodiversity Initiative and School of Global Environmental Sustainability, Colorado State University, Fort Collins, CO, 80523, USAElizabeth M. Bach & Diana H. WallDepartment of Biology, Colorado State University, Fort Collins, CO, 80523, USAElizabeth M. Bach & Diana H. WallUniversidade Positivo, Rua Prof. Pedro Viriato Parigot de Souza, 5300, Curitiba, PR, 81280-330, BrazilMarie L. C. BartzCenter of Functional Ecology, Department of Life Sciences, University of Coimbra, Calçada Martins de Freitas, 3000-456, Coimbra, PortugalMarie L. C. BartzInstitute of Biology, Martin Luther University Halle-Wittenberg, Am Kirchtor 1, 06108, Halle (Saale), GermanyJoanne M. Bennett & Carlos A. GuerraCentre for Applied Water Science, Institute for Applied Ecology, Faculty of Science and Technology, University of Canberra, Canberra, AustraliaJoanne M. BennettDepartamento de Ecología y Biología Animal, Universidad de Vigo, 36310, Vigo, SpainMaria J. I. BrionesEmbrapa Forestry, Estrada da Ribeira, km. 111, C.P. 231, Colombo, PR, 83411-000, BrazilGeorge G. BrownA.N. Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Leninsky pr., 33, Moscow, 119071, RussiaKonstantin B. Gongalsky & Iurii M. LebedevM.V. Lomonosov Moscow State University, Leninskie Gory, 1, Moscow, 119991, RussiaKonstantin B. Gongalsky & Iurii M. LebedevInstitute of Computer Science, Friedrich Schiller University Jena, Ernst-Abbe-Platz 2, 07743, Jena, GermanyBirgitta König-RiesEuropean Commission, Joint Research Centre (JRC), Ispra, ItalyAlberto OrgiazziDepartment of Terrestrial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), 6700, Wageningen, AB, The NetherlandsKelly S. Ramirez, Wim H. van der Putten & Madhav P. ThakurSenckenberg Museum for Natural History Görlitz, Department of Soil Zoology, 02826, Görlitz, GermanyDavid J. RussellBiometry and Environmental System Analysis, University of Freiburg, Tennenbacher Str. 4, 79106, Freiburg, GermanyBenjamin SchwarzInstitute of Biodiversity, Friedrich Schiller University Jena, Dornburger-Str. 159, 07743, Jena, GermanyUlrich BroseCEFE, Univ Montpellier, CNRS, EPHE, IRD, Univ Paul Valéry Montpellier 3, Montpellier, FranceThibaud DecaënsSorbonne Université, Institut d’Ecologie et des Sciences de l’Environnement, 75005, Paris, FrancePatrick LavelleCentre for Biodiversity Theory and Modelling, Theoretical and Experimental Ecology Station, CNRS, 09200, Moulis, FranceMichel LoreauSorbonne Université, Institute of Ecology and Environmental Sciences of Paris (UMR 7618 IEES-Paris, CNRS, INRA, UPMC, IRD, UPEC), 4 place Jussieu, 75000, Paris, FranceJérôme MathieuINRA, IRD, Institut d’Ecologie et des Sciences de l’Environnement de Paris, F-75005, Paris, FranceJérôme MathieuDepartment of Biological, Geological and Environmental Sciences, University of Catania, Via Androne 81, 95124, Catania, ItalyChristian MulderLaboratory of Nematology, Wageningen University, PO Box 8123, 6700, Wageningen, ES, The NetherlandsWim H. van der PuttenInstitute of Biology, Freie Universität Berlin, 14195, Berlin, GermanyMatthias C. Rillig & Daniel R. LammelInstitute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The NetherlandsFranciska T. de VriesAsian School of the Environment, Nanyang Technological University, Singapore, 639798, SingaporeDavid A. WardleCentre of Biodiversity and Sustainable Landuse, University of Göttingen, Büsgenweg 1, Göttingen, GermanyChristian AmmerSilviculture and Forest Ecology of the Temperate Zones, University of Göttingen, Büsgenweg 1, Göttingen, GermanyChristian AmmerForest Sciences and Forest Ecology, University of Göttingen, Büsgenweg 1, Göttingen, GermanySabine AmmerInstitute for Agro-Environmental Sciences, National Agriculture and Food Research Organization, 3-1-3 Kan-nondai, Tsukuba, Ibaraki, JapanMiwa AraiLand Resource Management and Agricultural Technology, University of Nairobi, Kapenguria Road, Off Naivasha Road, P.O Box 29053, Nairobi, KenyaFredrick O. AyukeRwanda Institute for Conservation Agriculture, KG 