More stories

  • in

    Diversity and distribution of viruses inhabiting the deepest ocean on Earth

    1.Suttle CA. Marine viruses—major players in the global ecosystem. Nat Rev Microbiol. 2007;5:801–12.CAS 
    PubMed 
    Article 

    Google Scholar 
    2.Breitbart M, Bonnain C, Malki K, Sawaya NA. Phage puppet masters of the marine microbial realm. Nat Microbiol. 2018;3:754–66.CAS 
    PubMed 
    Article 

    Google Scholar 
    3.Zimmerman AE, Howard-Varona C, Needham DM, John SG, Worden AZ, Sullivan MB, et al. Metabolic and biogeochemical consequences of viral infection in aquatic ecosystems. Nat Rev Microbiol. 2020;18:21–34.CAS 
    PubMed 
    Article 

    Google Scholar 
    4.Roux S, Brum JR, Dutilh BE, Sunagawa S, Duhaime MB, Loy A, et al. Ecogenomics and potential biogeochemical impacts of globally abundant ocean viruses. Nature 2016;537:689–93.CAS 
    PubMed 
    Article 

    Google Scholar 
    5.Gregory AC, Zayed AA, Conceição-Neto N, Temperton B, Bolduc B, Alberti A, et al. Marine DNA viral macro- and microdiversity from pole to pole. Cell 2019;177:1109–23.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    6.Coutinho FH, Silveira CB, Gregoracci GB, Thompson CC, Edwards RA, Brussaard CPD, et al. Marine viruses discovered via metagenomics shed light on viral strategies throughout the oceans. Nat Commun. 2017;8:15955.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    7.Brum JR, Ignacio-Espinoza JC, Roux S, Doulcier G, Acinas SG, Alberti A, et al. Patterns and ecological drivers of ocean viral communities. Science 2015;348:1261498.PubMed 
    Article 
    CAS 

    Google Scholar 
    8.Danovaro R, Dell’Anno A, Corinaldesi C, Magagnini M, Noble R, Tamburini C, et al. Major viral impact on the functioning of benthic deep-sea ecosystems. Nature 2008;454:1084–7.CAS 
    PubMed 
    Article 

    Google Scholar 
    9.Danovaro R, Dell’Anno A, Corinaldesi C, EugenioRastelli, Cavicchioli R, Krupovic M, et al. Virus-mediated archaeal hecatomb in the deep seafloor. Sci Adv 2016;2:e1600492.10.Anantharaman K, Duhaime MB, Breier JA, Wendt KA, Toner BM, Dick GJ. Sulfur oxidation genes in diverse deep-sea viruses. Science 2014;344:757–60.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    11.He T, Li H, Zhang X. Deep-sea hydrothermal vent viruses compensate for microbial metabolism in virus–host interactions. mBio 2017;8:e00893–17.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    12.Hurwitz BL, Hallam SJ, Sullivan MB. Metabolic reprogramming by viruses in the sunlit and dark ocean. Genome Biol. 2013;14:R123.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    13.Hurwitz BL, Brum JR, Sullivan MB. Depth-stratified functional and taxonomic niche specialization in the ‘core’ and ‘flexible’ pacific ocean virome. ISME J. 2015;9:472–84.CAS 
    PubMed 
    Article 

    Google Scholar 
    14.Dell’Anno A, Corinaldesi C, Danovaro R. Virus decomposition provides an important contribution to benthic deep-sea ecosystem functioning. Proc Natl Acad Sci USA. 2015;112:E2014–E9.PubMed 
    Article 
    CAS 

    Google Scholar 
    15.Lara E, Vaqué D, Sà EL, Boras JA, Gomes A, Borrull E, et al. Unveiling the role and life strategies of viruses from the surface to the dark ocean. Sci Adv. 2017;3:e1602565.16.Mizuno CM, Ghai R, Saghaï A, López-García P, Rodriguez-Valera F. Genomes of abundant and widespread viruses from the deep ocean. mBio. 2016;7:e00805–16.17.Tangherlini M, Dell’Anno A, Allen LZ, Riccioni G, Corinaldesi C. Assessing viral taxonomic composition in benthic marine ecosystems: reliability and efficiency of different bioinformatic tools for viral metagenomic analyses. Sci Rep. 2016;6:28428.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    18.Yang Y, Yokokawa T, Motegi C, Nagata T. Large-scale distribution of viruses in deep waters of the Pacific and Southern Oceans. Aquat Micro Ecol. 2014;71:193–202.Article 

    Google Scholar 
    19.Tang K, Lin D, Zheng Q, Liu K, Yang Y, Han Y, et al. Genomic, proteomic and bioinformatic analysis of two temperate phages in Roseobacter clade bacteria isolated from the deep-sea water. BMC Genomics. 2017;18:485.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    20.Corte DD, Sintes E, Yokokawa T, Reinthaler T, Herndl GJ. Links between viruses and prokaryotes throughout the water column along a North Atlantic latitudinal transect. ISME J. 2012;6:1566–77.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    21.Corte DD, Sintes E, Winter C, Yokokawa T, Reinthaler T, Herndl GJ. Links between viral and prokaryotic communities throughout the water column in the (sub)tropical Atlantic Ocean. ISME J. 2010;4:1431–42.PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    22.Blankenship-Williams LE, Levin LA. Living deep: a synopsis of hadal trench ecology. Mar Technol Soc J. 2009;43:137–43.Article 

    Google Scholar 
    23.Jamieson AJ, Fujii T, Mayor DJ, Solan M, Priede IG. Hadal trenches: the ecology of the deepest places on Earth. Trends Ecol Evol. 2010;25:190–7.PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    24.Jamieson AJ. Ecology of deep oceans: hadal trenches. eLS. Chichester: Wiley; 2001.25.Glud RN, Wenzhöfer F, Middelboe M, Oguri K, Turnewitsch R, Canfield DE, et al. High rates of microbial carbon turnover in sediments in the deepest oceanic trench on Earth. Nat Geosci. 2013;6:284–8.CAS 
    Article 

    Google Scholar 
    26.Nunoura T, Takaki Y, Hirai M, Shimamura S, Makabe A, Koide O, et al. Hadal biosphere: insight into the microbial ecosystem in the deepest ocean on Earth. Proc Natl Acad Sci USA. 2015;112:E1230–E6.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    27.Zhong H, Lehtovirta-Morley L, Liu J, Zheng Y, Lin H, Song D, et al. Novel insights into the Thaumarchaeota in the deepest oceans: their metabolism and potential adaptation mechanisms. Microbiome 2020;8:78.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    28.Liu J, Zheng Y, Lin H, Wang X, Li M, Liu Y, et al. Proliferation of hydrocarbon-degrading microbes at the bottom of the Mariana Trench. Microbiome 2019;7:47.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    29.Tamegai H, Li L, Nasui N, Kato C. A denitrifying bacterium from the deep sea at 11000-m depth. Extremophiles 1997;1:207–11.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    30.Kato C, Li L, Nogi Y, Nakamura Y, Tamaoka J, Horikoshi K. Extremely barophilic bacteria isolated from the Mariana Trench, challenger deep, at a depth of 11,000 meters. Appl Environ Microbiol. 1998;64:1510–3.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    31.Nogi Y, Kato C. Taxonomic studies of extremely barophilic bacteria isolated from the Mariana Trench and description of Moritella yayanosii sp. nov., a new barophilic bacterial isolate. Extremophiles 1999;3:71–7.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    32.Nogi Y, Hosoya S, Kato C, Horikoshi K. Colwellia piezophila sp. nov., a novel piezophilic species from deep-sea sediments of the Japan Trench. Int J Syst Evol Microbiol. 2004;54:1627–31.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    33.Nogi Y, Hosoya S, Kato C, Horikoshi K. Psychromonas hadalis sp. nov., a novel piezophilic bacterium isolated from the bottom of the Japan Trench. Int J Syst Evol Microbiol. 2007;57:1360–4.CAS 
    PubMed 
    Article 

    Google Scholar 
    34.Kusube M, Kyaw TS, Tanikawa K, Chastain RA, Hardy KM, Cameron J, et al. Colwellia marinimaniae sp. nov., a hyperpiezophilic species isolated from an amphipod within the Challenger Deep, Mariana Trench. Int J Syst Evol Microbiol. 2017;67:824–31.CAS 
    PubMed 
    Article 

    Google Scholar 
    35.Wei Y, Fang J, Xu Y, Zhao W, Cao J. Corynebacterium hadale sp. nov. isolated from hadopelagic water of the New Britain Trench. Int J Syst Evol Microbiol. 2018;68:1474–8.CAS 
    PubMed 
    Article 

    Google Scholar 
    36.Ahmad W, Zheng Y, Li Y, Sun W, Hu Y, He X, et al. Marinobacter salinexigens sp. nov., a marine bacterium isolated from hadal seawater of the Mariana Trench. Int J Syst Evol Microbiol. 2020;70:3794–800.37.Zhao X, Liu J, Zhou S, Zheng Y, Wu Y, Kogure K, et al. Diversity of culturable heterotrophic bacteria from the Mariana Trench and their ability to degrade macromolecules. Mar Life Sci Technol. 2020;2:181–93.Article 

    Google Scholar 
    38.Yoshida M, Yoshida-Takashima Y, Nunoura T, Takai K. Identification and genomic analysis of temperate Pseudomonas bacteriophage PstS-1 from the Japan trench at a depth of 7000 m. Res Microbiol. 2015;166:668–76.CAS 
    PubMed 
    Article 

    Google Scholar 
    39.Yoshida M, Takaki Y, Eitoku M, Nunoura T, Takai K. Metagenomic analysis of viral communities in (Hado)pelagic sediments. PLoS ONE. 2013;8:e57271.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    40.Manea E, Dell’Anno A, Rastelli E, Tangherlini M, Nunoura T, Nomaki H, et al. Viral infections boost prokaryotic biomass production and organic C cycling in Hadal Trench sediments. Front Microbiol. 2019;10:1952.41.Zhang X, Xu W, Liu Y, Cai M, Luo Z, Li M. Metagenomics reveals microbial diversity and metabolic potentials of seawater and surface sediment from a Hadal biosphere at the Yap Trench. Front Microbiol. 2018;9:2402.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    42.Peoples LM, Grammatopoulou E, Pombrol M, Xu X, Osuntokun O, Blanton J, et al. Microbial community diversity within sediments from two geographically separated Hadal Trenches. Front Microbiol. 2019;10:347.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    43.Peoples LM, Donaldson S, Osuntokun O, Xia Q, Nelson A, Blanton J, et al. Vertically distinct microbial communities in the Mariana and Kermadec trenches. PLoS ONE. 2018;13:e0195102.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    44.NA J, JN F. Sickle: a sliding-window, adaptive, quality-based trimming tool for FastQ files (Version 1.33). https://github.com/najoshi/sickle2011.45.Peng Y, Leung HCM, Yiu SM, Chin FYL. IDBA-UD: a de novo assembler for single-cell and metagenomic sequencing data with highly uneven depth. Bioinformatics 2012;28:1420–8.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    46.Roux S, Enault F, Hurwitz BL, Sullivan MB. VirSorter: mining viral signal from microbial genomic data. PeerJ 2015;3:e985.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    47.Ren J, Ahlgren NA, Lu YY, Fuhrman JA, Sun F. VirFinder: a novel k-mer based tool for identifying viral sequences from assembled metagenomic data. Microbiome 2017;5:69.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    48.Ahlgren NA, Ren J, Lu YY, Fuhrman JA, Sun F. Alignment-free d2* oligonucleotide frequency dissimilarity measure improves prediction of hosts from metagenomically-derived viral sequences. Nucleic Acids Res. 2017;45:39–53.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    49.Fu L, Niu B, Zhu Z, Wu S, Li W. CD-HIT: accelerated for clustering the next-generation sequencing data. Bioinformatics 2012;28:3150–2.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    50.Hyatt D, Chen G-L, LoCascio PF, Land ML, Larimer FW, Hauser LJ. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinform. 2010;11:119.Article 
    CAS 

    Google Scholar 
    51.Paez-Espino D, Pavlopoulos GA, Ivanova NN, Kyrpides NC. Nontargeted virus sequence discovery pipeline and virus clustering for metagenomic data. Nat Protoc. 2017;12:1673–82.CAS 
    PubMed 
    Article 

    Google Scholar 
    52.Paez-Espino D, Eloe-Fadrosh EA, Pavlopoulos GA, Thomas AD, Huntemann M, Mikhailova N, et al. Uncovering Earth’s virome. Nature 2016;536:425–30.CAS 
    PubMed 
    Article 

    Google Scholar 
    53.Song W, Sun H-X, Zhang C, Cheng L, Peng Y, Deng Z, et al. Prophage Hunter: an integrative hunting tool for active prophages. Nucleic Acids Res. 2019;47:W74–W80.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    54.O’Leary NA, Wright MW, Brister JR, Ciufo S, Haddad D, McVeigh R, et al. Reference sequence (RefSeq) database at NCBI: current status, taxonomic expansion, and functional annotation. Nucleic Acids Res. 2016;44:D733–D45.PubMed 
    Article 
    CAS 

    Google Scholar 
    55.Buchfink B, Xie C, Huson DH. Fast and sensitive protein alignment using DIAMOND. Nat Methods. 2015;12:59–60.CAS 
    Article 

    Google Scholar 
    56.Huerta-Cepas J, Szklarczyk D, Heller D, Hernández-Plaza A, Forslund SK, Cook H, et al. eggNOG 5.0: a hierarchical, functionally and phylogenetically annotated orthology resource based on 5090 organisms and 2502 viruses. Nucleic Acids Res. 2019;47:D309–D14.CAS 
    PubMed 
    Article 

    Google Scholar 
    57.Huerta-Cepas J, Forslund K, Coelho LP, Szklarczyk D, Jensen LJ, Mering CV, et al. Fast genome-wide functional annotation through orthology assignment by eggNOG-mapper. Mol Biol Evol. 2017;34:2115–22.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    58.Grazziotin AL, Koonin EV, Kristensen DM. Prokaryotic Virus Orthologous Groups (pVOGs): a resource for comparative genomics and protein family annotation. Nucleic Acids Res. 2017;45:D491–D8.CAS 
    PubMed 
    Article 

    Google Scholar 
    59.Potter SC, Luciani A, Eddy SR, Park Y, Lopez R, Finn RD. HMMER web server: 2018 update. Nucleic Acids Res. 2018;46:W200–W4.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    60.Kanehisa M, Goto S, Sato Y, Kawashima M, Furumichi M, Tanabe M. Data, information, knowledge and principle: back to metabolism in KEGG. Nucleic Acids Res. 2014;42:D199–D205.CAS 
    PubMed 
    Article 

    Google Scholar 
    61.Kanehisa M, Sato Y, Morishima K. BlastKOALA and GhostKOALA: KEGG tools for functional characterization of genome and metagenome sequences. J Mol Biol. 2016;428:726–31.CAS 
    PubMed 
    Article 

    Google Scholar 
    62.El-Gebali S, Mistry J, Bateman A, Eddy SR, Ae L, Potter SC, et al. The Pfam protein families database in 2019. Nucleic Acids Res. 2019;47:D427–D32.CAS 
    PubMed 
    Article 

    Google Scholar 
    63.Roux S, Adriaenssens EM, Dutilh BE, Koonin EV, Kropinski AM, Krupovic M, et al. Minimum information about an uncultivated virus genome (MIUViG). Nat Biotechnol. 2019;37:29–37.CAS 
    PubMed 
    Article 

    Google Scholar 
    64.Paez-Espino D, Roux S, Chen I-MA, Palaniappan K, Ratner A, Chu K, et al. IMG/VR v.2.0: an integrated data management and analysis system for cultivated and environmental viral genomes. Nucleic Acids Res. 2019;47:D678–D86.CAS 
    PubMed 
    Article 

