1.Collar, D. C., Schulte, J. A., O’Meara, B. C. & Losos, J. B. Habitat use affects morphological diversification in dragon lizards. J. Evol. Biol. 23, 1033–1049 (2010).CAS
PubMed
PubMed Central
Article
Google Scholar
2.Da Silva, F. O. et al. The ecological origins of snakes as revealed by skull evolution. Nat. Commun. 9, 1–11 (2018).ADS
CAS
Article
Google Scholar
3.Vidal-García, M. & Keogh, J. S. Phylogenetic conservatism in skulls and evolutionary lability in limbs – morphological evolution across an ancient frog radiation is shaped by diet, locomotion and burrowing. BMC Evol. Biol. 17, 1–15 (2017).Article
Google Scholar
4.Fabre, A.-C., Cornette, R., Goswami, A. & Peigné, S. Do constraints associated with the locomotor habitat drive the evolution of forelimb shape? A case study in musteloid carnivorans. J. Anat. 226, 596–610 (2015).PubMed
PubMed Central
Article
Google Scholar
5.Dumont, M. et al. Do functional demands associated with locomotor habitat, diet, and activity pattern drive skull shape evolution in musteloid carnivorans? Biol. J. Linn. Soc. 117, 858–878 (2015).Article
Google Scholar
6.Baeckens, S., Goeyers, C. & Van Damme, R. Convergent evolution of claw shape in a transcontinental lizard radiation. Integr. Comp. Biol. https://doi.org/10.1093/icb/icz151 (2019).7.Price, S. A., Holzman, R., Near, T. J. & Wainwright, P. C. Coral reefs promote the evolution of morphological diversity and ecological novelty in labrid fishes. Ecol. Lett. 14, 462–469 (2011).CAS
PubMed
Article
PubMed Central
Google Scholar
8.Price, S. A., Tavera, J. J., Near, T. J. & Wainwright, P. C. Elevated rates of morphological and functional diversification in reef-dwelling haemulid fishes. Evolution 67, 417–428 (2012).PubMed
Article
PubMed Central
Google Scholar
9.Millien, V. Morphological evolution is accelerated among island mammals. PLoS Biol. 4, 1863–1868 (2006).CAS
Google Scholar
10.Salvidio, S., Crovetto, F. & Adams, D. C. Potential rapid evolution of foot morphology in Italian plethodontid salamanders (Hydromantes strinatii) following the colonization of an artificial cave. J. Evol. Biol. 28, 1403–1409 (2015).CAS
PubMed
Article
PubMed Central
Google Scholar
11.Ledbetter, N. M. & Bonett, R. M. Terrestriality constrains salamander limb diversification: implications for the evolution of pentadactyly. J. Evol. Biol. 32, 642–652 (2019).PubMed
PubMed Central
Google Scholar
12.McGhee Jr, G. R. Convergent Evolution: Limited Forms Most Beautiful (MIT Press, 2011).13.Vullo, R., Allain, R. & Cavin, L. Convergent evolution of jaws between spinosaurid dinosaurs and pike conger eels. Acta Palaeontol. Pol. 61, 825–828 (2016).Article
Google Scholar
14.Stayton, C. T. Testing hypotheses of convergence with multivariate data: morphological and functional convergence among herbivorous lizards. Evolution 60, 824–841 (2006).PubMed
PubMed Central
Article
Google Scholar
15.Mahler, D. L., Ingram, T., Revell, L. J. & Losos, J. B. Exceptional convergence on the macroevolutionary landscape in island lizard radiations. Science 341, 292–5 (2013).ADS
CAS
PubMed
Article
PubMed Central
Google Scholar
16.Sears, K. E. Constraints on the morphological evolution of marsupial shoulder girdles. Evolution 58, 2353–2370 (2004).PubMed
PubMed Central
Google Scholar
17.Bennett, C. V. & Goswami, A. Statistical support for the hypothesis of developmental constraint in marsupial skull evolution. BMC Biol. 11, 1–14 (2013).Article
Google Scholar
18.Goswami, A. et al. Do developmental constraints and high integration limit the evolution of the marsupial oral apparatus? Integr. Comp. Biol. 56, 404–415 (2016).PubMed
PubMed Central
Article
Google Scholar