541, Kigali, RwandaFredrick O. AyukeHealth & Biosecurity, CSIRO, PO Box 1700, Canberra, AustraliaGeoff H. BakerDepartment of Animal Science, Santa Catarina State University, Chapecó, SC, 89815-630, BrazilDilmar BarettaExperimental Infrastructure Platform (EIP), Leibniz Centre for Agricultural Landscape Research, Eberswalder Str. 84, Müncheberg, GermanyDietmar Barkusky & Monika JoschkoDépartment de biologie, Université de Sherbrooke, Sherbrooke, Québec, CanadaRobin Beauséjour & Robert L. BradleyGeology Department, FCEFQyN, ICBIA-CONICET (National Scientific and Technical Research Council), National University of Rio Cuarto, Ruta 36 Km, 601, Río Cuarto, ArgentinaJose C. Bedano & Anahí DomínguezDepartment of Ecology, Brandenburg University of Technology, Konrad-Wachsmann-Allee 6, Cottbus, GermanyKlaus BirkhoferEco&Sols, Univ Montpellier, IRD, INRAE, CIRAD, Institut Agro, Montpellier, FranceEric Blanchart & Michel BrossardNatural Resources, Cornell University, Ithaca, NY, USABernd BlosseyEarth Institute, University College Dublin, Belfield, Dublin, 4, IrelandThomas BolgerSchool of Biology and Environmental Science, University College Dublin, Belfield, Dublin, IrelandThomas BolgerDepartment of Entomology, Cornell University, 3132, Comstock Hall, Ithaca, NY, USAJames C. BurtisEMMAH, UMR 1114, INRA, Site Agroparc, Avignon, FranceYvan CapowiezThe School of Agriculture, Food and Wine, The Waite Research Institute, The University of Adelaide, PMB 1, Glen Osmond, AustraliaTimothy R. CavagnaroFaculty of Forestry, University of Toronto, 33 Willcocks Street, Toronto, CanadaAmy Choi & Sandy M. SmithLaboratoire Écologie et Biologie des Interactions, équipe EES, UMR CNRS 7267, Université de Poitiers, 5 rue Albert Turpain, Poitiers, FranceJulia ClauseUMR ECOBIO (Ecosystems, Biodiversity, Evolution) CNRS-Université de Rennes, Station Biologique, 35380, Paimpont, FranceDaniel Cluzeau & Guénola PérèsECT Oekotoxikologie GmbH, Boettgerstr. 2-14, Floersheim, GermanyAnja CoorsInstitute of Biological, Environmental and Rural Sciences, Aberystwyth Universtiy, Plas Gogerddan, Aberystwyth, SY24 3EE, United KingdomFelicity V. CrottySchool for Agriculture, Food and the Environment, Royal Agricultural University, Stroud Road, Cirencester, GL7 6JS, United KingdomFelicity V. CrottyOdum School of Ecology, University of Georgia, 140 E Green Street, Athens, USAJasmine M. CrumseyDepartment of Biological Sciencies, SUNY Cortland, 1215 Bowers Hall, Cortland, USAAndrea DávalosBiodiversity, Ecology and Evolution, Faculty of Biology, University Complutense of Madrid, José Antonio Novais, 12, Madrid, SpainDarío J. Díaz Cosín, Mónica Gutiérrez López, Juan B. Jesús, Marta Novo & Dolores TrigoYale School of the Environment, Yale University, 370 Prospect St, New Haven, CT, USAAnnise M. DobsonDepartamento de Ciencias Básicas, Universidad Nacional de Luján, Argentina – INEDES (Universidad Nacional de Luján – CONICET), Luján, ArgentinaAndrés Esteban DuhourLouis Bolk Institute, Kosterijland 3-5, Bunnik, The NetherlandsNick van EekerenDepartment of Soil Science, University of Trier, Campus II, Behringstraße 21, Trier, GermanyChristoph EmmerlingDepartamento de Ciencias Básicas, Instituto de Ecología y Desarrollo Sustentable, Universidad Nacional de Luján, Av. Constitución y Ruta 5, Luján, ArgentinaLiliana B. FalcoAnimal Biodiversity and Evolution, Institute of Evolutionary Biology, Passeig Marítim de la Barceloneta 37, Barcelona, SpainRosa FernándezDepartment of Soil and Crop Sciences, Colorado State University, 1170 Campus Delivery, Fort Collins, CO, USASteven J. Fonte & Tunsisa T. HurissoBiodiversity and Systematic Network, Institute of Ecology A.C., El Haya, Xalapa, Veracruz, 91070, MexicoCarlos FragosoDepartment of Biology, Colorado State University, 200 West Lake Street, Fort Collins, CO, USAAndré L. C. FrancoDepartment of Biological Sciences and Environmental Studies, University of the Philippines Mindanao, Tugbok District, Davao, PhilippinesAbegail FusileroLaboratory of