    Google Scholar 
    65.Pritchard L, Glover RH, Humphris S, Elphinstone JG, Tothc IK. Genomics and taxonomy in diagnostics for food security: soft-rotting enterobacterial plant pathogens. Anal Methods. 2016;8:12–24.Article 

    Google Scholar 
    66.Crits-Christoph A, Gelsinger DR, Ma B, Wierzchos J, Ravel J, Davila A, et al. Functional interactions of archaea, bacteria and viruses in a hypersaline endolithic community. Environ Microbiol. 2016;18:2064–77.CAS 
    PubMed 
    Article 

    Google Scholar 
    67.Aylward FO, Moniruzzaman M. ViralRecall-a flexible command-line tool for the detection of giant virus signatures in Omic Data. Viruses 2021;13:150.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    68.Jang HB, Bolduc B, Zablocki O, Kuhn JH, Roux S, Adriaenssens EM, et al. Taxonomic assignment of uncultivated prokaryotic virus genomes is enabled by gene-sharing networks. Nat Biotechnol. 2019;37:632–9.Article 
    CAS 

    Google Scholar 
    69.Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, et al. Cytoscape A software environment for integrated models of biomolecular interaction networks. Genome Res. 2003;13:2498–504.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    70.Hurwitz BL, Sullivan MB. The Pacific Ocean virome (POV): a marine viral metagenomic dataset and associated protein clusters for quantitative viral ecology. PLoS ONE. 2013;8:e57355.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    71.Corte DD, Martínez JM, Cretoiu MS, Takaki Y, Nunoura T, Sintes E, et al. Viral communities in the global deep ocean conveyor belt assessed by targeted viromics. Front Microbiol. 2019;10:1801.72.Ghai R, Mehrshad M, Mizuno CM, Rodriguez-Valera F. Metagenomic recovery of phage genomes of uncultured freshwater actinobacteria. ISME J. 2017;11:304–8.CAS 
    PubMed 
    Article 

    Google Scholar 
    73.Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat Methods. 2012;9:357–9.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    74.Quinlan AR, Hall IM. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 2010;26:841–2.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    75.Emerson JB, Roux S, Brum JR, Bolduc B, Woodcroft BJ, Jang HB, et al. Host-linked soil viral ecology along a permafrost thaw gradient. Nat Microbiol. 2018;3:870–80.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    76.Dixon P. VEGAN, a package of R functions for community ecology. J Veg Sci. 2003;14:927–30.Article 

    Google Scholar 
    77.Getz EW, Tithi SS, Zhang L, Aylward FO. Parallel evolution of genome streamlining and cellular bioenergetics across the marine radiation of a bacterial phylum. mBio 2018;9:e01089–18.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    78.Karst SM, Kirkegaard RH, Albertsen M. mmgenome: a toolbox for reproducible genome extraction from metagenomes. Preprint at bioRxiv. 2016.79.Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res. 2015;25:1043–55.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    80.Lowe TM, Eddy SR. tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res. 1997;25:955–64.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    81.Lin BY, Chan PP, Lowe TM. tRNAviz: explore and visualize tRNA sequence features. Nucleic Acids Res. 2019;47:W542–W7.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    82.Bland C, Ramsey TL, Sabree F, Lowe M, Brown K, Kyrpides NC, et al. CRISPR recognition tool (CRT): a tool for automatic detection of clustered regularly interspaced palindromic repeats. BMC Bioinform. 2007;8:209.Article 
    CAS 

    Google Scholar 
    83.Edwards RA, McNair K, Faust K, Raes J, Dutilh BE. Computational approaches to predict bacteriophage-host relationships. FEMS Microbiol Rev. 2016;40:258–72.CAS 
    PubMed 
    Article 

    Google Scholar 
    84.Chaumeil P-A, Mussig AJ, Hugenholtz P, Parks DH. GTDB-Tk: a toolkit to classify genomes with the Genome Taxonomy Database. Bioinformatics. 2020;36:1925–7.CAS 

    Google Scholar 
    85.Price MN, Dehal PS, Arkin AP. FastTree 2—approximately maximum-likelihood treesfor large alignments. PLoS ONE. 2010;5:e9490.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    86.Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol. 2018;35:1547–9.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    87.Malki K, Kula A, Bruder K, Sible E, Hatzopoulos T, Steidel S, et al. Bacteriophages isolated from Lake Michigan demonstrate broad host-range across several bacterial phyla. Virol J. 2015;12:164.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    88.Touchon M, Bernheim A, Rocha EP. Genetic and life-history traits associated with the distribution of prophages in bacteria. ISME J. 2016;10:2744–54.89.Howard-Varona C, Hargreaves KR, Abedon ST, Sullivan MB. Lysogeny in nature: mechanisms, impact and ecology of temperate phages. ISME J 2017;11:1511–20.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    90.Hulo C, Castro ED, Masson P, Bougueleret L, Bairoch A, Xenarios I, et al. ViralZone: a knowledge resource to understand virus diversity. Nucleic Acids Res. 2011;39:D576–82.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    91.Hurwitz BL, U’Ren JM. Viral metabolic reprogramming in marine ecosystems. Curr Opin Microbiol. 2016;31:161–8.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    92.Sievers F, Higgins DG. Clustal Omega for making accurate alignments of many protein sequences. Protein Sci. 2018;27:135–45.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    93.Takahashi S, Furukawara M, Omae K, Tadokoro N, Saito Y, Abe K, et al. A highly stable D-amino acid oxidase of the thermophilic bacterium Rubrobacter xylanophilus. Appl Environ Microbiol. 2014;80:7219–29.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    94.Brister JR, Ako-adjei D, Bao Y, Blinkova O. NCBI viral genomes resource. Nucleic Acids Res. 2015;43:D571–D7.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    95.Al-Shayeb B, Sachdeva R, Chen L-X, Ward F, Munk P, Devoto A, et al. Clades of huge phages from across Earth’s ecosystems. Nature 2020;578:425–31.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    96.Ahlgren NA, Fuchsman CA, Rocap G, Fuhrman JA. Discovery of several novel, widespread, and ecologically distinct marine Thaumarchaeota viruses that encode amoC nitrification genes. ISME J 2019;13:618–31.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    97.Kim J-G, Kim S-J, Cvirkaite-Krupovic V, Yu W-J, Gwak J-H, López-Pérez M, et al. Spindle-shaped viruses infect marine ammonia-oxidizing thaumarchaea. Proc Natl Acad Sci USA. 2019;116:15645–50.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    98.Hiraoka S, Hirai M, Matsui Y, Makabe A, Minegishi H, Tsuda M, et al. Microbial community and geochemical analyses of trans-trench sediments for understanding the roles of hadal environments. ISME J. 2020;14:740–56.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    99.Kioka A, Schwestermann T, Moernaut J, Ikehara K, Kanamatsu T, McHugh CM, et al. Megathrust earthquake drives drastic organic carbon supply to the hadal trench. Sci Rep. 2019;9:1553.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    100.Mestrea M, Ruiz-González C, Logares R, Duarte CM, Gasol JM, Sala MM. Sinking particles promote vertical connectivity in the ocean microbiome. Proc Natl Acad Sci USA. 2018;115:E6799–E807.Article 
    CAS 

    Google Scholar 
    101.Boeuf D, Edwards BR, Eppley JM, Hu SK, Poff KE, Romano AE, et al. Biological composition and microbial dynamics of sinking particulate organic matter at abyssal ocean. Proc Natl Acad Sci USA. 2019;116:11824–32.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    102.Tamsitt V, Drake HF, Morrison AK, Talley LD, Dufour CO, Gray AR, et al. Spiraling pathways of global deep waters to the surface of the Southern Ocean. Nat Commun. 2017;8:172.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    103.Fukamachi Y, Rintoul SR, Church JA, Aoki S, Sokolov S, Rosenberg MA, et al. Strong export of Antarctic bottom water east of the Kerguelen plateau. Nat Geosci. 2010;3:327–31.CAS 
    Article 

    Google Scholar 
    104.Garabato ACN, Frajka-Williams EE, Spingys CP, Legg S, Polzin KL, Forryan A, et al. Rapid mixing and exchange of deep-ocean waters in an abyssal boundary current. Proc Natl Acad Sci USA. 2019;116:13233–8.Article 
    CAS 

    Google Scholar 
    105.Stewart HA, Jamieson AJ. Habitat heterogeneity of hadal trenches: considerations and implications for future studies. Prog Oceanogr. 2018;161:47–65.Article 

    Google Scholar 
    106.Mende DR, Bryant JA, Aylward FO, Eppley JM, Nielsen T, Karl DM, et al. Environmental drivers of a microbial genomic transition zone in the ocean’s interior. Nat Microbiol. 2017;2:1367–73.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    107.Giovannoni SJ, Thrash JC, Temperton B. Implications of streamlining theory for microbial ecology. ISME J. 2014;8:1553–65.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    108.Xu Y, Ge H, Fang J. Biogeochemistry of hadal trenches: recent developments and future perspectives. Deep Sea Res Part II. 2018;155:19–26.CAS 
    Article 

    Google Scholar 
    109.Sharon I, Alperovitch A, Rohwer F, Haynes M, Glaser F, Atamna-Ismaeel N, et al. Photosystem I gene cassettes are present in marine virus genomes. Nature 2009;461:258–62.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    110.Mann NH, Cook A, Millard A, Bailey S, Clokie M. Bacterial photosynthesis genes in a virus. Nature 2003;424:741.CAS 
    PubMed 
    Article 

    Google Scholar 
    111.Takahashi S, Abe K, Kera Y. Bacterial d-amino acid oxidases: recent findings and future perspectives. Bioengineered 2015;6:237–41.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    112.Kaiser K, Benner R. Major bacterial contribution to the ocean reservoir of detrital organic carbon and nitrogen. Limnol Oceanogr. 2008;53:99–112.CAS 
    Article 

    Google Scholar 
    113.Zhang Z, Zheng Q, Jiao N. Microbial D-amino acids and marine carbon storage. Sci China Earth Sci. 2016;59:17–24.Article 
    CAS 

    Google Scholar  More

  • in

    Vibratory behaviour produces different vibrations patterns in presence of reproductives in a subterranean termite species

    1.Greenfield, M. D. Signalers and Receivers: Mechanisms and Evolution of Arthropod Communication (Oxford University Press, 2002).
    Google Scholar 
    2.Wiley, R. H. Signal detection and animal communication. In Advances in the Study of Behavior Vol. 36 217–247 (Academic Press, 2006).3.Brumm, H. Animal Communication and Noise Vol. 2 (Springer, 2013).Book 

    Google Scholar 
    4.Leonhardt, S. D., Menzel, F., Nehring, V. & Schmitt, T. Ecology and evolution of communication in social insects. Cell 164, 1277–1287 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    5.Tannure-Nascimento, I. C., Nascimento, F. S. & Zucchi, R. The look of royalty: Visual and odour signals of reproductive status in a paper wasp. Proc. R. Soc. B Biol. Sci. 275, 2555–2561 (2008).Article 

    Google Scholar 
    6.Higham, J. P. & Hebets, E. A. An introduction to multimodal communication. Behav. Ecol. Sociobiol. 67, 1381–1388 (2013).Article 

    Google Scholar 
    7.Hölldobler, B. Multimodal signals in ant communication. J. Comp. Physiol. A Sens. Neural Behav. Physiol. 184, 129–141 (1999).Article 

    Google Scholar 
    8.Partan, S. R. & Marler, P. Issues in the classification of multimodal communication signals. Am. Nat. 166, 231–245 (2005).PubMed 
    Article 

    Google Scholar 
    9.Delattre, O. et al. Chemical and vibratory signals used in alarm communication in the termite Reticulitermes flavipes (Rhinotermitidae). Insectes Soc. 66, 265–272 (2019).Article 

    Google Scholar 
    10.Vander Meer, R. K., Breed, M. D., Winston, M. & Espelie, K. E. Pheromone Communication in Social Insects: Ants, Wasps, Bees, and Termites (CRC Press, 1998).
    Google Scholar 
    11.Hölldobler, B. & Wilson, E. O. The Ants (Springer, 1990).Book 

    Google Scholar 
    12.Cohen, E. & Moussian, B. Extracellular Composite Matrices in Arthropods (Springer, 2016).Book 

    Google Scholar 
    13.Tibbetts, E. A. & Lindsay, R. Visual signals of status and rival assessment in Polistes dominulus paper wasps. Biol. Lett. 4, 237–239 (2008).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    14.Chiu, Y.-K., Mankin, R. W. & Lin, C.-C. Context-dependent stridulatory responses of Leptogenys kitteli (Hymenoptera: Formicidae) to social, prey, and disturbance stimuli. Ann. Entomol. Soc. Am. 104, 1012–1020 (2011).Article 

    Google Scholar 
    15.Schneider, S. S. & Lewis, L. A. The vibration signal, modulatory communication and the organization of labor in honey bees, Apis mellifera. Apidologie 35, 117–131 (2004).Article 

    Google Scholar 
    16.Hrncir, M., Maia-Silva, C., Cabe, S. I. M. & Farina, W. M. The recruiter’s excitement—Features of thoracic vibrations during the honey bee’s waggle dance related to food source profitability. J. Exp. Biol. 214, 4055–4064 (2011).PubMed 
    Article 

    Google Scholar 
    17.Evans, T. A., Inta, R., Lai, J. C. S. & Lenz, M. Foraging vibration signals attract foragers and identify food size in the drywood termite, Cryptotermes secundus. Insectes Soc. 54, 374–382 (2007).Article 

    Google Scholar 
    18.Kweskin, M. P. Jigging in the fungus-growing ant Cyphomyrmex costatus: A response to collembolan garden invaders?. Insectes Soc. 51, 158–162 (2004).Article 

    Google Scholar 
    19.Stuart, A. M. Studies on the communication of alarm in the termite Zootermopsis nevadensis (Hagen), Isoptera. Physiol. Zool. 36, 85–96 (1963).Article 

    Google Scholar 
    20.Howse, P. E. On the significance of certain oscillatory movements of termites. Insectes Soc. 12, 335–345 (1965).Article 

    Google Scholar 
    21.Delattre, O. et al. Complex alarm strategy in the most basal termite species. Behav. Ecol. Sociobiol. 69, 1945–1955 (2015).Article 

    Google Scholar 
    22.Reinhard, J. & Clément, J.-L. Alarm reaction of European reticulitermes termites to soldier head capsule volatiles (Isoptera, Rhinotermitidae). J. Insect Behav. 15, 95–107 (2002).Article 

    Google Scholar 
    23.Whitman, J. G. & Forschler, B. T. Observational notes on short-lived and infrequent behaviors displayed by Reticulitermes flavipes (Isoptera: Rhinotermitidae). Ann. Entomol. Soc. Am. 100, 763–771 (2007).Article 

    Google Scholar 
    24.Hertel, H., Hanspach, A. & Plarre, R. Differences in alarm responses in drywood and subterranean termites (Isoptera: Kalotermitidae and Rhinotermitidae) to physical stimuli. J. Insect Behav. 24, 106–115 (2011).Article 

    Google Scholar 
    25.Rosengaus, R. B., Jordan, C., Lefebvre, M. L. & Traniello, J. F. A. Pathogen alarm behavior in a termite: A new form of communication in social insects. Naturwissenschaften 86, 544–548 (1999).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    26.Sun, Q., Hampton, J. D., Haynes, K. F. & Zhou, X. Cooperative policing behavior regulates reproductive division of labor in a termite. bioRxiv https://doi.org/10.1101/2020.02.04.934315 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    27.Park, Y. I. & Raina, A. K. Light sensitivity in workers and soldiers of the Formosan subterranean termite, Coptotermes formosanus (Isoptera: Rhinotermitidae). Sociobiology 45, 367–376 (2005).
    Google Scholar 
    28.Hager, F. A. & Kirchner, W. H. Vibrational long-distance communication in the termites Macrotermes natalensis and Odontotermes sp. J. Exp. Biol. 216, 3249–3256 (2013).PubMed 
    Article 