19.Wake, D. B. & Hanken, J. Direct development in the lungless salamanders: what are the consequences for developmental biology, evolution and phylogenesis? Int. J. Dev. Biol. 40, 859–869 (1996).CAS
PubMed
PubMed Central
Google Scholar
20.Wake, D. B. & Larson, A. Multidimensional analysis of an evolving lineage. Science 238, 42–48 (1987).ADS
CAS
PubMed
Article
PubMed Central
Google Scholar
21.Bonett, R. M. & Blair, A. L. Evidence for complex life cycle constraints on salamander body form diversification. Proc. Natl Acad. Sci. USA 114, 9936–9941 (2017).CAS
PubMed
Article
PubMed Central
Google Scholar
22.Bardua, C., Wilkinson, M., Gower, D. J., Sherratt, E. & Goswami, A. Morphological evolution and modularity of the caecilian skull. BMC Evol. Biol. 19, 1–23 (2019).Article
Google Scholar
23.Schlosser, G. in Modularity: Understanding the Development and Evolution of Natural Complex Systems (eds. Callebaut, W. & Rasskin-Gutman, D.) (MIT Press, 2005).24.Moran, N. A. Adaptation and constraint in the complex life cycles of animals. Annu. Rev. Ecol. Syst. 25, 573–600 (1994).Article
Google Scholar
25.Ebenman, B. Evolution in organisms that change their niches during the life cycle. Am. Nat. 139, 990–1021 (1992).Article
Google Scholar
26.Mallarino, R. et al. Two developmental modules establish 3D beak-shape variation in Darwin’s finches. Proc. Natl Acad. Sci. USA 108, 4057–4062 (2011).ADS
CAS
PubMed
Article
PubMed Central
Google Scholar
27.Liedtke, H. C. et al. Terrestrial reproduction as an adaptation to steep terrain in African toads. Proc. R. Soc. B Biol. Sci. 284, 20162598 (2017).Article
CAS
Google Scholar
28.Harrington, S. M., Harrison, L. B. & Sheil, C. A. Ossification sequence heterochrony among amphibians. Evol. Dev. 15, 344–364 (2013).CAS
PubMed
Article
PubMed Central
Google Scholar
29.Bonett, R. M., Phillips, J. G., Ledbetter, N. M., Martin, S. D. & Lehman, L. Rapid phenotypic evolution following shifts in life cycle complexity. Proc. R. Soc. B Biol. Sci. 285, 20172304 (2018).Article
CAS
Google Scholar
30.Laurent, R. F. Adaptive modifications in frogs of an isolated highland fauna in Central Africa. Evolution 18, 458–467 (1964).Article
Google Scholar
31.Moen, D. S., Morlon, H. & Wiens, J. J. Testing convergence versus history: convergence dominates phenotypic evolution for over 150 million years in frogs. Syst. Biol. 65, 146–160 (2016).PubMed
Article
PubMed Central
Google Scholar
32.Moen, D. S., Irschick, D. J. & Wiens, J. J. Evolutionary conservatism and convergence both lead to striking similarity in ecology, morphology and performance across continents in frogs. Proc. R. Soc. B Biol. Sci. 280, 1–9 (2013).
Google Scholar
33.Duellman, W. E. & Trueb, L. Biology of the Amphibians (McGraw-Hill publishing company, 1986).34.LaBarbera, M. in Patterns and Processes in the History of Life (eds. Raup, D.M. & Jablonski, D.) (Springer, 1986).35.Cardini, A. & Polly, P. D. Larger mammals have longer faces because of size-related constraints on skull form. Nat. Commun. 4, 2458 (2013).ADS
PubMed
Article
CAS
PubMed Central
Google Scholar
36.Callery, E. M. & Elinson, R. P. Thyroid hormone-dependent metamorphosis in a direct developing frog. Proc. Natl Acad. Sci. USA 97, 2615–2620 (2000).ADS
CAS
PubMed
Article
PubMed Central
Google Scholar
37.Ziermann, J. M. & Diogo, R. Cranial muscle development in frogs with different developmental modes: direct development versus biphasic development. J. Morphol. 275, 398–413 (2013).Article
Google Scholar
38.McDiarmid, R. W. & Altig, R. (eds) Tadpoles: The Biology of Anuran Larvae (University of Chicago Press, 1999).39.Altig, R. & Johnston, G. F. Guilds of anuran larvae: relationships among developmental modes, morphologies, and habitats. Herpetol. Monogr. 3, 81–109 (1989).Article