Environmental Toxicology and Aquatic Ecology, Environmental Toxicology Unit – GhEnToxLab, Ghent University, Campus Coupure, Coupure Links 653, Ghent, BelgiumAbegail FusileroCenter for Forest Ecology and Productivity RAS, Profsoyuznaya st. 84/32 bldg. 14, Moscow, RussiaAnna P. GeraskinaRazi University, Kermanshah, IranShaieste Gholami & Ehsan SayadUnited States Department of Agriculture, Forest Service, International Institute of Tropical Forestry, 1201 Ceiba Street, San Juan, Puerto RicoGrizelle GonzálezDepartment of Forest Ecology and Management, Swedish University of Agricultural Sciences, Skogsmarksgrand 17, 901 83, Umeå, SwedenMichael J. GundaleDepartment of Biology, University of Osijek, Cara Hadrijana 8 A, Osijek, CroatiaBranimir K. Hackenberger & Davorka K. HackenbergerAgriculture engineering, Agroecology Postgraduate Program, Maranhão State University, Avenida Lourenço Vieira da Silva 1000, São Luis, BrazilLuis M. Hernández & Guillaume X. RousseauDepartment of Jobs, Precincts and Regions, Agriculture Victoria, Chiltern Valley Road, Rutherglen, AustraliaJeff R. HirthFaculty of Agriculture, Kyushu University, 394 Tsubakuro, Sasaguri, Fukuoka, 811-2415, JapanTakuo HishiMinnesota Pollution Control Agency, 520 Lafayette Road, St Paul, MN, USAAndrew R. HoldsworthDepartment of Bioscience, Aarhus University, Vejlsøvej 25, Aarhus, DenmarkMartin HolmstrupDepartment of Biological Science, Northern Kentucky University, 1 Nunn Drive, Highland Heights, KY, USAKristine N. HopfenspergerAgricultura Sociedad y Ambiente, El Colegio de la Frontera Sur, Av. Polígono s/n Cd. Industrial Lerma, Campeche, Campeche, MexicoEsperanza Huerta LwangaSoil Physics and Land Management Group, Wageningen University & Research, Droevendaalsteeg 4, Wageningen, The NetherlandsEsperanza Huerta Lwanga & Loes van SchaikDept. of Biological and Environmental Sciences, University of Jyväskylä, Box 35, Jyväskylä, FinlandVeikko HuhtaCollege of Agriculture, Environmental and Human Sciences, Lincoln University of Missouri, Jefferson City, MO, 65101, USATunsisa T. HurissoSchool of Forest Resources and Conservation, University of Florida, Gainesville, USABasil V. Iannone IIISustainable Development and Environmental Engineering, University of Agricultural Sciences and Veterinary Medicine of Banat “King Michael the 1st of Romania” from Timisoara, Calea Aradului 119, Timisoara, RomaniaMadalina IordacheInstitute for Ecosystem Research, University of Kiel, Olshausenstrasse 40, 24098, Kiel, GermanyUlrich IrmlerTartu College, Tallinn University of Technology, Puiestee 78, Tartu, EstoniaMari IvaskDepartment of Soil and Water Systems, University of Idaho, 875 Perimeter Drive MS, 2340, Moscow, USAJodi L. Johnson-MaynardFaculty of Food and Agricultural Sciences, Fukushima University, Kanayagawa 1, Fukushima, JapanNobuhiro KanekoDepartment of Environment, Faculty of Natural Sciences, Matej Bel University, Tajovského 40, Banská Bystrica, SlovakiaRadoslava KanianskaUK Centre for Ecology & Hydrology, Library Avenue, Bailrigg, Lancaster, United KingdomAidan M. KeithLand Use and Governance, Leibniz Centre for Agricultural Landscape Research, Eberswalder Str. 84, Müncheberg, GermanyMaria L. KerneckerUFR Sciences de la Nature, UR Gestion Durable des Sols, Université Nangui Abrogoua, Abidjan, Côte d’IvoireArmand W. KonéFaculty of Natural Resources and Marine Sciences, Tarbiat Modares University, 46417-76489, Noor, Mazandaran, IranYahya KoochProduction Systems, Natural Resources Institute Finland, Survontie 9 A, Jyväskylä, FinlandSanna T. KukkonenDepartment of Zoology, Pachhunga University College, Aizawl, Mizoram, IndiaH. LalthanzaraSkolkovo Institute of Science and Technology, 30-1 Bolshoy Boulevard, Moscow, 121205, RussiaIurii M. LebedevSAS, INRAE, Institut Agro, 35042, Rennes, FranceEdith Le CadreTropical Plant and Soil Sciences, College of Tropical Agriculture and Human Resources, University of Hawai’i at Manoa, 3190 Maile Way, St. John 102, Honolulu, USANoa K. LincolnEcologia