    Google Scholar 
    29.Mignini, M. & Lorenzi, M. C. Vibratory signals predict rank and offspring caste ratio in a social insect. Behav. Ecol. Sociobiol. 69, 1739–1748 (2015).Article 

    Google Scholar 
    30.Holman, L., Jørgensen, C. G., Nielsen, J. & d’Ettorre, P. Identification of an ant queen pheromone regulating worker sterility. Proc. Biol. Sci. 277, 3793–3800 (2010).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    31.Sun, Q., Haynes, K. F., Hampton, J. D. & Zhou, X. Sex-specific inhibition and stimulation of worker-reproductive transition in a termite. Naturwissenschaften 104, 79 (2017).PubMed 
    Article 
    CAS 

    Google Scholar 
    32.Manfredini, F. et al. Molecular and social regulation of worker division of labour in fire ants. Mol. Ecol. 23, 660–672 (2014).PubMed 
    Article 

    Google Scholar 
    33.Lockett, G. A., Almond, E. J., Huggins, T. J., Parker, J. D. & Bourke, A. F. G. Gene expression differences in relation to age and social environment in queen and worker bumble bees. Exp. Gerontol. 77, 52–61 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    34.Sun, Q., Hampton, J. D., Merchant, A., Haynes, K. F. & Zhou, X. Cooperative policing behaviour regulates reproductive division of labour in a termite. Proc. R. Soc. B Biol. Sci. 287, 20200780 (2020).Article 

    Google Scholar 
    35.Funaro, C. F., Böröczky, K., Vargo, E. L. & Schal, C. Identification of a queen and king recognition pheromone in the subterranean termite Reticulitermes flavipes. Proc. Natl. Acad. Sci. U. S. A. 115, 3888–3893 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    36.Ruhland, F., Moulin, M., Choppin, M., Meunier, J. & Lucas, C. Reproductives and eggs trigger worker vibration in a subterranean termite. Ecol. Evol. 10, 5892–5898 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    37.Sieber, R. & Leuthold, R. H. Behavioural elements and their meaning in incipient laboratory colonies of the fungus-growing Termite Macrotermes michaelseni (Isoptera: Macrotermitinae). Insectes Soc. 28, 371–382 (1981).Article 

    Google Scholar 
    38.Maistrello, L. & Sbrenna, G. Frequency of some behavioural patterns in colonies of Kalotermes flavicollis (Isoptera Kalotermitidae): The importance of social interactions and vibratory movements as mechanisms for social integration. Ethol. Ecol. Evol. 8, 365–375 (1996).Article 

    Google Scholar 
    39.Šobotník, J., Hanus, R. & Roisin, Y. Agonistic Behavior of the termite Prorhinotermes canalifrons (Isoptera: Rhinotermitidae). J. Insect Behav. 21, 521–534 (2008).Article 

    Google Scholar 
    40.Cristaldo, P. F. et al. The nature of alarm communication in Constrictotermes cyphergaster (Blattodea: Termitoidea: Termitidae): The integration of chemical and vibroacoustic signals. Biol. Open 4, 1649–1659 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    41.Yamanaka, Y., Iwata, R. & Kiriyama, S. Cannibalism associated with artificial wounds on the bodies of Reticulitermes speratus workers and soldiers (Isoptera: Rhinotermitidae). Insectes Soc. 66, 107–117 (2019).Article 

    Google Scholar 
    42.Funaro, C. F., Schal, C. & Vargo, E. L. Queen and king recognition in the subterranean termite, Reticulitermes flavipes: Evidence for royal recognition pheromones. PLoS ONE 14, 3888–3893 (2019).Article 
    CAS 

    Google Scholar 
    43.Perdereau, E., Bagnères, A.-G., Dupont, S. & Dedeine, F. High occurrence of colony fusion in a European population of the American termite Reticulitermes flavipes. Insectes Soc. 57, 393–402 (2010).Article 

    Google Scholar 
    44.Brossette, L. et al. Termite’s royal cradle: Does colony foundation success differ between two subterranean species?. Insectes Soc. 64, 515–523 (2017).Article 

    Google Scholar 
    45.Lucas, C. et al. When predator odour makes groups stronger: Effects on behavioural and chemical adaptations in two termite species. Ecol. Entomol. 43, 513–524 (2018).Article 

    Google Scholar 
    46.Miyaguni, Y., Sugio, K. & Tsuji, K. Refinement of methods for sexing instars and caste members in Neotermes koshunensis (Isoptera, Kalotermitidae). Sociobiology 59, 1217–1222 (2012).
    Google Scholar 
    47.Friard, O. & Gamba, M. BORIS: A free, versatile open-source event-logging software for video/audio coding and live observations. Methods Ecol. Evol. 7, 1325–1330 (2016).Article 

    Google Scholar 
    48.Gamboa, G. J., Reeve, H. K. & Holmes, W. G. Conceptual issues and methodology in kin-recognition research: A critical discussion. Ethology 88, 109–127 (2010).Article 

    Google Scholar 
    49.Oberst, S., Nava-Baro, E., Lai, J. C. S. & Evans, T. A. An innovative signal processing method to extract ants’ walking signals. Acoust. Aust. 43, 87–96 (2015).Article 

    Google Scholar 
    50.Oberst, S., Lai, J. C. S. & Evans, T. A. Physical basis of vibrational behaviour: Channel properties, noise and excitation signal extraction. In Biotremology: Studying Vibrational Behavior (ed. Hill, P. S. M.) 53–78 (Springer, Cham, 2019). https://doi.org/10.1007/978-3-030-22293-2_5.
    Google Scholar 
    51.Stanley, D. W. & Nelson, D. R. Insect Lipids: Chemistry, Biochemistry, and Biology (U of Nebraska Press, 1993).
    Google Scholar 
    52.Wyatt, T. D. Pheromones and Animal Behaviour: Communication by Smell and Taste (Cambridge University Press, 2003).Book 

    Google Scholar 
    53.Matsuura, K. et al. Identification of a pheromone regulating caste differentiation in termites. Proc. Natl. Acad. Sci. 107, 12963–12968 (2010).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    54.Nguyen, T. T. & Akino, T. Worker aggression of ant Lasius japonicus enhanced by termite soldier—Specific secretion as an alarm pheromone of Reticulitermes speratus. Entomol. Sci. 15, 422–429 (2012).Article 

    Google Scholar 
    55.Šobotník, J., Jirošová, A. & Hanus, R. Chemical warfare in termites. J. Insect Physiol. 56, 1012–1021 (2010).PubMed 
    Article 
    CAS 

    Google Scholar 
    56.Evans, T. A. et al. Termites assess wood size by using vibration signals. Proc. Natl. Acad. Sci. USA 102, 3732–3737 (2005).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    57.George, E. A. & Brockmann, A. Social modulation of individual differences in dance communication in honey bees. Behav. Ecol. Sociobiol. 73, 41 (2019).Article 

    Google Scholar 
    58.Tautz, J., Roces, F. & Hölldobler, B. Use of a sound-based vibratome by leaf-cutting ants. Science 267, 84–87 (1995).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    59.Hill, P. S. M. How do animals use substrate-borne vibrations as an information source?. Naturwissenschaften 96, 1355–1371 (2009).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    60.Röhrig, A., Kirchner, W. H. & Leuthold, R. H. Vibrational alarm communication in the African fungus-growing termite genus Macrotermes (Isoptera, Termitidae). Insectes Soc. 46, 71–77 (1999).Article 

    Google Scholar 
    61.Hill, P. S. M. Vibrational Communication in Animals (Harvard University Press, 2008).
    Google Scholar 
    62.Cocroft, R. B. & Rodríguez, R. L. The behavioral ecology of insect vibrational communication. Bioscience 55, 323–334 (2005).Article 

    Google Scholar 
    63.Korb, J., Weil, T., Hoffmann, K., Foster, K. R. & Rehli, M. A gene necessary for reproductive suppression in termites. Science 324, 758 (2009).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    64.Penick, C. A., Trobaugh, B., Brent, C. S. & Liebig, J. Head-butting as an early indicator of reproductive disinhibition in the termite Zootermopsis nevadensis. J. Insect Behav. 26, 23–34 (2013).Article 

    Google Scholar 
    65.Ishikawa, Y. & Miura, T. Hidden aggression in termite workers: Plastic defensive behaviour dependent upon social context. Anim. Behav. 83, 737–745 (2012).Article 

    Google Scholar  More

  • in

    Bycatch levies could reconcile trade-offs between blue growth and biodiversity conservation

    1.Golden, C. D. et al. Nutrition: Fall in fish catch threatens human health. Nature 534, 317–320 (2016).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    2.Halpern, B. S. et al. Spatial and temporal changes in cumulative human impacts on the world’s ocean. Nat. Commun. 6, 7615 (2015).3.The Ocean Economy in 2030 (OECD, 2016).4.Boonstra, W. J., Valman, M. & Björkvik, E. A sea of many colours – how relevant is blue growth for capture fisheries in the global north, and vice versa? Mar. Policy 87, 340–349 (2018).Article 

    Google Scholar 
    5.Bennett, N. J. et al. Towards a sustainable and equitable blue economy. Nat. Sustain. 2, 991–993 (2019).Article 

    Google Scholar 
    6.Nash, K. L. et al. Planetary boundaries for a blue planet. Nat. Ecol. Evol. 1, 1625–1634 (2017).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    7.Maxwell, S. M. et al. Cumulative human impacts on marine predators. Nat. Commun. 4, 2688 (2013).8.Zero Draft of the Post-2020 Global Biodiversity Framework (CBD, 2020).9.Update of the Zero Draft of the Post-2020 Global Biodiversity Framework (CBD, 2020).10.Mace, G. M. et al. Aiming higher to bend the curve of biodiversity loss. Nat. Sustain. 1, 448–451 (2018).Article 

    Google Scholar 
    11.Leclere, D. et al. Bending the curve of terrestrial biodiversity needs an integrated strategy. Nature 585, 551–556 (2020).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    12.Bull, J. W. et al. Net positive outcomes for nature. Nat. Ecol. Evol. 4, 4–7 (2020).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    13.Milner-Gulland, E. J. et al. Four steps for the Earth: mainstreaming the post-2020 global biodiversity framework. One Earth 4, 75–87 (2020).Article 

    Google Scholar 
    14.Davies, R. W. D., Cripps, S. J. J., Nickson, A. & Porter, G. Defining and estimating global marine fisheries bycatch. Mar. Policy 33, 661–672 (2009).Article 

    Google Scholar 
    15.Hall, M. A., Alverson, D. L. & Metuzals, K. I. By-catch: problems and solutions. Mar. Pollut. Bull. 41, 204–219 (2000).CAS 
    Article 

    Google Scholar 
    16.Crowder, L. B. & Murawski, S. A. Fisheries bycatch: implications for management. Fisheries 23, 8–17 (1998).Article 

    Google Scholar 
    17.Branch, T. A., Rutherford, K. & Hilborn, R. Replacing trip limits with individual transferable quotas: implications for discarding. Mar. Policy 30, 281–292 (2006).Article 

    Google Scholar 
    18.Lewison, R. L., Crowder, L. B., Read, A. J. & Freeman, S. A. Understanding impacts of fisheries bycatch on marine megafauna. Trends Ecol. Evol. 19, 598–604 (2004).Article 

    Google Scholar 
    19.Gilman, E. et al. Reducing sea turtle interactions in the Hawaii-based longline swordfish fishery. Biol. Conserv. 139, 19–28 (2007).Article 

    Google Scholar 
    20.Watson, J. T., Essington, T. E., Lennert-Cody, C. E. & Hall, M. A. Trade-offs in the design of fishery closures: management of silky shark bycatch in the eastern Pacific Ocean tuna fishery. Conserv. Biol. 23, 626–635 (2009).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    21.Campbell, L. M. & Cornwell, M. L. Human dimensions of bycatch reduction technology: current assumptions and directions for future research. Endang. Species Res. 5, 325–334 (2008).Article 

    Google Scholar 
    22.Hall, M. A. On bycatches. Rev. Fish Biol. Fish. 6, 319–352 (1996).Article 

    Google Scholar 
    23.Smith, V. L. On models of commercial fishing. J. Polit. Econ. 77, 181–198 (1969).Article 

    Google Scholar 
    24.Innes, J., Pascoe, S., Wilcox, C., Jennings, S. & Paredes, S. Mitigating undesirable impacts in the marine environment: a review of market-based management measures. Front. Mar. Sci. 2, 76 (2015).Article 

    Google Scholar 
    25.Nyborg, K. et al. Social norms as solutions. Science 354, 42–43 (2016).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    26.Bowles, S. & Polanía-Reyes, S. Economic incentives and social preferences: substitutes or complements? J. Econ. Lit. 50, 368–425 (2012).Article 

    Google Scholar 
    27.Gneezy, U., Meier, S. & Rey-Biel, P. When and why incentives (don’t) work to modify behavior. J. Econ. Perspect. 25, 191–210 (2011).Article 

    Google Scholar 
    28.Fulton, E. A., Smith, A. D. M., Smith, D. C. & Van Putten, I. E. Human behaviour: the key source of uncertainty in fisheries management. Fish Fish. 12, 2–17 (2011).Article 

    Google Scholar 
    29.Sumaila, U. R., Lam, V., Le Manach, F., Swartz, W. & Pauly, D. Global fisheries subsidies: an updated estimate. Mar. Policy 69, 189–193 (2016).Article 

    Google Scholar 
    30.Bladon, A. J., Short, K. M., Mohammed, E. Y. & Milner-Gulland, E. J. Payments for ecosystem services in developing world fisheries. Fish Fish. 17, 839–859 (2016).Article 

    Google Scholar 
    31.Deutza, A. et al. Financing Nature: Closing the Global Biodiversity Financing Gap (The Paulson Institute, The Nature Conservancy, and the Cornell Atkinson Center for Sustainability, 2020).32.Dutton, P. H. & Squires, D. Reconciling biodiversity with fishing: a holistic strategy for Pacific sea turtle recovery. Ocean Dev. Int. Law 39, 200–222 (2008).Article 

    Google Scholar 
    33.Pascoe, S. et al. Use of incentive-based management systems to limit bycatch and discarding. Int. Rev. Environ. Resour. Econ. 4, 123–161 (2010).Article 

    Google Scholar 
    34.Wilcox, C. & Donlan, C. J. Compensatory mitigation as a solution to fisheries bycatch–biodiversity conservation conflicts. Front. Ecol. Environ. 5, 325–331 (2007).Article 

    Google Scholar 
    35.Dutton, P. H. & Squires, D. in Conservation of Pacific Sea Turtles (eds Dutton, P. H. et al.) 37–59 (Univ. Hawaii Press, 2011).36.Sumaila, U. R. et al. Ocean Finance: Financing the Transition to a Sustainable Ocean Economy (World Resources Institute, 2020).37.Squires, D., Restrepo, V., Garcia, S. & Dutton, P. Fisheries bycatch reduction within the least-cost biodiversity mitigation hierarchy: conservatory offsets with an application to sea turtles. Mar. Policy 93, 55–61 (2018).Article 

    Google Scholar 
    38.Finkelstein, M. et al. Evaluating the potential effectiveness of compensatory mitigation strategies for marine bycatch. PLoS ONE 3, e2480 (2008).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    39.Žydelis, R., Wallace, B. P., Gilman, E. L. & Werner, T. B. Conservation of marine megafauna through minimization of fisheries bycatch. Conserv. Biol. 23, 608–616 (2009).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    40.Blomquist, J., Bartolino, V. & Waldo, S. Price premiums for providing eco-labelled seafood: evidence from MSC-certified cod in Sweden. J. Agric. Econ. 66, 690–704 (2015).Article 