Google Scholar
40.Rose, C. S. & Reiss, J. O. in The Skull Volume 1: Development (eds. Hanken, J. & Hall, B. K.) (The University of Chicago Press, 1993).41.Callery, E. M., Fang, H. & Elinson, R. P. Frogs without polliwogs: evolution of anuran direct development. BioEssays 23, 233–241 (2001).CAS
PubMed
Article
PubMed Central
Google Scholar
42.Wake, D. B. & Roth, G. (eds). Complex Organismal Functions: Integration and Evolution in Vertebrates (Wiley, Chichester, UK, 1989).43.Weisbecker, V. & Mitgutsch, C. A large-scale survey of heterochrony in anuran cranial ossification patterns. J. Zool. Syst. Evol. Res. 48, 332–347 (2010).Article
Google Scholar
44.Dehling, J. M. & Sinsch, U. Partitioning of morphospace in larval and adult reed frogs (Anura: Hyperoliidae: Hyperolius) of the Central African Albertine Rift. Zool. Anz. 280, 65–77 (2019).Article
Google Scholar
45.Phung, T. X., Nascimento, J. C. S., Novarro, A. J. & Wiens, J. J. Correlated and decoupled evolution of adult and larval body size in frogs: larval and adult size evolution. Proc. R. Soc. B Biol. Sci. 287, 20201474 (2020).Article
Google Scholar
46.Werner, E. E. Amphibian metamorphosis: growth rate, predation risk, and the optimal size at transformation. Am. Nat. 128, 319–341 (1986).Article
Google Scholar
47.Sherratt, E., Vidal-García, M., Anstis, M. & Keogh, J. S. Adult frogs and tadpoles have different macroevolutionary patterns across the Australian continent. Nat. Ecol. Evol. 1, 1385–1391 (2017).PubMed
Article
PubMed Central
Google Scholar
48.Wollenberg Valero, K. C. et al. Transcriptomic and macroevolutionary evidence for phenotypic uncoupling between frog life history phases. Nat. Commun. 8, 15213 (2017).ADS
CAS
PubMed
PubMed Central
Article
Google Scholar
49.Trueb, L. in The Skull: Patterns of Structural and Systematic Diversity (eds Hanken, J, & Hall, B. K.) (The University of Chicago Press, 1993).50.Trueb, L. in Evolutionary Biology of the Anurans: Contemporary Research on Major Problems (ed. Vial, J. L.) (University of Missouri Press, 1973).51.Reiss, J. O. The phylogeny of amphibian metamorphosis. Zoology 105, 85–96 (2002).PubMed
Article
PubMed Central
Google Scholar
52.Moore, M. K. & Townsend, V. R. Jr Intraspecific variation in cranial ossification in the tailed frog, Ascaphus truei. J. Herpetol. 37, 714–717 (2003).Article
Google Scholar
53.Yeh, J. The evolution of development: two portraits of skull ossification in pipoid frogs. Evolution 56, 2484–2498 (2002).PubMed
Article
PubMed Central
Google Scholar
54.Schoch, R. R. Amphibian skull evolution: the developmental and functional context of simplification, bone loss and heterotopy. J. Exp. Zool. B Mol. Dev. Evol. 322B, 619–630 (2014).Article
Google Scholar
55.Pereyra, M. O. et al. The complex evolutionary history of the tympanic middle ear in frogs and toads (Anura). Sci. Rep. 6, 1–9 (2016).Article
CAS
Google Scholar
56.Long, J. A., Young, G. C., Holland, T., Senden, T. J. & Fitzgerald, E. M. G. An exceptional Devonian fish from Australia sheds light on tetrapod origins. Nature 444, 199–202 (2006).ADS
CAS
PubMed
Article
PubMed Central
Google Scholar
57.Daeschler, E. B., Shubin, N. H. & Jenkins, F. A. Jr A Devonian tetrapod-like fish and the evolution of the tetrapod body plan. Nature 440, 757–763 (2006).ADS
CAS
PubMed
Article
PubMed Central
Google Scholar
58.Barton, R. A. & Harvey, P. H. Mosaic evolution of brain structure in mammals. Nature 405, 1055–1058 (2000).ADS
CAS
PubMed
Article
PubMed Central
Google Scholar
59.Schlosser, G. Mosaic evolution of neural development in anurans: acceleration of spinal cord development in the direct developing frog Eleutherodactylus coqui. Anat. Embryol. 206, 215–227 (2003).Article