Aplicada, Instituto de Zoologia y Ecologia Tropical, Universidad Central de Venezuela, Los Chaguaramos, Ciudad Universitaria, Caracas, VenezuelaDanilo López-HernándezDepartment of Natural Resource Ecology and Management, Oklahoma State University, 008C, Ag Hall, Stillwater, USAScott R. Loss & Shishir PaudelUPR Systèmes de Pérennes, CIRAD, Univ Montpellier, TA B-34/02 Avenue Agropolis, Montpellier, FranceRaphael MarichalDepartment of Forest Ecology, Faculty of Forestry and Wood Technology, Czech University of Life Sciences Prague, Kamýcká 129, Prague, Czech RepublicRadim MatulaTochigi Prefectural Museum, 2-2 Mutsumi-cho, Utsunomiya, JapanYukio MinamiyaThuenen-Institute of Biodiversity, Bundesallee 65, Braunschweig, GermanyJan Hendrik MoosThuenen-Institute of Organic Farming, Trenthorst 32, Westerau, GermanyJan Hendrik MoosPlant Biology, Ecology and Earth Science, INDEHESA, University of Extremadura, Plasencia, SpainGerardo MorenoConservación de la Biodiversidad, El Colegio de la Frontera Sur, Av. Rancho, poligono 2 A, Cd. Industrial de Lerma, Campeche, MexicoAlejandro Morón-RíosDepartment of Environmental Systems Science, Faculty of Science and Engineering, Doshisha University, Kyoto, 602-8580, JapanHasegawa MotohiroDepartment of Earth & Environmental Sciences, Division of Forest, Nature and Landscape, KU Leuven, Celestijnenlaan 200E Box, 2411, Leuven, BelgiumBart MuysResearch Institute for Nature and Forest, Gaverstraat 35, 9500, Geraardsbergen, BelgiumJohan NeirynckSchool of Agricultural, Forest and Food Sciences, Bern University of Applied Sciences, Länggasse 85, Zollikofen, SwitzerlandLindsey NorgroveSoil Ecosystems, Natural Resources Institute Finland (Luke), Tietotie 4, Jokioinen, FinlandVisa NuutinenNatural Area Consultants, 1 West Hill School Road, Richford, NY, USAVictoria NuzzoDepartment of Zoology, PSMO College, Tirurangadi, Malappuram, Kerala, India, Malappuram, IndiaP. Mujeeb RahmanCSIRO Ocean and Atmosphere, CSIRO, New Illawarra Road, Lucas Heights, NSW, AustraliaJohan PansuUMR7144 Adaptation et Diversité en Milieu Marin, Station Biologique de Roscoff, CNRS/Sorbonne Université, Place Georges Teissier, Roscoff, FranceJohan PansuPhipps Conservatory and Botanical Gardens, Pittsburgh, PA, 15213, USAShishir PaudelUMR SAS, INRAE, Institut Agro Agrocampus Ouest, 35000, Rennes, FranceGuénola PérèsForest Ecology and Restoration Group, Department of Life Sciences, University of Alcalá, 28805, Alcalá De Henares, SpainLorenzo Pérez-Camacho & Salvador RebolloAdaptations du Vivant, CNRS UMR 7179, Muséum National d’Histoire Naturelle, 4 Avenue du Petit Château, Brunoy, FranceJean-François PongeDepartment of Ecology and Ecosystem Management, Technical University of Munich, Emil-Ramann-Str. 2, 85354, Freising, GermanyJörg PrietzelTembotov Institute of Ecology of Mountain Territories, Russian Academy of Sciences, I. Armand, 37a, Nalchik, RussiaIrina B. RapoportCenter of Excellence in Environmental Studies, King Abdulaziz University, P.O Box 80216, Jeddah, 21589, Saudi ArabiaMuhammad Imtiaz RashidGlobal Change Ecology and Evolution Research Group (GloCEE), Department of Life Sciences, University of Alcalá, 28805, Alcalá De Henares, SpainMiguel Á. RodríguezDepartment of Forest Resources, University of Minnesota, 1530, Cleveland Ave. N, St. Paul, USAAlexander M. RothFriends of the Mississippi River, 101 E 5th St. Suite 2000, St Paul, USAAlexander M. RothBiology, Biodiversity and Conservation Postgraduate Program, Federal University of Maranhão, Avenida dos Portugueses 1966, São Luis, BrazilGuillaume X. RousseauInstitute of Environmental Sciences, Jagiellonian University, Gronostajowa 7, Kraków, PolandAnna RozenCollege of Natural Resources, University of Wisconsin, Stevens Point, WI, 54481, USABryant ScharenbrochThe Morton Arboretum, 4100 Illinois Route 53, Lisle, IL, 60532, USABryant ScharenbrochDepartment Engineering for Crop Production, Leibniz Institute for Agricultural Engineering and Bioeconomy (ATB), Max-Eyth-Allee 