    Google Scholar 
    41.Roheim, C. A., Bush, S. R., Asche, F., Sanchirico, J. N. & Uchida, H. Evolution and future of the sustainable seafood market. Nat. Sustain. 1, 392–398 (2018).Article 

    Google Scholar 
    42.Shumway, N., Watson, J. E. M., Saunders, M. I. & Maron, M. The risks and opportunities of translating terrestrial biodiversity offsets to the marine realm. BioScience 68, 125–133 (2018).Article 

    Google Scholar 
    43.Bull, J. W. & Strange, N. The global extent of biodiversity offset implementation under no net loss policies. Nat. Sustain. 1, 790–798 (2018).Article 

    Google Scholar 
    44.Gjertsen, H., Squires, D., Dutton, P. H. & Eguchi, T. Cost-effectiveness of alternative conservation strategies with application to the Pacific leatherback turtle. Conserv. Biol. 28, 140–149 (2014).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    45.Segerson, K. in Conservation of Pacific Sea Turtles (eds Dutton, P. H. et al.) 370–395 (Univ. Hawaii Press, 2011).46.Bull, J. W., Suttle, K. B., Gordon, A., Singh, N. J. & Milner-Gulland, E. J. Biodiversity offsets in theory and practice. Oryx 47, 369–380 (2013).Article 

    Google Scholar 
    47.zu Ermgassen, S. O. S. E. et al. The ecological outcomes of biodiversity offsets under ‘no net loss’ policies: a global review. Conserv. Lett. 12, e12664 (2019).48.zu Ermgassen, S. O. S. E. et al. Exploring the ecological outcomes of mandatory biodiversity net gain using evidence from early-adopter jurisdictions in England. Preprint at SocArXiv https://doi.org/10.31235/osf.io/tw6nr (2021).49.Segerson, K. Voluntary approaches to environmental protection and resource management. Annu. Rev. Resour. Econ. 5, 161–180 (2013).Article 

    Google Scholar 
    50.Kotchen, M. J. Voluntary- and information-based approaches to environmental management: a public economics perspective. Rev. Environ. Econ. Policy 7, 276–295 (2013).Article 

    Google Scholar 
    51.Janisse, C., Squires, D., Seminoff, J. A. & Dutton, P. H. in Handbook of Marine Fisheries Conservation and Management, (eds Grafton, Q. et al.) 231–240 (Oxford Univ. Press, 2010).52.Squires, D. & Garcia, S. The least-cost biodiversity impact mitigation hierarchy with a focus on marine fisheries and bycatch issues. Conserv. Biol. 32, 989–997 (2018).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    53.Jacob, C. et al. Marine biodiversity offsets: pragmatic approaches toward better conservation outcomes. Conserv Lett. 13, 1–12 (2020).Article 

    Google Scholar 
    54.Lent, R. & Squires, D. Reducing marine mammal bycatch in global fisheries: an economics approach. Deep Sea Res. Pt II 140, 268–277 (2017).Article 

    Google Scholar 
    55.Zhou, R. & Segerson, K. Individual vs. collective approaches to fisheries management. Mar. Resour. Econ. 31, 165–192 (2016).Article 

    Google Scholar 
    56.Yagi, N., Clark, M. L., Anderson, L. G., Arnason, R. & Metzner, R. Applicability of individual transferable quotas (ITQs) in Japanese fisheries: a comparison of rights-based fisheries management in Iceland, Japan, and United States. Mar. Policy 36, 241–245 (2012).Article 

    Google Scholar 
    57.Kotchen, M. J. & Segerson, K. On the use of group performance and rights for environmental protection and resource management. Proc. Natl Acad. Sci. USA 116, 5285–5292 (2019).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    58.Stewart, A. J. & Plotkin, J. B. Collapse of cooperation in evolving games. Proc. Natl Acad. Sci. USA 111, 17558–17563 (2014).59.Mani, A., Rahwan, I. & Pentland, A. Inducing peer pressure to promote cooperation. Sci. Rep. 3, 1735 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    60.Kroeger, T. The quest for the ‘optimal’ payment for environmental services program: ambition meets reality, with useful lessons. Policy Econ. 37, 65–74 (2013).Article 

    Google Scholar 
    61.Ledoux, L. & Turner, R. K. Valuing ocean and coastal resources: a review of practical examples and issues for further action. Ocean Coast. Manag. 45, 583–616 (2002).Article 

    Google Scholar 
    62.Booth, H., Squires, D. & Milner-Gulland, E. J. The mitigation hierarchy for sharks: a risk-based framework for reconciling trade-offs between shark conservation and fisheries objectives. Fish Fish. 21, 269–289 (2019).Article 

    Google Scholar 
    63.Bull, J. W. & Milner-Gulland, E. Choosing prevention or cure when mitigating biodiversity loss: trade-offs under ‘no net loss’ policies. J. Appl. Ecol. 57, 354–366 (2020).Article 

    Google Scholar 
    64.Norton, D. A. & Warburton, B. The potential for biodiversity offsetting to fund effective invasive species control. Conserv. Biol. 29, 5–11 (2015).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    65.Holmes, N. D. et al. The potential for biodiversity offsetting to fund invasive species eradications on islands. Conserv. Biol. 30, 425–427 (2016).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    66.Gallagher, A. J. & Hammerschlag, N. Global shark currency: the distribution frequency and economic value of shark ecotourism. Curr. Issues Tour. 14, 797–812 (2011).Article 

    Google Scholar 
    67.Mustika, P. L. K., Ichsan, M. & Booth, H. The economic value of shark and ray tourism in Indonesia and its role in delivering conservation outcomes. Front. Mar. Sci. 7, 261 (2020).Article 

    Google Scholar 
    68.O’Malley, M. P., Lee-Brooks, K. & Medd, H. B. The global economic impact of manta ray watching tourism. PLoS ONE 8, e65051 (2013).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    69.Vianna, G. M. S. et al. Shark-diving tourism as a financing mechanism for shark conservation strategies in Malaysia. Mar. Policy 94, 220–226 (2018).Article 

    Google Scholar 
    70.Swimmer, Y. et al. Sea turtle bycatch mitigation in U.S. longline fisheries. Front. Mar. Sci. 4, 260 (2017).Article 

    Google Scholar 
    71.Croll, D. A. et al. Vulnerabilities and fisheries impacts: the uncertain future of manta and devil rays. Aquat. Conserv. Mar. Freshw. Ecosyst. 26, 562–575 (2016).Article 

    Google Scholar 
    72.Anderson, R. C., Adam, M. S., Kitchen-Wheeler, A. M. & Stevens, G. Extent and economic value of manta ray watching in Maldives. Tour. Mar. Environ. 7, 15–27 (2011).Article 

    Google Scholar 
    73.Farley, J. Ecosystem services: the economics debate. Ecosyst. Serv. 1, 40–49 (2012).Article 

    Google Scholar 
    74.Kenter, J. O., Hyde, T., Christie, M. & Fazey, I. The importance of deliberation in valuing ecosystem services in developing countries—evidence from the Solomon Islands. Glob. Environ. Change 21, 505–521 (2011).Article 

    Google Scholar 
    75.Gilman, E. et al. Robbing Peter to pay Paul: replacing unintended cross-taxa conflicts with intentional tradeoffs by moving from piecemeal to integrated fisheries bycatch management. Rev. Fish Biol. Fish. 29, 93–123 (2019).Article 

    Google Scholar 
    76.Dissou, Y. & Siddiqui, M. S. Can carbon taxes be progressive?. Energy Econ. 42, 88–100 (2014).Article 

    Google Scholar 
    77.Engel, S., Pagiola, S. & Wunder, S. Designing payments for environmental services in theory and practice: an overview of the issues. Ecol. Econ. 65, 663–674 (2008).Article 

    Google Scholar 
    78.Bene, C. Small-Scale Fisheries: Assessing Their Contribution to Rural Livelihoods in Developing Countries FAO Fisheries Circular No. 1008 (FAO, 2006).79.Arlidge, W. N. S. et al. A mitigation hierarchy approach for managing sea turtle captures in small-scale fisheries. Front. Mar. Sci. 7, 49 (2020).Article 

    Google Scholar 
    80.Levi, M., Sacks, A. & Tyler, T. Conceptualizing legitimacy, measuring legitimating beliefs. Am. Behav. Sci. 53, 354–375 (2009).Article 

    Google Scholar 
    81.Oyanedel, R., Gelcich, S. & Milner-Gulland, E. J. Motivations for (non-)compliance with conservation rules by small-scale resource users. Conserv. Lett. 15, e12725 (2020).
    Google Scholar 
    82.Pakiding, F. et al. Community engagement: an integral component of a multifaceted conservation approach for the transboundary western Pacific leatherback. Front. Mar. Sci. 7, 756 (2020).Article 

    Google Scholar 
    83.Long-Term Strategic Directions to the 2050 Vision for Biodiversity, Approaches to Living in Harmony with Nature and Preparation for the Post-2020 Global Biodiversity Framework Report No. CBD/COP/14/9 (CBD, 2018).84.Berkes, F. et al. Globalization, roving bandits, and marine resources. Science 311, 1557–1558 (2006).CAS 
    Article 

    Google Scholar 
    85.Ban, N. C., Adams, V., Pressey, R. L. & Hicks, J. Promise and problems for estimating management costs of marine protected areas. Conserv. Lett. 4, 241–252 (2011).Article 

    Google Scholar 
    86.Arias, A., Pressey, R. L., Jones, R. E., Álvarez-Romero, J. G. & Cinner, J. E. Optimizing enforcement and compliance in offshore marine protected areas: a case study from Cocos Island, Costa Rica. Oryx 50, 18–26 (2016).Article 

    Google Scholar 
    87.Bartholomew, D. C. et al. Remote electronic monitoring as a potential alternative to on-board observers in small-scale fisheries. Biol. Conserv. 219, 35–45 (2018).Article 

    Google Scholar 
    88.Mangi, S. C., Dolder, P. J., Catchpole, T. L., Rodmell, D. & de Rozarieux, N. Approaches to fully documented fisheries: practical issues and stakeholder perceptions. Fish Fish. 16, 426–452 (2015).Article 

    Google Scholar 
    89.Harper, L. R. et al. Prospects and challenges of environmental DNA (eDNA) monitoring in freshwater ponds. Hydrobiologia 826, 25–41 (2019).90.Russo, T. et al. All is fish that comes to the net: metabarcoding for rapid fisheries catch assessment. Ecol. Appl. 31, e02273 (2021).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    91.Cardeñosa, D., Gollock, M. J. & Chapman, D. D. Development and application of a novel real‐time polymerase chain reaction assay to detect illegal trade of the European eel (Anguilla anguilla). Conserv. Sci. Prac. 1, e39 (2019).Article 

    Google Scholar 
    92.Griffiths, V. F., Bull, J. W., Baker, J. & Milner-Gulland, E. J. No net loss for people and biodiversity. Conserv. Biol. 33, 76–87 (2019).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    93.Milner-Gulland, E. J. et al. Translating the terrestrial mitigation hierarchy to marine megafauna by-catch. Fish Fish. 19, 547–561 (2018).Article 

    Google Scholar 
    94.Republic of Namibia Ministry of Fisheries and Marine Resources Annual Report 2012–2013 (MFMR, 2013).95.Sanchirico, J. N., Holland, D., Quigley, K. & Fina, M. Catch-quota balancing in multispecies individual fishing quotas. Mar. Policy 30, 767–785 (2006).Article 

    Google Scholar 
    96.Walker, S. & Townsend, R. Economic analysis of New Zealand’s deemed value system. In Proc. of the Fourteenth Biennial Conference of the International Institute of Fisheries Economics & Trade, July 22–25, 2008, Nha Trang, Vietnam: Achieving a Sustainable Future: Managing Aquaculture, Fishing, Trade and Development 1–11 (Oregon State Univ., 2008).97.Sanchirico, J. N. Managing marine capture fisheries with incentive based price instruments. Public Finance Manag. 3, 67–93 (2003).
    Google Scholar 
    98.Pascoe, S., Wilcox, C. & Donlan, C. J. Biodiversity offsets: a cost-effective interim solution to seabird bycatch in fisheries? PLoS ONE 6, e25762 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    99.Mukherjee, Z. Controlling stochastic externalities with penalty threats: the case of bycatch. Environ. Econ. Policy Stud. 18, 93–113 (2016).Article 

    Google Scholar 
    100.Androkovich, R. A. & Stollery, K. R. A stochastic dynamic programming model of bycatch control in fisheries. Mar. Resour. Econ. 9, 19–30 (1994).Article 

    Google Scholar 
    101.Herrera, G. E. Stochastic bycatch, informational asymmetry, and discarding. J. Environ. Econ. Manag. 49, 463–483 (2005).Article 

    Google Scholar 
    102.Singh, R. & Weninger, Q. Bioeconomies of scope and the discard problem in multiple-species fisheries. J. Environ. Econ. Manag. 58, 72–92 (2009).Article 

    Google Scholar 
    103.Pascoe, S., Cannard, T. & Steven, A. Offset payments can reduce environmental impacts of urban development. Environ. Sci. Policy 100, 205–210 (2019).Article 

    Google Scholar 
    104.Schouten, G. & Glasbergen, P. Creating legitimacy in global private governance: the case of the roundtable on sustainable palm oil. Ecol. Econ. 70, 1891–1899 (2011).Article 

    Google Scholar 
    105.Ruysschaert, D. & Salles, D. in The Anthropology of Conservation NGOs (eds Larsen, P. B. & Brockington, D.) 121–149 (Palgrave Macmillan, 2018).106.Right Whales and Entanglements: More on How NOAA Makes Decisions (NOAA Fisheries, 2019); https://www.fisheries.noaa.gov/new-england-mid-atlantic/marine-mammal-protection/right-whales-and-entanglements-more-how-noaa#right-whales-and-the-lobster-fishery107.Jouffray, J. B., Crona, B., Wassénius, E., Bebbington, J. & Scholtens, B. Leverage points in the financial sector for seafood sustainability. Sci. Adv. 5, eaax3324 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    108.Österblom, H. et al. Emergence of a global science-business initiative for ocean stewardship. Proc. Natl Acad. Sci. USA 114, 9038–9043 (2017).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    109.Deforestation-Free Supply Chains: From Commitments to Action (CDP, 2014).110.Donofrio, S., Rothrock, P. & Leonard, J. Supply Change: Tracking Corporate Commitments to Deforestation-Free Supply Chains (Forest Trends, 2017).111.Österblom, H. et al. Transnational corporations as ‘keystone actors’ in marine ecosystems. PLoS ONE 10, e0127533 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    112.Galland, G., Rogers, A. & Nickson, A. Netting Billions: A Global Valuation of Tuna (The Pew Charitible Trusts, 2016).113.Zeller, D., Cashion, T., Palomares, M. & Pauly, D. Global marine fisheries discards: a synthesis of reconstructed data. Fish Fish. 19, 30–39 (2018).Article 

    Google Scholar 
    114.Balmford, A., Gravestock, P., Hockley, N., McClean, C. J. & Roberts, C. M. The worldwide costs of marine protected areas. Proc. Natl Acad. Sci. USA 101, 9694–9697 (2004).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    115.Engel, S. & Palmer, C. Payments for environmental services as an alternative to logging under weak property rights: the case of Indonesia. Ecol. Econ. 65, 799–809 (2008).Article 

    Google Scholar 
    116.Bonham, C. et al. Conservation trust funds, protected area management effectiveness and conservation outcomes: lessons from the global conservation fund. Parks 20, 89–100 (2014).Article 