100, Potsdam, GermanyMichael SchirrmannSchool of Agriculture and Food Science, University College Dublin, Agriculture and Food Science Centre, Dublin, IrelandOlaf SchmidtUCD Earth Institute, University College Dublin, Dublin, IrelandOlaf SchmidtLandscape Ecology and Environmental Systems Analysis, Institute of Geoecology, Technische Universität Braunschweig, Langer Kamp 19c, Braunschweig, GermanyBoris SchröderDepartment of Ecology, University of Innsbruck, Technikerstrasse 25, Innsbruck, AustriaJulia SeeberInstitute for Alpine Environment, Eurac Research, Viale Druso 1, Bozen/Bolzano, ItalyJulia Seeber & Michael SteinwandterLaboratory of Ecosystem Modelling, Institute of Physicochemical and Biological Problems in Soil Science of the Russian Academy of Sciences, Institutskaya str., 2, Pushchino, RussiaMaxim P. ShashkovLaboratory of Computational Ecology, Institute of Mathematical Problems of Biology RAS – the Branch of Keldysh Institute of Applied Mathematics of the Russian Academy of Sciences, Vitkevicha str., 1, Pushchino, RussiaMaxim P. ShashkovDepartment of Zoology, Khalsa College Amritsar, Amritsar, Punjab, IndiaJaswinder SinghDepartment of Earth and Planetary Sciences, Johns Hopkins University, 3400 N. Charles Street, Baltimore, USAKatalin SzlaveczDepartment of animal biology, edaphology and geology, Faculty of Sciences (Biology), University of La Laguna, La Laguna, Santa Cruz De Tenerife, SpainJosé Antonio TalaveraForest Science, Kochi University, Monobe Otsu 200, Nankoku, JapanJiro TsukamotoJuárez Autonomous University of Tabasco, Nanotechnology Engineering, Multidisciplinary Academic Division of Jalpa de Méndez, Carr. Estatal libre Villahermosa-Comalcalco, Km 27 S/N, C.P. 86205 Jalpa de Méndez, Tabasco, MexicoSheila Uribe-LópezUnit Food & Agriculture, WWF-Netherlands, Driebergseweg 10, Zeist, The NetherlandsAnne W. de ValençaDpto. Ciencias, IS-FOOD, Universidad Pública de Navarra, Edificio Olivos – Campus Arrosadia, Pamplona, SpainIñigo VirtoDepartment of Soil, Water and Climate, University of Minnesota, 1991 Upper Buford Circle, St Paul, USAAdrian A. WackettEarth Innovation Institute, 98 Battery Street Suite 250, San Francisco, USAMatthew W. WarrenUniversity of California Davis, 1 Shields Avenue, Davis, USAEmily R. WebsterNatural Resources & Environmental Management, University of Hawaii at Manoa, 1910 East West Rd, Honolulu, USANathaniel H. WehrNatural Resource Sciences, McGill University, 21111 Lakeshore Road, Ste-Anne-de-Bellevue, CanadaJoann K. WhalenThe Nature Conservancy, 4245 Fairfax Drive, Arlington, USAMichael B. WironenAnimal Ecology, Justus Liebig University, Heinrich-Buff-Ring 26, Giessen, GermanyVolkmar WoltersInstitute of Qinghai-Tibetan Plateau, Southwest Minzu University, Chengdu, ChinaPengfei WuLaboratory of terrestrial ecosystems, Federal Research Centre “Kola Science Centre of the Russian Academy of Sciences”, Institute of North Industrial Ecology Problems (INEP KSC RAS), Akademgorodok, 14a, Apatity, Murmansk, Province, RussiaIrina V. ZenkovaKey Laboratory of Geospatial Technology for the Middle and Lower Yellow River Regions (Henan University), Ministry of Education, College of Environment and Planning, Henan University, Kaifeng, ChinaWeixin ZhangFaculty of Biological and Environmental Sciences, Post Office Box 65, FI 00014, University of Helsinki, Helsinki, FinlandErin K. CameronThe sWorm workshops were organised by N.E., E.K.C. and H.R.P.P., with funding acquired by N.E., E.K.C. and M.P.T. Data collation and formatting was led by H.R.P.P., with assistance from J.K., M.J.I.B., G.B., K.B.G. and B.S. Harmonisation of earthworm species names was completed by G.B., M.J.I.B., M.L.C.B. and P.L. Advice and feedback on data collation protocols was provided by E.M.B., M.J.I.B., G.B., O.F., C.A.G., B.K.R., A.O., D.R., and D.H.W. Writing of the manuscript was led by H.R.P.P. All authors provided input and comments on the manuscript. The majority of authors provided data to the database. More