    Google Scholar 
    117.Angelsen, A. et al. (eds) Realising REDD+: National Strategy and Policy Options (CIFOR, 2009).118.Spergel, B. & Mikitin, K. Practice Standards for Conservation Trust Funds (CFA, 2013).119.Progress Summary of 2014–15 ISSF Funded Marine Turtle Projects (ISSF, 2016). More

  • in

    Plant scientists’ research attention is skewed towards colourful, conspicuous and broadly distributed flowers

    1.Schaal, B. Plants and people: our shared history and future. Plants People Planet 1, 14–19 (2019).Article 

    Google Scholar 
    2.Bates, D. M. People, plants and genes: the story of crops and humanity. Q. Rev. Biol. 84, 206–207 (2009).3.Nedelcheva, A., Dogan, Y., Obratov-Petkovic, D. & Padure, I. M. The traditional use of plants for handicrafts in southeastern Europe. Hum. Ecol. Interdiscip. J. 39, 813–828 (2011).Article 

    Google Scholar 
    4.Willes, M. A Shakespearean Botanical (Bodleian Library, 2015).5.Shoemaker, C. A. Plants and human culture. J. Home Consum. Hortic. 1, 3–7 (1994).Article 

    Google Scholar 
    6.Alfred, J. & Baldwin, I. T. The natural history of model organisms: new opportunities at the wild frontier. eLife 4, e06956 (2015).PubMed Central 
    Article 

    Google Scholar 
    7.Hedges, S. B. The origin and evolution of model organisms. Nat. Rev. Genet. 3, 838–849 (2002).CAS 
    PubMed 
    Article 

    Google Scholar 
    8.Clark, J. A. Taxonomic bias in conservation research. Science 297, 191–192 (2002).CAS 
    PubMed 
    Article 

    Google Scholar 
    9.Mammola, S. et al. Towards a taxonomically unbiased European Union biodiversity strategy for 2030. Proc. R. Soc. B 287, 20202166 (2020).PubMed 
    Article 

    Google Scholar 
    10.Christenhusz, M. J. M. & Byng, J. W. The number of known plants species in the world and its annual increase. Phytotaxa 261, 201–217 (2016).Article 

    Google Scholar 
    11.Quijas, S., Schmid, B. & Balvanera, P. Plant diversity enhances provision of ecosystem services: a new synthesis. Basic Appl. Ecol. 11, 582–593 (2010).Article 

    Google Scholar 
    12.Zak, D. R., Holmes, W. E., White, D. C., Peacock, A. D. & Tilman, D. Plant diversity, soil microbial communities, and ecosystem function: are there any links? Ecology 84, 2042–2050 (2003).Article 

    Google Scholar 
    13.Barnosky, A. D. et al. Has the Earth’s sixth mass extinction already arrived? Nature 471, 51–57 (2011).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    14.Cardinale, B. J. et al. Biodiversity loss and its impact on humanity. Nature 486, 59–67 (2012).CAS 
    Article 

    Google Scholar 
    15.Ripple, W. J. et al. World scientists’ warning to humanity: a second notice. Bioscience 67, 1026–1028 (2017).Article 

    Google Scholar 
    16.Balding, M. & Williams, K. J. H. Plant blindness and the implications for plant conservation. Conserv. Biol. 30, 1192–1199 (2016).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    17.Fukushima, C. S., Mammola, S. & Cardoso, P. Global wildlife trade permeates the Tree of Life. Biol. Conserv. 247, 108503 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    18.Wandersee, J. H. & Schussler, E. E. Preventing plant blindness. Am. Biol. Teach. 61, 82–86 (1999).Article 

    Google Scholar 
    19.Parsley, K. M. Plant awareness disparity: a case for renaming plant blindness. Plants People Planet 2, 598–601 (2020).Article 

    Google Scholar 
    20.Villemant, C. et al. The Mercantour/Alpi Marittime All Taxa Biodiversity Inventory (ATBI): achievements and prospects. Zoosystema 37, 667–679 (2015).Article 

    Google Scholar 
    21.Borcard, D., Legendre, P. & Drapeau, P. Partialling out the spatial component of ecological variation. Ecology 73, 1045–1055 (1992).Article 

    Google Scholar 
    22.Médail, F. & Verlaque, R. Ecological characteristics and rarity of endemic plants from Southeast France and Corsica: implications for biodiversity conservation. Biol. Conserv. 80, 269–281 (1997).Article 

    Google Scholar 
    23.Noble, V. & Diadema, K. in La flore des Alpes-Maritimes et de la Principauté de Monaco (eds Noble, V. & Diadema, K.) 57–72 (Naturalia, 2011).24.Zuur, A. F. & Ieno, E. N. A protocol for conducting and presenting results of regression-type analyses. Methods Ecol. Evol. 7, 636–645 (2016).Article 

    Google Scholar 
    25.Horiguchi, H., Winawer, J., Dougherty, R. F. & Wandell, B. A. Human trichromacy revisited. Proc. Natl Acad. Sci. USA 110, E260–E269 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    26.Gerl, E. J. & Morris, M. R. The causes and consequences of color vision. Evol. Educ. Outreach 1, 476–486 (2008).Article 

    Google Scholar 
    27.Bompas, A., Kendall, G. & Sumner, P. Spotting fruit versus picking fruit as the selective advantage of human colour vision. i-Perception 4, 84–94 (2013).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    28.Elliot, A. J. & Maier, M. A. Color psychology: effects of perceiving color on psychological functioning in humans. Annu. Rev. Psychol. 65, 95–120 (2014).PubMed 
    Article 

    Google Scholar 
    29.Chiao, J. Y. et al. Dynamic cultural influences on neural representations of the self. J. Cogn. Neurosci. 22, 1–11 (2010).PubMed 
    Article 

    Google Scholar 
    30.Cotto, O. et al. A dynamic eco-evolutionary model predicts slow response of alpine plants to climate warming. Nat. Commun. 8, 15399 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    31.Costa, G. C., Nogueira, C., Machado, R. B. & Colli, G. R. Sampling bias and the use of ecological niche modeling in conservation planning: a field evaluation in a biodiversity hotspot. Biodivers. Conserv. 19, 883–899 (2010).Article 

    Google Scholar 
    32.Tucker, C. M. et al. A guide to phylogenetic metrics for conservation, community ecology and macroecology. Biol. Rev. Camb. Philos. Soc. 92, 698–715 (2017).PubMed 
    Article 

    Google Scholar 
    33.De Boeck, H. J., Liberloo, M., Gielen, B., Nijs, I. & Ceulemans, R. The observer effect in plant science. New Phytol. 177, 579–583 (2008).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    34.Morrison, L. W. Observer error in vegetation surveys: a review. J. Plant Ecol. 9, 367–379 (2016).Article 

    Google Scholar 
    35.Kéry, M. & Gregg, K. B. Effects of life-state on detectability in a demographic study of the terrestrial orchid Cleistes bifaria. J. Ecol. 91, 265–273 (2003).Article 

    Google Scholar 
    36.Allioni, C. Flora Pedemontana: Sive Enumeratio Methodica Stirpium Indigenarum Pedemontii Vol. 1 (Joannes Michael Briolus, 1785).37.Aeschimann, D., Rasolofo, N. & Theurillat, J.-P. Analyse de la flore des alpes. 1: Historique et biodiversité. Candollea 66, 27–55 (2011).Article 

    Google Scholar 
    38.Boakes, E. H. et al. Distorted views of biodiversity: spatial and temporal bias in species occurrence data. PLoS Biol. 8, e1000385 (2010).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    39.Julve, P. Baseflor. Index Botanique, Ecologique et Chorologique de la Flore de France http://philippe.julve.pagesperso-orange.fr/baseflor.xlsx (1998).40.Bartolucci, F. et al. An updated checklist of the vascular flora native to Italy. Plant Biosyst. 152, 179–303 (2018).Article 

    Google Scholar 
    41.Web of Science (Clarivate Analytics, accessed 16 March 2020); https://www.webofknowledge.com42.Kalwij, J. M. Review of ‘The Plant List, a working list of all plant species’. J. Veg. Sci. 23, 998–1002 (2012).Article 

    Google Scholar 
    43.Konno, K. et al. Ignoring non‐English‐language studies may bias ecological meta‐analyses. Ecol. Evol. 10, 6373–6384 (2020).44.Heaton, L., Millerand, F. & Proulx, S. Tela Botanica: une fertilisation croisée des amateurs et des experts. Hermès 57, 61–68 (2010).45.Lauber, K., Wagner, G. & Gygax, A. Flora Helvetica: Illustrierte Flora der Schweiz (Haupt Verlag, 2018).46.Landolt, E. et al. Flora Indicativa: Okologische Zeigerwerte und Biologische Kennzeichen zur Flora der Schweiz und der Alpen (Haupt, 2010).47.The IUCN Red List of Threatened Species (IUCN, 2020).48.Global Biodiversity Information Facility (2020); https://www.gbif.org49.Beck, J., Böller, M., Erhardt, A. & Schwanghart, W. Spatial bias in the GBIF database and its effect on modeling species’ geographic distributions. Ecol. Inform. 19, 10–15 (2014).Article 

    Google Scholar 
    50.Shirey, V., Belitz, M. W., Barve, V. & Guralnick, R. A complete inventory of North American butterfly occurrence data: narrowing data gaps, but increasing bias. Ecography 44, 537–547 (2021).Article 

    Google Scholar 
    51.R. Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2019).52.Zuur, A. F., Ieno, E. N. & Elphick, C. S. A protocol for data exploration to avoid common statistical problems. Methods Ecol. Evol. 1, 3–14 (2010).Article 

    Google Scholar 
    53.Brooks, T. M. et al. Measuring terrestrial area of habitat (AOH) and its utility for the IUCN Red List. Trends Ecol. Evol. 34, 977–986 (2019).PubMed 
    Article 

    Google Scholar 
    54.Bartoń, K. MuMIn: multi-model inference. R package version 1.43.17 https://cran.r-project.org/package=MuMIn (2020).55.Barbosa, A. M., Real, R., Munoz, A. R. & Brown, J. A. New measures for assessing model equilibrium and prediction mismatch in species distribution models. Divers. Distrib. 19, 1333–1338 (2013).Article 

    Google Scholar 
    56.Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1 (2015).Article 

    Google Scholar 
    57.Blasco-Moreno, A., Pérez-Casany, M., Puig, P., Morante, M. & Castells, E. What does a zero mean? Understanding false, random and structural zeros in ecology. Methods Ecol. Evol. 10, 949–959 (2019).Article 

    Google Scholar 
    58.Johnson, J. B. & Omland, K. S. Model selection in ecology and evolution. Trends Ecol. Evol. 19, 101–108 (2004).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    59.Lüdecke, D., Ben-Shachar, M., Patil, I., Waggoner, P. & Makowski, D. Assessment, testing and comparison of statistical models using R. Preprint at PsyArXiv https://doi.org/10.31234/osf.io/vtq8f (2021). More

  • in

    The severity and extent of the Australia 2019–20 Eucalyptus forest fires are not the legacy of forest management

    1.Bowman, D. M. J. S. et al. Fire in the Earth system. Science 324, 481–484 (2009).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    2.Davis, K. T. et al. Wildfires and climate change push low-elevation forests across a critical climate threshold for tree regeneration. Proc. Natl Acad. Sci. USA 116, 6193–6198 (2019).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    3.Enright, N. J., Fontaine, J. B., Bowman, D. M. J. S., Bradstock, R. A. & Williams, R. J. Interval squeeze: altered fire regimes and demographic responses interact to threaten woody species persistence as climate changes. Front. Ecol. Environ. 13, 265–272 (2015).Article 

    Google Scholar 
    4.Abatzoglou, J. T. & Williams, A. P. Impact of anthropogenic climate change on wildfire across western US forests. Proc. Natl Acad. Sci. USA 113, 11770–11775 (2016).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    5.Bowman, D. M. J. S. et al. Vegetation fires in the Anthropocene. Nat. Rev. Earth Environ. 1, 500–515 (2020).Article 

    Google Scholar 
    6.Keeley, J. E., van Mantgem, P. & Falk, D. A. Fire, climate and changing forests. Nat. Plants 5, 774–775 (2019).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    7.Lindenmayer, D. B., Kooyman, R. M., Taylor, C., Ward, M. & Watson, J. E. Recent Australian wildfires made worse by logging and associated forest management. Nat. Ecol. Evol. 4, 898–900 (2020).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    8.Murphy, B. P. et al. Fire regimes of Australia: a pyrogeographic model system. J. Biogeogr. 40, 1048–1058 (2013).Article 

    Google Scholar 
    9.Poulos, H. M., Barton, A. M., Slingsby, J. A. & Bowman, D. M. J. S. Do mixed fire regimes shape plant flammability and post-fire recovery strategies? Fire 1, 39 (2018).Article 

    Google Scholar 
    10.Cawson, J. G. et al. Exploring the key drivers of forest flammability in wet eucalypt forests using expert-derived conceptual models. Landsc. Ecol. 35, 1775–1798 (2020).Article 

    Google Scholar 
    11.Thomas, P. B., Watson, P. J., Bradstock, R. A., Penman, T. D. & Price, O. Modelling surface fine fuel dynamics across climate gradients in eucalypt forests of south‐eastern Australia. Ecography 37, 827–837 (2014).Article 

    Google Scholar 
    12.Bennett, L. T. et al. Mortality and recruitment of fire-tolerant eucalypts as influenced by wildfire severity and recent prescribed fire. For. Ecol. Manag. 380, 107–117 (2016).Article 

    Google Scholar 
    13.Fairman, T. A., Bennett, L. T., Tupper, S. & Nitschke, C. R. Frequent wildfires erode tree persistence and alter stand structure and initial composition of a fire‐tolerant sub‐alpine forest. J. Veg. Sci. 28, 1151–1165 (2017).Article 

    Google Scholar 
    14.Prior, L. D., Williamson, G. J. & Bowman, D. M. J. S. Impact of high-severity fire in a Tasmanian dry eucalypt forest. Aust. J. Bot. 64, 193–205 (2016).Article 

    Google Scholar 
    15.Bassett, O. D., Prior, L. D., Slijkerman, C. M., Jamieson, D. & Bowman, D. M. J. S. Aerial sowing stopped the loss of alpine ash (Eucalyptus delegatensis) forests burnt by three short-interval fires in the Alpine National Park, Victoria, Australia. For. Ecol. Manag. 342, 39–48 (2015).Article 

    Google Scholar 
    16.Bowman, D. et al. Wildfires: Australia needs national monitoring agency. Nature 584, 188–191 (2020).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    17.King, A. D., Pitman, A. J., Henley, B. J., Ukkola, A. M. & Brown, J. R. The role of climate variability in Australian drought. Nat. Clim. Change 10, 177–179 (2020).Article 

    Google Scholar 
    18.Sharples, J. J. et al. Natural hazards in Australia: extreme bushfire. Clim. Change 139, 85–99 (2016).Article 

    Google Scholar 
    19.Bowman, D. M. J. S., Williamson, G. J., Price, O. F., Ndalila, M. N. & Bradstock, R. A. Australian forests, megafires and the risk of dwindling carbon stocks. Plant, Cell Environ. 44, 347–355 (2020).20.Khaykin, S. et al. The 2019/20 Australian wildfires generated a persistent smoke-charged vortex rising up to 35 km altitude. Commun. Earth Environ. 1, 22 (2020).Article 

    Google Scholar 
    21.Borchers Arriagada, N. et al. Unprecedented smoke-related health burden associated with the 2019–20 bushfires in eastern Australia. Med. J. Aust. 213, 282–283 (2020).22.Johnston, F. H. et al. Unprecedented health costs of smoke-related PM2.5 from the 2019–20 Australian megafires. Nat. Sustain. 4, 42–47 (2021).Article 