  • in

    Balancing carbon storage under elevated CO2

    RESEARCH SUMMARY

    21 May 2021

    Balancing carbon storage under elevated CO2

    A global synthesis of experiments reveals that increases in plant biomass under conditions of elevated CO2 mean that plants need to mine the soil for nutrients, which decreases soil’s ability to store carbon. In forests, elevated CO2 generally seems to greatly increase plant biomass, but not soil carbon. In grasslands, by contrast, it causes small changes in biomass and large increases in soil carbon.

    César Terrer

     ORCID: http://orcid.org/0000-0002-5479-3486

    0

    César Terrer

    Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, USA; and the Department of Earth System Science, Stanford University, Stanford, CA, USA.

    View author publications

    You can also search for this author in PubMed
     Google Scholar

    Share on Twitter
    Share on Twitter

    Share on Facebook
    Share on Facebook

    Share via E-Mail
    Share via E-Mail

    This is a summary of Terrer, C. et al. A trade-off between plant and soil carbon storage under elevated CO2. Nature https://doi.org/10.1038/s41586-021-03306-8 (2021).

    Access options

    Access through your institution

    Change institution

    Buy or subscribe

    /* style specs start */
    style{display:none!important}.LiveAreaSection-193358632 *{align-content:stretch;align-items:stretch;align-self:auto;animation-delay:0s;animation-direction:normal;animation-duration:0s;animation-fill-mode:none;animation-iteration-count:1;animation-name:none;animation-play-state:running;animation-timing-function:ease;azimuth:center;backface-visibility:visible;background-attachment:scroll;background-blend-mode:normal;background-clip:borderBox;background-color:transparent;background-image:none;background-origin:paddingBox;background-position:0 0;background-repeat:repeat;background-size:auto auto;block-size:auto;border-block-end-color:currentcolor;border-block-end-style:none;border-block-end-width:medium;border-block-start-color:currentcolor;border-block-start-style:none;border-block-start-width:medium;border-bottom-color:currentcolor;border-bottom-left-radius:0;border-bottom-right-radius:0;border-bottom-style:none;border-bottom-width:medium;border-collapse:separate;border-image-outset:0s;border-image-repeat:stretch;border-image-slice:100%;border-image-source:none;border-image-width:1;border-inline-end-color:currentcolor;border-inline-end-style:none;border-inline-end-width:medium;border-inline-start-color:currentcolor;border-inline-start-style:none;border-inline-start-width:medium;border-left-color:currentcolor;border-left-style:none;border-left-width:medium;border-right-color:currentcolor;border-right-style:none;border-right-width:medium;border-spacing:0;border-top-color:currentcolor;border-top-left-radius:0;border-top-right-radius:0;border-top-style:none;border-top-width:medium;bottom:auto;box-decoration-break:slice;box-shadow:none;box-sizing:border-box;break-after:auto;break-before:auto;break-inside:auto;caption-side:top;caret-color:auto;clear:none;clip:auto;clip-path:none;color:initial;column-count:auto;column-fill:balance;column-gap:normal;column-rule-color:currentcolor;column-rule-style:none;column-rule-width:medium;column-span:none;column-width:auto;content:normal;counter-increment:none;counter-reset:none;cursor:auto;display:inline;empty-cells:show;filter:none;flex-basis:auto;flex-direction:row;flex-grow:0;flex-shrink:1;flex-wrap:nowrap;float:none;font-family:initial;font-feature-settings:normal;font-kerning:auto;font-language-override:normal;font-size:medium;font-size-adjust:none;font-stretch:normal;font-style:normal;font-synthesis:weight style;font-variant:normal;font-variant-alternates:normal;font-variant-caps:normal;font-variant-east-asian:normal;font-variant-ligatures:normal;font-variant-numeric:normal;font-variant-position:normal;font-weight:400;grid-auto-columns:auto;grid-auto-flow:row;grid-auto-rows:auto;grid-column-end:auto;grid-column-gap:0;grid-column-start:auto;grid-row-end:auto;grid-row-gap:0;grid-row-start:auto;grid-template-areas:none;grid-template-columns:none;grid-template-rows:none;height:auto;hyphens:manual;image-orientation:0deg;image-rendering:auto;image-resolution:1dppx;ime-mode:auto;inline-size:auto;isolation:auto;justify-content:flexStart;left:auto;letter-spacing:normal;line-break:auto;line-height:normal;list-style-image:none;list-style-position:outside;list-style-type:disc;margin-block-end:0;margin-block-start:0;margin-bottom:0;margin-inline-end:0;margin-inline-start:0;margin-left:0;margin-right:0;margin-top:0;mask-clip:borderBox;mask-composite:add;mask-image:none;mask-mode:matchSource;mask-origin:borderBox;mask-position:0% 0%;mask-repeat:repeat;mask-size:auto;mask-type:luminance;max-height:none;max-width:none;min-block-size:0;min-height:0;min-inline-size:0;min-width:0;mix-blend-mode:normal;object-fit:fill;object-position:50% 50%;offset-block-end:auto;offset-block-start:auto;offset-inline-end:auto;offset-inline-start:auto;opacity:1;order:0;orphans:2;outline-color:initial;outline-offset:0;outline-style:none;outline-width:medium;overflow:visible;overflow-wrap:normal;overflow-x:visible;overflow-y:visible;padding-block-end:0;padding-block-start:0;padding-bottom:0;padding-inline-end:0;padding-inline-start:0;padding-left:0;padding-right:0;padding-top:0;page-break-after:auto;page-break-before:auto;page-break-inside:auto;perspective:none;perspective-origin:50% 50%;pointer-events:auto;position:static;quotes:initial;resize:none;right:auto;ruby-align:spaceAround;ruby-merge:separate;ruby-position:over;scroll-behavior:auto;scroll-snap-coordinate:none;scroll-snap-destination:0 