    Google Scholar 
    23.Ward, M. et al. Impact of 2019–2020 mega-fires on Australian fauna habitat. Nat. Ecol. Evol. 4, 1321–1326 (2020).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    24.Bowman, D. M. J. S., Williamson, G. J., Prior, L. D. & Murphy, B. P. The relative importance of intrinsic and extrinsic factors in the decline of obligate seeder forests. Glob. Ecol. Biogeogr. 25, 1166–1172 (2016).Article 

    Google Scholar 
    25.Povak, N. A., Kane, V. R., Collins, B. M., Lydersen, J. M. & Kane, J. T. Multi-scaled drivers of severity patterns vary across land ownerships for the 2013 Rim Fire, California. Landsc. Ecol. 35, 293–318 (2020).Article 

    Google Scholar 
    26.Parks, S. A. et al. High-severity fire: evaluating its key drivers and mapping its probability across western US forests. Environ. Res. Lett. 13, 044037 (2018).Article 

    Google Scholar 
    27.Fang, L., Yang, J., Zu, J., Li, G. & Zhang, J. Quantifying influences and relative importance of fire weather, topography, and vegetation on fire size and fire severity in a Chinese boreal forest landscape. For. Ecol. Manag. 356, 2–12 (2015).Article 

    Google Scholar 
    28.Thompson, J. R. & Spies, T. A. Vegetation and weather explain variation in crown damage within a large mixed-severity wildfire. For. Ecol. Manag. 258, 1684–1694 (2009).Article 

    Google Scholar 
    29.Stephens, S. L. et al. Fire and climate change: conserving seasonally dry forests is still possible. Front. Ecol. Environ. 18, 354–360 (2020).Article 

    Google Scholar 
    30.Dieleman, C. M. et al. Wildfire combustion and carbon stocks in the southern Canadian boreal forest: implications for a warming world. Glob. Change Biol. 26, 6062–6079 (2020).Article 

    Google Scholar 
    31.Nolan, R. H. et al. Causes and consequences of eastern Australia’s 2019–20 season of mega‐fires. Glob. Change Biol. 26, 1039–1041 (2020).32.Boer, M. M., Resco de Dios, V. & Bradstock, R. A. Unprecedented burn area of Australian mega forest fires. Nat. Clim. Change 10, 171–172 (2020).Article 

    Google Scholar 
    33.van Oldenborgh, G. J. et al. Attribution of the Australian bushfire risk to anthropogenic climate change. Nat. Hazards Earth Syst. Sci. 21, 941–960 (2021).Article 

    Google Scholar 
    34.Adams, M. A., Shadmanroodposhti, M. & Neumann, M. Letter to the Editor. Causes and consequences of Eastern Australia’s 2019‐20 season of mega‐fires: a broader perspective. Glob. Change Biol. 26, 3756–3758 (2020).35.Lindenmayer, D. B. & Taylor, C. New spatial analyses of Australian wildfires highlight the need for new fire, resource, and conservation policies. Proc. Natl Acad. Sci. USA 117, 12481–12485 (2020).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    36.Lindenmayer, D. B., Hobbs, R. J., Likens, G. E., Krebs, C. J. & Banks, S. C. Newly discovered landscape traps produce regime shifts in wet forests. Proc. Natl Acad. Sci. USA 108, 15887–15891 (2011).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    37.Taylor, C., McCarthy, M. A. & Lindenmayer, D. B. Nonlinear effects of stand age on fire severity. Conserv. Lett. 7, 355–370 (2014).Article 

    Google Scholar 
    38.Collins, L., Griffioen, P., Newell, G. & Mellor, A. The utility of Random Forests for wildfire severity mapping. Remote Sens. Environ. 216, 374–384 (2018).Article 

    Google Scholar 
    39.Gibson, R., Danaher, T., Hehir, W. & Collins, L. A remote sensing approach to mapping fire severity in south-eastern Australia using sentinel 2 and random forest. Remote Sens. Environ. 240, 111702 (2020).Article 

    Google Scholar 
    40.Collins, L., Bradstock, R. & Penman, T. Can precipitation influence landscape controls on wildfire severity? A case study within temperate eucalypt forests of south-eastern Australia. Int. J. Wildland Fire 23, 9–20 (2014).Article 

    Google Scholar 
    41.Price, O. F. & Bradstock, R. A. The efficacy of fuel treatment in mitigating property loss during wildfires: insights from analysis of the severity of the catastrophic fires in 2009 in Victoria, Australia. J. Environ. Manag. 113, 146–157 (2012).Article 

    Google Scholar 
    42.Storey, M., Price, O. & Tasker, E. The role of weather, past fire and topography in crown fire occurrence in eastern Australia. Int. J. Wildland Fire 25, 1048–1060 (2016).Article 

    Google Scholar 
    43.Bradstock, R. A., Hammill, K. A., Collins, L. & Price, O. Effects of weather, fuel and terrain on fire severity in topographically diverse landscapes of south-eastern Australia. Landsc. Ecol. 25, 607–619 (2010).Article 

    Google Scholar 
    44.Taylor, C., Blanchard, W. & Lindenmayer, D. B. Does forest thinning reduce fire severity in Australian eucalypt forests? Conserv. Lett. https://doi.org/10.1111/conl.12766 (2020).45.Lydersen, J. M. et al. Evidence of fuels management and fire weather influencing fire severity in an extreme fire event. Ecol. Appl. 27, 2013–2030 (2017).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    46.Gómez-González, S., Ojeda, F. & Fernandes, P. M. Portugal and Chile: longing for sustainable forestry while rising from the ashes. Environ. Sci. Policy 81, 104–107 (2018).Article 

    Google Scholar 
    47.Bowman, D. M. J. S. et al. Human–environmental drivers and impacts of the globally extreme 2017 Chilean fires. Ambio 48, 350–362 (2019).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    48.Jackson, W. Fire, air, water and earth–an elemental ecology of Tasmania. Proc. Ecol. Soc. Aust. 3, 9–16 (1968).
    Google Scholar 
    49.Tolhurst, K. G. & McCarthy, G. Effect of prescribed burning on wildfire severity: a landscape-scale case study from the 2003 fires in Victoria. Aust. For. 79, 1–14 (2016).Article 

    Google Scholar 
    50.Gammage, B. The Biggest Estate on Earth: How Aborigines Made Australia (Allen & Unwin, 2011).51.Dargavel, J. Views and perspectives: why does Australia have ‘forest wars’? Int. Rev. Environ. Hist. 4, 33–51 (2018).Article 

    Google Scholar 
    52.Kanowski, P. J. Australia’s forests: contested past, tenure-driven present, uncertain future. For. Policy Econ. 77, 56–68 (2017).Article 

    Google Scholar 
    53.Australian Forest and Wood Products Statistics Mar-Jun 2019 (Australian Bureau of Agricultural and Resource Economics and Sciences, 2019).54.Ferguson, I. Australian plantations: mixed signals ahead. Int. For. Rev. 16, 160–171 (2014).
    Google Scholar 
    55.Raison, R. & Squire, R. Forest Management in Australia: Implications for Carbon Budgets Technical Report 32 (Australian Greenhouse Office, 2008).56.Proctor, E. & McCarthy, G. Changes in fuel hazard following thinning operations in mixed-species forests in East Gippsland, Victoria. Aust. For. 78, 195–206 (2015).Article 

    Google Scholar 
    57.NSW Regional Forest Agreements Assessment of Matters Pertaining to Renewal of Regional Forest Agreements (NSW Department of Primary Industries, 2018).58.Evans, J. spatialEco_. R package version 1.3-1 https://github.com/jeffreyevans/spatialEco (2020).59.Farr, T. G. et al. The shuttle radar topography mission. Rev. Geophys. https://doi.org/10.1029/2005RG000183 (2007).60.Dowdy, A. J. Climatological variability of fire weather in Australia. J. Appl. Meteorol. Climatol. 57, 221–234 (2018).Article 

    Google Scholar 
    61.Hodges, J. S. & Reich, B. J. Adding spatially-correlated errors can mess up the fixed effect you love. Am. Stat. 64, 325–334 (2010).Article 

    Google Scholar 
    62.Rabus, B., Eineder, M., Roth, A. & Bamler, R. The shuttle radar topography mission—a new class of digital elevation models acquired by spaceborne radar. ISPRS J. Photogramm. Remote Sens. 57, 241–262 (2003).Article 

    Google Scholar 
    63.Kuhn, M. et al. caret: Classification and regression training. R package version 6.0-77 (2018).64.De Reu, J. et al. Application of the topographic position index to heterogeneous landscapes. Geomorphology 186, 39–49 (2013).Article 

    Google Scholar  More

  • in

    A multilevel carbon and water footprint dataset of food commodities

    With the aim of obtaining a useful tool for stakeholders to explore, assess and use the information related to CF and WF of food commodities, we implemented a multi-step methodological framework to create an easy to use CF and WF repository of food items, which can be expanded or modified for tailored requirements using a science based approach for each step of its creation (Fig. 1).The overall methodological procedure is made of 3 steps. Step 1 is related to CF and WF data collection from literature, eligibility check and harmonization, to create the base level of the database (level 1). Step 2 is about the creation of other three informative layers with higher level of data aggregation. These might be the data of direct interests for stakeholders of the food systems. A rigorous statistical approach is proposed to evaluate the quality of analysed data and criteria for the correct use of data, based on statistical evidence, are set and applied to the data. In Step 3 the complex set of statistical evaluations, done for each informative level, is summarized into an easy to use dataset reporting values of CF and WF of food items. Thanks to its multilevel approach, the database provides a flexible tool for different purposes and levels of expertise. Each step is based on transparent procedures that allow users to replicate, to implement and to modify each level of the database.The three steps are described in details in the following paragraphs.Step 1 – CF and WF data collection, harmonization and compilation of level 1 of SEL databaseThe first step was to review the published data of CF and WF of food commodities. We revised literature data published till January 2020 including peer-reviewed papers, conference proceedings, public reports or studies where methods of data collection and handling were described, and Environmental Product Declarations (EPDs).For the collection of CF data, a significant input came from the systematic review of Clune et al.11, who reviewed 369 published studies, covering the period 2000–2015, proving 168 varieties of fresh food products based on 1718 data entries. An additional source of studies reporting both CF and WF was the Double Pyramid database 2016 built on the previous version 201414 (BCFN2016 https://www.barillacfn.com/en/publications/double-pyramid-2016/), which reports 1202 CF values from 468 sources covering 240 food items and 309 WF values from 136 data sources covering 152 food items (reference period 1998–2016). Part of CF data of this latter dataset, up to year 2014, were already revised and included in the Clune et al.11 study. To avoid double counting from these two sources, data from both sources were checked for authorship, plus the CF reported data were compared and if in disagreement the original data were checked in the paper. Data reported in the Double Pyramid database 2016 but not present in Clune et al.11, mostly referring to processed food, were checked for eligibility applying the exclusion criteria reported in Table 2 and if considered eligible they were included in the present database.Table 2 Exclusion criteria to be applied to CF and WF data collected from literature to create SEL database level 1.Full size tableA new literature search was done to integrate data not covered by the previous reviews using three online bibliographic sources SCOPUS (https://www.scopus.com/home.uri), Google Scholar (https://scholar.google.com/) and the Google search engine (https://www.google.com/), which was concluded in January 2020. To search the bibliographic sources, we used the combinations of two sets of words. The first set referred to “impacts” and included the following words: carbon footprint, water footprint, virtual water, greenhouse gases, environmental impact, life cycle, LCA, LCI, EPD. The second set referred to “products” and included words like food, beverages, fish, shellfish, crops, vegetables, fruit, meat, eggs, dairy. EPDs were updated based on data reported on the International EPD’s System database (www.environdec.com). Added studies were evaluated for exclusion criteria (Table 2).The final list of data from single studies reported in the SEL database was distributed as follow: 3349 CF data, including 1397 data of fresh food commodities already reported in Clune et al.11, 803 CF data originally reported in Double Pyramid 2016 database, which were checked for eligibility and harmonized, and 701 CF data added with this study; 938 WF data, including 288 WF data originally reported in double pyramid 2016 and 650 WF data added with this study.All the CF and WF values extracted from the collected studies were assigned a group, a typology, a sub-typology when this applied, and an item name (Table 1) and were recorded on an excel sheet including the following additional information: type of bibliographic source, full reference, publication year, system boundary at distribution, country of production, region of production, relevant notes, presence of the same value in other data collections (i.e. Clune et al.11 or Double Pyramid 2016).After data collection, CF data where further analysed and handled for the harmonization of the system boundary following the approach as reported in Clune et al.11. The system boundary considered in the SEL database is the distribution centre to consumers located in the country of origin. It hence excludes post market phase like for example cooking. The system boundaries at distribution have a wide range of specifications in the published papers. We accepted regional distribution centre (RDC), international distribution centre (IDC), European distribution centre (EDC), country ports of final destination, warehouses, wholesalers, city markets, up to retailers. For the specific case of international transport, which includes also the emissions for shipping to regional distribution centres of the hosting country, rather than excluding the studies we have created a dedicated typology “imported”, which however includes very few studies. The imported commodity is indicated in the SEL database by a capital letter “I”.If CF values collected from literature referred to the system boundary “farm gate” or “slaughterhouse”, additional post farm gate GHG emissions were added as proposed by Clune et al.11. These additional emissions also included packaging if not reported in the publication. We adopted the median value for distribution to RDC (0,09 kg CO2/kg or kg CO2/L) and packaging (0,05 kg CO2/kg or kg CO2/L) used by Clune et al.11. Data referring to slaughterhouse emissions were also taken from the same publication.To address the share of WF for packaging and transportation to the market we analysed 256 EPD’s. No significant increase of WF in downstream stages associated to packaging and distribution was found. Thus we included in the analysis all system boundaries with the exception of ‘cooking’, human excretion and waste disposal.To transform CF values from carcass or live weight to bone free meat, ratios reported in in Clune et al.11 were used, while the ratio carcass weight to bone free meat for buffalo meat (1:0.684) was estimated from the studies of Gerber et al.15, Gurunathan et al.16, Li et al.17.The final version of CF and WF data, after data handling was recorded in a sheet where, in addition to the information mentioned above for each study, we also reported additional post farm gate emissions (transport T, slaughtering S, packaging P) or meat conversion factors (cf) when applying. This complete dataset represents the level 1 information sheet of the SEL database (Fig. 1).A change in 100-year global warming potential (GWP) factors provided by the International Panel on Climate Change reports AR3 (2001), AR4 (2007) and AR5 (2013) might have introduced additional variability in the studies of LCA on which CF data of level 1 are based. The extent of such variability is difficult to quantify as it depends on the relative weight of each GHG on the total CF of the item. However, the analysis of some item groups (tomato, rice, beef meat, chicken meat), used as sample test, did not show any clear trend of CF average reduction or increase over the years (1998–2020), suggesting that differences among production processes and conditions were the dominant source of CF variability.Step 2 – Creation of derived CF and WF datasets with higher aggregation level (2, 3 and 4)This step provides footprints of food commodities with a higher level of aggregation corresponding to food items, typologies and sub-typologies (Table 1), which might be of particular interest for different kinds of stakeholders. The item represents the higher detail of aggregated footprint data of a food commodity and it is often the most desirable information for food impact analysis and dietary assessments. We propose here a methodological framework to evaluate the uncertainty associated to data used to represent food items. The methodological framework will support the users in their choice of the optimal value to represent the food item on the basis of the available data present in the database. It also would easily allow for expansion and implementation of food item values.Level 2, SEL CF ITEM & SEL WF ITEM datasetsThese two datasets (CF and WF) report a comprehensive set of descriptive statistics for the list of food items present in the database. The population of data used to attribute a value and uncertainty to a food item is made of all the CF or WF values classified with that “item entry name” in the dataset of level 1 of SEL database.The item data population is described in level 2 by the following set of information.Size: number of studies used for the analysis of item population (n).Location and central-tendency measures: in terms of mean, median, first quartile (Q1) and third quartile (Q3), including also the minimum (Min) and maximum (Max) observed values.Variability measures: Standard Deviation (SD) Coefficient of Variation (CV) as absolute and relative dispersion indexes, the Interquartile Range (IQR) and the Median Absolute Deviation (MAD) as more robust indexes of variability.Shape measures: Skewness (SK), kurtosis (KU) indexes and Shapiro-Wilk normality test (SW test).The median of the item data population was chosen to assign a value of central tendency which represents the item. The median offers the advantage of not being influenced by the presence of outliers which misrepresent the value of the mean, making it a less meaningful measure. As such, the median represents the location estimator with the highest breakdown point (equal to 0.5) and with “the maximum proportion of observations that can be contaminated (i.e., set to infinity) without forcing the estimator to result in a “false” and not-representative value18,19. With these properties, the median also represents the most appropriate measure of central tendency to describe both positively and negatively skewed distributions20.To describe the uncertainty associated to the position value (median) we used descriptive statistic data relative to dispersion and shape of item data distribution. In particular, we used skewness and kurtosis indexes, which gave us information on the existence of symmetric or skewed distributions, as well as on their ‘peakedness’ measured as relative to the weights of the tails21, thus enabling us to evaluate (for each distribution) the importance of extreme values over the entire set of data and the related level of dispersion (platykurtic versus leptokurtic distributions). We completed the shape analysis by carrying out the Shapiro-Wilk test22,23 (4 ≤ n ≤ 2000).To define the uncertainty of the item value we created an assignment method based on a combination of the three quality flags (Fig. 2).Fig. 2Method for attribution of CF (or WF) value to a food item based on data quality flags. The scheme shows the procedure applied to evaluate the level of uncertainty associated to CF or WF value of a food item and how this information is used to decide the best value that should be used to represent the item. Three quality flags related to a statistical aspect of the data population are calculated to attribute the level of uncertainty. Each flag has different level of quality, red being the worst, green the best. Flags are then combined and expert judgement is used to associate a suggestion for data use to each flag combination. If the item median value is characterized by high uncertainty it poorly represents the item and caution is needed to use this data to represent the food commodity, the users is therefore redirected to a higher level of aggregation such as the sub-typology or the typology which includes the analysed item.Full size imageFlag 1, evaluation of the ‘size’ (n) of the “item data population”