0;scroll-snap-points-x:none;scroll-snap-points-y:none;scroll-snap-type:none;shape-image-threshold:0;shape-margin:0;shape-outside:none;tab-size:8;table-layout:auto;text-align:initial;text-align-last:auto;text-combine-upright:none;text-decoration-color:currentcolor;text-decoration-line:none;text-decoration-style:solid;text-emphasis-color:currentcolor;text-emphasis-position:over right;text-emphasis-style:none;text-indent:0;text-justify:auto;text-orientation:mixed;text-overflow:clip;text-rendering:auto;text-shadow:none;text-transform:none;text-underline-position:auto;top:auto;touch-action:auto;transform:none;transform-box:borderBox;transform-origin:50% 50% 0;transform-style:flat;transition-delay:0s;transition-duration:0s;transition-property:all;transition-timing-function:ease;vertical-align:baseline;visibility:visible;white-space:normal;widows:2;width:auto;will-change:auto;word-break:normal;word-spacing:normal;word-wrap:normal;writing-mode:horizontalTb;z-index:auto;-webkit-appearance:none;-moz-appearance:none;-ms-appearance:none;appearance:none;margin:0}.LiveAreaSection-193358632{width:100%}.LiveAreaSection-193358632 .login-option-buybox{display:block;width:100%;font-size:17px;line-height:30px;color:#222;padding-top:30px;font-family:Harding,Palatino,serif}.LiveAreaSection-193358632 .additional-access-options{display:block;font-weight:700;font-size:17px;line-height:30px;color:#222;font-family:Harding,Palatino,serif}.LiveAreaSection-193358632 .additional-login >li:not(:first-child)::before{transform:translateY(-50%);content:”;height:1rem;position:absolute;top:50%;left:0;border-left:2px solid #999}.LiveAreaSection-193358632 .additional-login >li:not(:first-child){padding-left:10px}.LiveAreaSection-193358632 .additional-login >li{display:inline-block;position:relative;vertical-align:middle;padding-right:10px}.BuyBoxSection-683559780{display:flex;flex-wrap:wrap;flex:1;flex-direction:row-reverse;margin:-30px -15px 0}.BuyBoxSection-683559780 .box-inner{width:100%;height:100%}.BuyBoxSection-683559780 .readcube-buybox{background-color:#f3f3f3;flex-shrink:1;flex-grow:1;flex-basis:255px;background-clip:content-box;padding:0 15px;margin-top:30px}.BuyBoxSection-683559780 .subscribe-buybox{background-color:#f3f3f3;flex-shrink:1;flex-grow:4;flex-basis:300px;background-clip:content-box;padding:0 15px;margin-top:30px}.BuyBoxSection-683559780 .title-readcube{display:block;margin:0;margin-right:20%;margin-left:20%;font-size:24px;line-height:32px;color:#222;padding-top:30px;text-align:center;font-family:Harding,Palatino,serif}.BuyBoxSection-683559780 .title-buybox{display:block;margin:0;margin-right:29%;margin-left:29%;font-size:24px;line-height:32px;color:#222;padding-top:30px;text-align:center;font-family:Harding,Palatino,serif}.BuyBoxSection-683559780 .title-asia-buybox{display:block;margin:0;margin-right:5%;margin-left:5%;font-size:24px;line-height:32px;color:#222;padding-top:30px;text-align:center;font-family:Harding,Palatino,serif}.BuyBoxSection-683559780 .asia-link{color:#069;cursor:pointer;text-decoration:none;font-size:1.05em;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:1.05em6}.BuyBoxSection-683559780 .access-readcube{display:block;margin:0;margin-right:10%;margin-left:10%;font-size:14px;color:#222;padding-top:10px;text-align:center;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:20px}.BuyBoxSection-683559780 .access-asia-buybox{display:block;margin:0;margin-right:5%;margin-left:5%;font-size:14px;color:#222;padding-top:10px;text-align:center;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:20px}.BuyBoxSection-683559780 .access-buybox{display:block;margin:0;margin-right:30%;margin-left:30%;font-size:14px;color:#222;opacity:.8px;padding-top:10px;text-align:center;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:20px}.BuyBoxSection-683559780 .price-buybox{display:block;font-size:30px;color:#222;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;padding-top:30px;text-align:center}.BuyBoxSection-683559780 .price-from{font-size:14px;padding-right:10px;color:#222;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:20px}.BuyBoxSection-683559780 .issue-buybox{display:block;font-size:13px;text-align:center;color:#222;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:19px}.BuyBoxSection-683559780 .no-price-buybox{display:block;font-size:13px;line-height:18px;text-align:center;padding-right:10%;padding-left:10%;padding-bottom:20px;padding-top:30px;color:#222;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif}.BuyBoxSection-683559780 .vat-buybox{display:block;margin-top:5px;margin-right:20%;margin-left:20%;font-size:11px;color:#222;padding-top:10px;padding-bottom:15px;text-align:center;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:17px}.BuyBoxSection-683559780 .button-container{display:block;padding-right:20px;padding-left:20px}.BuyBoxSection-683559780 .button-container >a:hover,.Button-505204839:hover{text-decoration:none}.BuyBoxSection-683559780 .readcube-button{background:#fff;margin-top:30px}.BuyBoxSection-683559780 .button-asia{background:#069;border:1px solid #069;border-radius:0;cursor:pointer;display:block;padding:9px;outline:0;text-align:center;text-decoration:none;min-width:80px;margin-top:75px}.BuyBoxSection-683559780 .button-label-asia,.ButtonLabel-3869432492{display:block;color:#fff;font-size:17px;line-height:20px;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;text-align:center;text-decoration:none;cursor:pointer}.Button-505204839{background:#069;border:1px solid #069;border-radius:0;cursor:pointer;display:block;padding:9px;outline:0;text-align:center;text-decoration:none;min-width:80px;margin-top:10px}.Button-505204839 .readcube-label{color:#069}
    /* style specs end */Subscribe to JournalGet full journal access for 1 year$199.00only $3.90 per issueSubscribeAll prices are NET prices. VAT will be added later in the checkout.Tax calculation will be finalised during checkout.