    Red if n  More

  • in

    Evaluation of the performance and gas emissions of a tractor diesel engine using blended fuel diesel and biodiesel to determine the best loading stages

    Performance evaluation of tractor engineThe performance of the direct-injection turbocharger diesel engine for the Kubota M-90 tractor was evaluated at different engine loads with the use of different biodiesel blends with mineral diesel to maximize the engine efficiencies of PTO torque, BP, BMEP, and BTE, while also minimizing specific fuel consumption, gas emissions, and, finally, fossil fuel consumption. The results in Table 1 showed a significant effect of engine load percentage and fuel blend percentage and their interaction on all the studied characters.Table 1 Effects of engine load percentage and fuel blends percentage on power take-off speed, power take-off power, power take-off torque, engine speed, brake power, brake specific fuel consumption, brake thermal efficiency, fuel consumption, brake mean effective pressure, O2 percentage, CO2 percentage, CO, NO, and SO2.Full size tableEngine speedFor the effects of engine load percentage on engine speed, the results in Table 1 indicated the relationship between engine load percentage and engine speed in rpm was inversely proportional. The maximum engine speed was recorded at a loading of 0%, and the lowest speed was at a loading of 100% (Table 1). Using 100% diesel fuel (B0) gave the highest engine speed among all treatments, and the lowest speed was recorded with 100% biodiesel fuel (B100). The significant interaction between engine load, percentage, and engine speed in rpm was inversely proportional, as shown in Fig. 2a. The maximum engine speed was 2854 rpm at the loading stage of 0% using 100% diesel fuel (B0), while the minimum speed was 276 rpm at the loading stage of 100% using 100% biodiesel fuel (B100), as shown in Table 2. At all loadings, stages with increased biodiesel percentages in the blended fuel samples resulted in decreased engine speed because the heating value of biodiesel is lower than that of mineral diesel32,33,34,35.Figure 2Effects of engine load on (a) engine speed, (b) PTO torque, (c) PTO speed on PTO torque, (d) engine load on brake power, (e) engine speed on brake power, (f) engine load on fuel consumption, (g) engine speed on fuel consumption, (h) engine load on (BSFC). (i) engine speed on (BSFC), (j) engine load on BMEP, (k) engine speed on BMEP, (l) engine speed on BTE and (m) engine load on BTE.Full size imageTable 2 Interaction effects between engine load percentage and fuel blends percentage on power take-off speed, power take-off power, power take-off torque, engine speed, brake power, brake specific fuel consumption, brake thermal efficiency, fuel consumption, brake mean effective pressure, O2 percentage, CO2 percentage, CO, NO, and SO2.Full size tablePTO torqueThe results presented in Table 1 showed the significant effect of load percentage on PTO torque, where a loading stage of 75% achieved the highest PTO torque among all loading stage percentages, and the lowest value for PTO torque was obtained with a loading stage of 0%. Regarding the effects of fuel blend percentage on PTO torque, the results in Table 1 indicated that the fuel blends significantly affected PTO torque, and the highest value of this trait was achieved with B0 blend (100% diesel fuel) in comparison to the other blend percentages, while the lowest PTO torque was given with 100% biodiesel. The relationship between the torque of PTO shaft, Nm, and PTO load in percentage, and speed in rpm are shown in Fig. 2b,c, respectively. Increased PTO load resulted in decreased PTO speed and increased PTO torque until maximum torque values were reached for all blended fuel samples at a loading stage of 75% and a speed between 316 and 332 rpm, and then the torque decreased incrementally until the maximum loading stage was reached at a minimum PTO speed. Table 2 presents the results of the interactions between engine load percentage and fuel blend percentage, indicating that the maximum PTO torque was 663 Nm at a loading stage of 75% and PTO speed of 332 rpm, using 100% diesel fuel (B0), and the minimum PTO torque was 98.51 Nm at loading stage of 0% and PTO speed of 699.19, rpm using 100% diesel fuel (B0). At all loading stages, increasing biodiesel percentage in the blended fuel samples resulted in decreased PTO torque, which, due to the heating value of biodiesel, was lower than that of diesel fuel34,35,36. The values for PTO torque were close at different biodiesel percentages at the loading stage 0%, but engine performance cannot be judged at the no load stage with minimum torque, so the PTO load should be increased to see the difference between fuel types.Engine brake powerData in Table 1 showed that engine load percentage significantly affected BP, kW, such that engine load of 50% achieved the highest BP, and the lowest value for BP was obtained with 100% load. The results given in Table 1 show that fuel blend percentage was significantly affected BP, whereas the highest value for this trait was achieved with the 0% blend (100% diesel fuel) in comparison to the other blend percentage, while the lowest BP was given with 100% biodiesel. The interactions among BP, engine load, and engine speed were significant and were as presented in Fig. 2d, e. Moreover, increased engine load resulted in decreased engine speed and increasing BP until the highest value was reached at the loading stage of (50%) at engine speeds of 2034–2137 rpm for all fuel types shown in Table 2, which was due to the increased mass of burning fuel. The BP decreased until engine stop at a maximum loading stage of 100%, which was due to the effects of higher frictional force at the maximum loading stage33,34,35,37. The maximum BP was 46.2 kW at a loading stage of 50% and a speed of 2137 rpm at 100% diesel fuel (B0), while the minimum BP was 5.82 kW at a maximum loading stage of 100% and a speed of 276 rpm using 100% biodiesel (B100). At all loading stages, increased biodiesel percentages resulted in decreased BP because the calorific value of biodiesel was lower than that of diesel, as noted.Fuel consumptionData in Table 1 showed that engine load percentage affected significantly fuel consumption; 50% load achieved the highest fuel consumption, and the lowest value for fuel consumption was obtained for 0% load. The results in Table 1 showed that fuel blends percentage significantly affected fuel consumption, and the highest value of fuel consumption was recorded with the B100 blend (100% biodiesel fuel), and the lowest was given with the B0 blend of 100% diesel fuel. The significant interaction between fuel consumption, kg/h (Kilogram per hour) and each of engine load and speed are shown in Fig. 2f,g and the interaction between engine load percentage and fuel blend percentage are shown in Table 2, such that increased engine load resulted in decreased engine speed and increased fuel consumption until reaching the maximum value at a loading stage of 50% at maximum BP, which was because of the increased mass of burning fuel at this stage, and then the fuel consumption decreasing until reaching maximum loading33,34,35. The maximum fuel consumption was 18.24 kg/h at an engine speed of 2034.35 rpm using 100% biodiesel B100 at a loading stage of 50%. The minimum fuel consumption was 9.76 kg/h at an engine speed of 2692.9 rpm using 100% biodiesel B100 at a no-load stage. At loading stages between 0 and 100%, increasing biodiesel percentage resulted in increased fuel consumption, which is because the density of biodiesel was higher than that of diesel fuel.Brake specific fuel consumptionThe results in Table 1 indicated that engine load percentage significantly affected BSFC, such that the highest BSFC was achieved with an engine load of 100%, while the lowest value was obtained with an engine load of 50%. Other results shown in Table 1 indicated that increased biodiesel percentage in fuel blends produced significantly increased BSFC, and the maximum value of BSFC was given with B100 (100% biodiesel fuel); the lowest was seen with B0 percentage (100% diesel fuel). The relationship of interaction between (BSFC), (Kilogram per kilowatt hour) kg/kWh, engine load, and engine speed are shown in Fig. 2h,i, indicating that increased engine load resulted in decreased engine speed and BSFC until the minimum value was reached at a loading stage of 50% at maximum BP and fuel consumption. Then, the BSFC increased until it reached maximum value at a maximum loading stage of 100%, which was due to the highest frictional force and the lowest BP occurring at this loading stage33,34,35. The maximum (BSFC) was 1.95 kg/kWh at a loading stage of 100% and an engine speed of 276 rpm using 100% biodiesel fuel (B100); the minimum BSFC was 0.32 kg/kWh at an engine speed of 2137 rpm and a loading stage of 50% using 100% diesel fuel (B0), as shown in Table 2. At all loading stages, increased biodiesel percentages resulted in increased BSFC, except at the no loading stage. This is because the fuel consumption for biodiesel was higher than that for mineral diesel. Additionally, the calorific value of biodiesel was lower than that for diesel fuel, and the viscosity of the biodiesel was higher than that for mineral diesel, which leads to unfavorable pumping and spray characteristics36,38.Brake mean effective pressureThe results in Table 1 indicated a significant effect of engine load percentage on BMEP, such that the highest BMEP was given by an engine load of 75%, and the other side the lowest value for BMEP was obtained for an engine load of 0%. The results given in the same table indicated that increased biodiesel percentage in fuel blends significantly decreased BMEP. The maximum value of BMEP was given with the 0 blend (100% diesel fuel), and the lowest BMEP was given with 100% biodiesel fuel. The interaction between BMEP, kPa, engine load, and engine speed are shown in Fig. 2j,k. The data in Table 2 show the interaction between engine load percentage and fuel blend percentage. It can be clearly seen that increased engine load resulted in decreased engine speed and increased BMEP until the maximum value was reached at a loading stage of 75% at engine speeds between 1293 and 1355 rpm. The BMEP decreased with slight values until reaching the maximum loading stage at minimum engine speeds between 276 and 288 rpm. The maximum BMEP was 625 kPa at an engine speed of 1355 rpm, using 100% diesel fuel (B0) at a loading stage of 75%. The minimum BMEP was 92 kPa at an engine speed of 2692 rpm, using 100% biodiesel (B100) at no loading stage. At all loading stages, increased biodiesel percentage resulted in decreased BMEP, except that there was no loading stage at which the BSFC did not change with different biodiesel percentages. This is because the effect of increased engine speed resulted in a decreased time remaining for combustion and resulted in an insufficient motion of air in the cylinder. Both effects decreased the combustion efficiency and the BMEP values, as shown in Fig. 2j according to33,34,35,39.Brake thermal efficiencyThe results shown in Table 1 cleared that engine load percentage significantly affected BTE; the highest BTE was recorded with a 50% load, and the lowest one was given with a 0% load percentage. Table 1 also indicated that fuel blend percentage significantly affected BTE, and the maximum value for BTE was given with 0 blend (100% diesel fuel). The lowest value was obtained with 100% biodiesel (B100). The relationship between BTE and engine load and engine speed are shown in Figs. 2l,m. Increased engine load caused decreased engine speed and increased BTE until the maximum value was reached at a loading stage of 50%; BTE decreased until a minimum value was reached at a maximum loading stage of 100% and minimum engine speeds between 276 and 288 rpm. The maximum BTE was 26% at a speed of 2137.17 rpm using 100% diesel fuel (B0) at loading stage of 50%. The minimum BTE was 4.4% at speed of 276 rpm, using 100% biodiesel (B100) at the maximum loading stage of 100%, as shown in Table 2. For all loadings stages increased biodiesel percentage resulted in decreased BTE, except at the no loading and maximum loading stages, where the BTE did not change with different biodiesel percentages. This is because the density of waste frying oil biodiesel was higher than that of diesel fuel, while its calorific value and volatility was lower, such that the combustion characteristics of biodiesel were lower than those of diesel fuel34,35,36,40.Gas emissions qualityThe results in Table 1 showed that an engine load of 0% significantly increased O2 emissions, and fuel blends of 100% biodiesel also increased O2 emissions relative to the other treatments. The relationships between O2 emissions, biodiesel percentage, engine load, and engine speed are shown in Fig. 3a,b. Increased engine load resulted in decreased O2 emissions because of the increased engine consumption of O2 to optimize fuel combustion, while increased engine speed resulted in increased O2 emissions. The maximum O2 emissions were 15.3% at the minimum loading stage for all fuel blends, while the minimum O2 emissions were 4.3% at maximum loading stage for 100% diesel fuel, as presented in Table 2. At all loading stages, increased biodiesel percentage in the blended fuel samples resulted in increased O2 emissions, except at the no loading stage, where the oxygen content in the biodiesel was about 10 to 12% higher than that of diesel fuel34,35,41,42.Figure 3Effects of engine load on (a) engine load on O2 emissions, (b) engine speed on O2 emissions, (c) engine load on CO2 emissions, (d) engine speed on CO2 emissions, (e) engine load on CO emissions, (f) engine speed on CO emissions, (g) engine load on NO emissions, (h) engine speed on NO emissions, (i) engine load on SO2 emissions and (j) engine speed on SO2 emissions.Full size imageThe results in Table 1 showed that engine loading of 100% significantly increased CO2 and CO emissions, and the fuel blend of 100% diesel fuel (B0) increased CO2 and CO emissions relative to other treatments. The relationship between CO2 emissions, engine load, and engine speed are presented in Fig. 3c,d and Table 2. Increased engine load resulted in increased CO2 emissions until a maximum loading stage of 100% was reached, while increased engine speed resulted in decreased CO2 emissions. The maximum value for CO2 emissions was 12.3% at the maximum loading stage using 100% diesel (B0), and the minimum CO2 emissions was 4.2% at the no loading stage for all fuel blends. At loading stages of 50, 75, and 100%, increased biodiesel percentage in the blended fuel samples resulted in decreased CO2 emissions, which due to the oxygen content in the biodiesel was about 10–12%. A higher oxygen content contributes to increasing ignition quality and decrease CO2 emissions35,36,41.The relationship between CO emissions, biodiesel percentage, engine load, and engine speed are shown in Fig. 3e,f. For all tested fuel samples, increased engine load resulted in a greater increase in CO emissions, until a maximum load was reached except at 100% biodiesel (B100), which increased slightly. Increased engine speed resulted in a sharp decrease in CO emissions until the maximum speed was reached, except at B100, which decreased slightly43,44,45. The maximum CO emissions value was 369 ppm at the maximum loading stage using 100% diesel fuel (B0), while the minimum CO emissions was 69 ppm at the minimum loading stage using 100% biodiesel fuel (B100). At all loading stages, increased biodiesel percentage resulted in decreased CO emissions except that at loading stages of 25% and 50%, for which the values of CO emissions were close. This was because high oxygen content in biodiesel increases ignition quality and decreases CO emissions, so increased biodiesel percentages reduce environmental pollution36,43,44,45,46. The results in Table 2 showed that an engine load of 75% significantly increased NO emissions, and 100% biodiesel fuel (B100) increased NO emissions relative to the other treatments.The relationship between NO emissions, engine load, and engine speed are shown in Fig. 3g,h. Increased engine load resulted in decreased engine speed and increased NO emissions until the maximum value was reached at a loading stage of 75%. NO emissions decreased until reach a loading stage of 100% was reached with a minimum engine speed. The maximum NO emissions were 593 ppm at a loading stage of 75% using 100% biodiesel fuel (B100), while the minimum NO emissions were 266 ppm at the minimum loading stage using (B100) as showed in Table 1. At all loading stages, increased biodiesel percentages in the blended fuel samples resulted in increased NO emissions, except at the no loading stage, which was due to the increased burned fuel, which resulted in increased cylinder temperature. This was responsible for thermal NOx formation. Higher flame and cylinder temperatures with high oxygen content in the biodiesel led to higher NOx36,43,44,45,46. Table 2 shows that the engine load of 100% significantly increased SO2 emissions, and 100% diesel fuel increased SO2 emissions, relative to the other treatments.The relationship between SO2 emissions, diesel percentage, engine load, and engine speed are shown in Fig. 3I,j and Table 1. Increased engine load resulted in increased SO2 emissions, and increased engine speed resulted in decreased SO2 emissions. There were no SO2 emissions by using 100% biodiesel (B100). The maximum SO2 emissions was 21 ppm at maximum loading stage using 100% diesel (B0). At all loading stages increasing biodiesel percentage in the blended fuel resulted in decreasing SO2 emissions43,44,45,46. More

  • in

    Whole genome sequencing reveals high differentiation, low levels of genetic diversity and short runs of homozygosity among Swedish wels catfish

    Allendorf FW (2017) Genetics and the conservation of natural populations: allozymes to genomes. Mol Ecol 26(2):420–430CAS 
    PubMed 
    Article 

    Google Scholar 
    Allendorf FW, Hohenlohe PA, Luikart G (2010) Genomics and the future of conservation genetics. Nat Rev Genet 11(10):697–709CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Allendorf FW, Luikart G (2007) Conservation and the genetics of populations. Blackwell Publishing, Oxford, UK
    Google Scholar 
    Allendorf FW, Luikart G, Aitken SN (2013) Conservation and the genetics of populations, 2nd ed. Blackwell Publishing, Oxford, UK
    Google Scholar 
    Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic Local Alignment Searsh Tool. J Mol Biol 215(3):403–410CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Andrews S (2010) FastQC: a quality control tool for high throughput sequence data. http://www.bioinformatics.babraham.ac.uk/projects/fastqc/ArtDatabanken (2020) Mal Silurus glanis. https://artfakta.se/naturvard/taxon/100131Begun DJ, Holloway AK, Stevens K, Hillier LW, Poh YP, Hahn MW et al. (2007) Population genomics: Whole-genome analysis of polymorphism and divergence in Drosophila simulans. PLOS Biol 5(11):2534–2559CAS 
    Article 

    Google Scholar 
    Borger T, Kjellberg A (2006) Malprovfiske i Emån 2006 [Fish survey for wels catfish in Emån 2006; in Swedish]. Länsstyrelsen i Kalmar län informerar. Meddelande 2006:16. Länsstyrelsen i Kalmar Län
    Google Scholar 
    Brandies P, Peel E, Hogg CJ, Belov K (2019) The value of reference genomes in the conservation of threatened species. Genes 10(11):846CAS 
    PubMed Central 
    Article 
    PubMed 

    Google Scholar 
    Bylak A, Kukuła K (2018) Importance of peripheral basins: implications for the conservation of fish assemblages. Aquat Conserv Mar Freshw Ecosyst 28:1055–1066Article 

    Google Scholar 
    Bylak A, Kukuła K (2020) Conservation of fish communities: Extending the ‘research life cycle’ by achieving practical effects. Aquat Conserv Mar Freshw Ecosyst 30:1741–1746Article 

    Google Scholar 
    Calles EO, Greenberg LA (2005) Evaluation of nature-like fishways for re-establishing connectivity in fragmented salmonid populations in the River Emån. River Res Appl 21:951–960Article 

    Google Scholar 
    Carol J, Zamora L, García-Berthou E (2007) Preliminary telemetry data on the movement patterns and habitat use of European catfish (Silurus glanis) in a reservoir of the River Ebro, Spain. Ecol Freshw Fish 16:450–456Article 

    Google Scholar 
    Ceballos FC, Joshi PK, Clark DW, Ramsay M, Wilson JF (2018) Runs of homozygosity: windows into population history and trait architecture. Nat Rev Genet 19(4):220–235CAS 
    PubMed 
    Article 

    Google Scholar 
    Channell R (2004) The conservation value of peripheral populations: The supporting science. In: Hooper TD (ed.) Proceedings of the species at risk. Pathways to Recovery Conference. Conference Organizing Committee, Victoria, BCChannell R, Lomolino MV (2000) Dynamic biogeography and conservation of endangered species. Nature 403:84–86CAS 
    PubMed 
    Article 

    Google Scholar 
    Copp GH, Britton JR, Cucherousset J, Garcia-Berthou E, Kirk R, Peeler E et al. (2009) Voracious invader or benign feline? A review of the environmental biology of European catfish Silurus glanis in its native and introduced ranges. Fish Fish 10(3):252–282Article 

    Google Scholar 
    Cucherousset J, Horky P, Slavik O, Ovidio M, Arlinghaus R, Bouletreau S et al. (2018) Ecology, behaviour and management of the European catfish. Rev Fish Biol Fish 28(1):177–190Article 

    Google Scholar 
    Danecek P, Auton A, Abecasis G, Albers CA, Banks E, DePristo MA et al. (2011) The variant call format and VCFtools. Bioinformatics 27(15):2156–2158CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    DePristo MA, Banks E, Poplin R, Garimella KV, Maguire JR, Hartl C et al. (2011) A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nat Genet 43(5):491–498CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Eckert CG, Samis KE, Lougheed SC (2008) Genetic variation across species’ geographical ranges: the central-marginal hypothesis and beyond. Mol Ecol 17(5):1170–1188CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Falush D, Stephens M, Pritchard JK (2003) Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies. Genetics 164(4):1567–1587CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Frankham R, Ballou JD, Briscoe DA (2010) Introduction to conservation genetics, 2 edn. Cambridge University Press, CambridgeBook 

    Google Scholar 
    Frankham R, Ballou JD, Eldridge MDB, Lacy RC, Ralls K, Dudash MR et al. (2011) Predicting the probability of outbreeding depression. Conserv Biol 25(3):465–475PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Fraser DJ, Bernatchez L (2001) Adaptive evolutionary conservation: towards a unified concept for defining conservation units. Mol Ecol 10(12):2741–2752CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Freyhof J (2010). Silurus glanis (errata version published in 2018). The IUCN red list of threatened species. https://www.iucnredlist.org/species/40713/136595620#errataGarcía-Alcalde F, Okonechnikov K, Carbonell J, Cruz LM, Götz S, Tarazona S et al. (2012) Qualimap: evaluating next-generation sequencing alignment data. Bioinformatics 28:2678–2679PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    Garner BA, Hand BK, Amish SJ, Bernatchez L, Foster JT, Miller KM et al. (2016) Genomics in conservation: case studies and bridging the gap between data and application. Trends Ecol Evol 31(2):81–83PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Gibson J, Newton ME, Collins A (2006) Extended tracts of homozygosity in outbred human populations. Hum Mol Genet 15(5):789–795CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Guillerault N, Delmotte S, Bouletreau S, Lauzeral C, Poulet N, Santoul F (2015) Does the non-native European catfish Silurus glanis threaten French river fish populations? Freshw Biol 60(5):922–928Article 

    Google Scholar 
    Havs-och-vattenmyndighetens. (2017) Åtgärdsprogram för mal (Silurus glanis). [Swedish Agency for Marine and Water Management. Action plan for wels catfish in Sweden; in Swedish]. Havs- och Vattenmyndighetens Rapp 2017:33
    Google Scholar 
    Helyar SJ, Hemmer-Hansen J, Bekkevold D, Taylor MI, Ogden R, Limborg MT et al. (2011) Application of SNPs for population genetics of nonmodel organisms: new opportunities and challenges. Mol Ecol Resour 11:123–136PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Hendricks S, Anderson EC, Antao T, Bernatchez L, Forester BR, Garner B et al. (2018) Recent advances in conservation and population genomics data analysis. Evol Appl 11(8):1197–1211PubMed Central 
    Article 

    Google Scholar 
    Hohenlohe PA, Funk WC, Rajora OP (2020) Population genomics for wildlife conservation and management. Mol Ecol 30:62–82PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Hohenlohe PA, Rajora OP (eds) (2020) Population genomics: wildlife. Population Genomics. Springer, ChamHöglund J (2009) Evolutionary Conservation Genetics. Oxford University Press, OxfordBook 

    Google Scholar 
    Katoh K, Rozewicki J, Yamada KD (2019) MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization. Brief Bioinform 20:1160–1166CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Kimura M (1983) The neutral theory of molecular evolution. Cambridge University Press, CambridgeBook 

    Google Scholar 
    Krieg F, Triantafyllidis A, Guyomard R (2000) Mitochondrial DNA variation in European populations of Silurus glanis. J Fish Biol 56(3):713–724CAS 
    Article 

    Google Scholar 
    Lamichhaney S, Fuentes-Pardo AP, Rafati N, Ryman N, McCracken GR, Bourne C et al. (2017) Parallel adaptive evolution of geographically distant herring populations on both sides of the North Atlantic Ocean. Proc Natl Acad Sci USA 114(17):E3452–E3461CAS 
    PubMed 
    Article 

    Google Scholar 
    Leigh JW, Bryant D (2015) popart: full-feature software for haplotype network construction (S Nakagawa, Ed.). Methods Ecol Evol 6:1110–1116Article 

    Google Scholar 
    Lesica P, Allendorf FW (1995) When are peripheral-populations valuable for conservation. Conserv Biol 9(4):753–760Article 

    Google Scholar 
    Li H, Durbin R (2009) Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25(14):1754–1760CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N et al. (2009) The sequence alignment/map format and SAMtools. Bioinformatics 25:2078–2079PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A et al. (2010) The genome analysis toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res 20(9):1297–1303CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    McMahon BJ, Teeling EC, Hoglund J (2014) How and why should we implement genomics into conservation? Evol Appl 7(9):999–1007PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Meyermans R, Gorssen W, Buys N, Janssens S (2020) How to study runs of homozygosity using PLINK? A guide for analyzing medium density SNP data in livestock and pet species. BMC Genomics 21:94CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Nathanson JE (1987). Malens utbredning i Sverige. English summary: Distribution of the sheatfish (Silurus glanis) in Sweden. Information från Sötvattenslaboratoriet (Institute of Freshwater Research), DrottningholmPalm S, Prestegaard T, Dannewitz J, Petersson E, Nathanson JE (2008). Genetisk kartläggning av svenska malbestånd [Genetic survey of swedish populations of wels catfish]. Fiskeriverkets Sötvattenslaboratorium, Drottningholm & Uppsala UniversitetPalm S, Vinterstare J, Nathanson JE, Triantafyllidis A, Petersson E (2019) Reduced genetic diversity and low effective size in peripheral northern European catfish Silurus glanis populations. J Fish Biol 95(6):1407–1421PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    R Core Team (2017). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org/Savolainen O, Lascoux M, Merilä J (2013) Ecological genomics of local adaptation. Nat Rev Genet 14(11):807–820CAS 
    PubMed 
    Article 

    Google Scholar 
    Schiffels S, Durbin R (2014) Inferring human population size and separation history from multiple genome sequences. Nat Genet 46(8):919–925CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Shafer ABA, Wolf JBW, Alves PC, Bergström L, Bruford MW, Brannstrom I et al. (2015) Genomics and the challenging translation into conservation practice. Trends Ecol Evol 30(2):78–87PubMed 
    Article 

    Google Scholar 
    Shafer ABA, Wolf JBW, Alves PC, Bergström L, Colling G, Dalen L et al. (2016) Genomics in conservation: case studies and bridging the gap between data and application reply. Trends Ecol Evol 31(2):83–84PubMed 
    Article 

    Google Scholar 
    Shendure J, Ji HL (2008) Next-generation DNA sequencing. Nat Biotech 26(10):1135–1145CAS 
    Article 

    Google Scholar 
    Svensson M, Kjellberg A, Lessmark O, Nathanson JE, Almer B, Wagnström J (2013). Beskrivning av förväntade effekter av återintroduktion av mal i nedre delen av Skräbeåns vattensystem [Description of expected effects of reintroduction of wels catfish in the lower parts of Skräbeåns watersystem]. Ivösjöns FiskevårdsföreningTallmon DA, Luikart G, Waples RS (2004) The alluring simplicity and complex reality of genetic rescue. Trends Ecol Evol 19(9):489–496PubMed 
    Article 

    Google Scholar 
    Taylor HR, Dussex N, van Heezik Y (2017) Bridging the conservation genetics gap by identifying barriers to implementation for conservation practitioners. Global Ecol Conserv 10:231–242Article 

    Google Scholar 
    Triantafyllidis A, Abatzopoulos TJ, Economidis PS (1999a) Genetic differentiation and phylogenetic relationships among Greek Silurus glanis and Silurus aristotelis (Pisces, Siluridae) populations, assessed by PCR-RFLP analysis of mitochondrial DNA segments. Heredity 82:503–509CAS 
    PubMed 
    Article 

    Google Scholar 
    Triantafyllidis A, Krieg F, Cottin C, Abatzopoulos TJ, Triantaphyllidis C, Guyomard R (2002) Genetic structure and phylogeography of European catfish (Silurus glanis) populations. Mol Ecol 11(6):1039–1055CAS 
    PubMed 
    Article 

    Google Scholar 
    Triantafyllidis A, Ozouf-Costaz C, Rab P, Suciu R, Karakousis Y (1999b) Allozyme variation in European silurid catfishes, Silurus glanis and Silurus aristotelis. Biochem Syst Ecol 27(5):487–498CAS 
    Article 

    Google Scholar 
    Vittas S, Drosopoulou E, Kappas I, Pantzartzi CN, Scouras ZG (2011) The mitochondrial genome of the European catfish Silurus glanis (Siluriformes, Siluridae). J Biol Res 15:25–35CAS 

    Google Scholar 
    Weisenfeld NI, Kumar V, Shah P, Church DM, Jaffe DB (2017) Direct determination of diploid genome sequences. Genome Res 27(5):757–767CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Zoonomia Consortium (2020) A comparative genomics multitool for scientific discovery and conservation. Nature 597:240–245Article 
    CAS 

    Google Scholar  More