    Additional access options:

    Log in

    Learn about institutional subscriptions

    doi: https://doi.org/10.1038/d41586-021-01117-5

    References1.van Groenigen, K. J., Qi, X., Osenberg, C. W., Luo, Y. & Hungate, B. A. Science 344, 508–509 (2014PubMedArticle
    Google Scholar2.Jastrow, J. D. et al. Glob. Change Biol. 11, 2057–2064 (2005).Article
    Google Scholar3.Parton, W. J., Schimel, D. S., Cole, C. V. & Ojima, D. S. Soil Sci. Soc. Am. J. 51, 1173–1179 (1987).Article
    Google Scholar4.Todd-Brown, K. E. O. et al. Biogeoscience 11, 2341–2356 (2014).Article
    Google Scholar5.Terrer, C., Vicca, S., Hungate, B. A., Phillips, R. P. & Prentice, I. C. Science 353, 72–74 (2016).PubMedArticle
    Google ScholarDownload references

    Competing Interests
    The author declares no competing interests.

    Latest on:

    Climate sciences

    Overwintering fires in boreal forests
    Article 19 MAY 21

    Contrails: tweaking flight altitude could be a climate win
    Correspondence 18 MAY 21

    Nature-based solutions can help cool the planet — if we act now
    Comment 12 MAY 21

    Climate change

    Overwintering fires in boreal forests
    Article 19 MAY 21

    Contrails: tweaking flight altitude could be a climate win
    Correspondence 18 MAY 21

    Nature-based solutions can help cool the planet — if we act now
    Comment 12 MAY 21

    Ecology

    Our radical changes to Earth’s greenery began long ago — with farms, not factories
    Research Highlight 20 MAY 21

    Controversial forestry experiment will be largest-ever in United States
    News 20 MAY 21

    Overwintering fires in boreal forests
    Article 19 MAY 21

    Jobs from Nature Careers

    All jobs

    Post-Doc – Numerical and microfabrication development of 4D metamaterials for mechanical, acoustic and photonics applications
    Université Bourgogne Franche-Comté (UBFC)
    BESANCON, France

    JOB POST

    Postdoctoral Position – Ecological Modeler
    The University of British Columbia (UBC)
    Vancouver, Canada

    JOB POST

    Postdoctoral Fellow | Zandstra Stem Cell Bioengineering Lab
    The University of British Columbia (UBC)
    Vancouver, Canada

    JOB POST

    Masterthesis / internship (m/f/x)
    Helmholtz Centre for Environmental Research (UFZ)
    Leipzig, Germany

    JOB POST

    Nature Briefing
    An essential round-up of science news, opinion and analysis, delivered to your inbox every weekday.

    Email address

    Yes! Sign me up to receive the daily Nature Briefing email. I agree my information will be processed in accordance with the Nature and Springer Nature Limited Privacy Policy.

    Sign up

    Access through your institution

    Change institution

    Buy or subscribe

    Related Articles

    Effects of rising CO2 levels on carbon sequestration are coordinated above and below ground

    Subjects

    Climate sciences

    Climate change

    Ecology

    Sign up to Nature Briefing
    An essential round-up of science news, opinion and analysis, delivered to your inbox every weekday.

    Email address

    Yes! Sign me up to receive the daily Nature Briefing email. I agree my information will be processed in accordance with the Nature and Springer Nature Limited Privacy Policy.

    Sign up More