Google Scholar
60.Felice, R. N. & Goswami, A. Developmental origins of mosaic evolution in the avian cranium. Proc. Natl Acad. Sci. USA 115, 555–560 (2018).CAS
PubMed
Article
PubMed Central
Google Scholar
61.Felice, R. N. et al. Evolutionary integration and modularity in the archosaur cranium. Integr. Comp. Biol. 59, 371–382 (2019).PubMed
Article
PubMed Central
Google Scholar
62.Watanabe, A. et al. Ecomorphological diversification in squamates from conserved pattern of cranial integration. Proc. Natl Acad. Sci. USA 116, 14688–14697 (2019).CAS
PubMed
Article
PubMed Central
Google Scholar
63.Owen, R. On the Archaeopteryx of Von Meyer, with a description of the fossil remains of a long-tailed species from the lithographic stone of Solnhofen. Philos. Trans. R. Soc. Lond. 153, 33–47 (1863).ADS
Google Scholar
64.Paluh, D. J., Stanley, E. L. & Blackburn, D. C. Evolution of hyperossification expands skull diversity in frogs. Proc. Natl Acad. Sci. USA 117, 8554–8562 (2020).65.Gomez-Mestre, I., Pyron, R. A. & Wiens, J. J. Phylogenetic analyses reveal unexpected patterns in the evolution of reproductive modes in frogs. Evolution 66, 3687–3700 (2012).PubMed
Article
PubMed Central
Google Scholar
66.Nevo, E. Adaptive convergence and divergence of subterranean mammals. Annu. Rev. Ecol. Syst. 10, 269–308 (1979).Article
Google Scholar
67.Nevo, E. Mammalian evolution underground. The ecological-genetic-phenetic interfaces. Acta Theriol. 3, 9–31 (1995).Article
Google Scholar
68.Vogel, S. Life’s Devices: The Physical World of Animals and Plants (Princeton Univ. Press, 1988).69.Sansalone, G. et al. Impact of transition to a subterranean lifestyle on morphological disparity and integration in talpid moles (Mammalia, Talpidae). BMC Evol. Biol. 19, 1–15 (2019).CAS
Article
Google Scholar
70.Nauwelaerts, S., Ramsay, J. & Aerts, P. Morphological correlates of aquatic and terrestrial locomotion in a semi-aquatic frog, Rana esculenta: no evidence for a design conflict. J. Anat. 210, 304–317 (2007).PubMed
PubMed Central
Article
Google Scholar
71.Sherratt, E., Gower, D. J., Klingenberg, C. P. & Wilkinson, M. Evolution of cranial shape in caecilians (Amphibia: Gymnophiona). Evol. Biol. 41, 528–545 (2014).Article
Google Scholar
72.Cardini, A., Polly, P. D., Dawson, R. & Milne, N. Why the long face? Kangaroos and wallabies follow the same ‘rule’ of cranial evolutionary allometry (CREA) as placentals. Evol. Biol. 42, 169–176 (2015).Article
Google Scholar
73.Yeh, J. The effect of miniaturized body size on skeletal morphology in frogs. Evolution 56, 628–641 (2002).PubMed
Article
PubMed Central
Google Scholar
74.Wells, K. D. The Ecology and Behavior of Amphibians (University of Chicago Press, 2010).75.Emerson, S. B. Skull shape in frogs: correlations with diet. Herpetologica 41, 177–188 (1985).
Google Scholar
76.Carreño, C. A. & Nishikawa, K. C. Aquatic feeding in pipid frogs: the use of suction for prey capture. J. Exp. Biol. 213, 2001–2008 (2010).PubMed
PubMed Central
Article
Google Scholar
77.Fernandez, E., Irish, F. & Cundall, D. How a frog, Pipa pipa, succeeds or fails in catching fish. Copeia 105, 108–119 (2017).Article
Google Scholar
78.Herrel, A. et al. in Feeding in Vertebrates: Evolution, Morphology, Behavior, Biomechanics (eds. Bels, V. & Whishaw, I. Q.) (Springer, 2019).79.Bardua, C. et al. Evolutionary integration of the frog cranium. Evolution 74, 1200–1215 (2020).PubMed
Article
PubMed Central
Google Scholar
80.Bon, M., Bardua, C., Goswami, A. & Fabre, A.-C. Cranial integration in the fire salamander, Salamandra salamandra (Caudata: Salamandridae). Biol. J. Linn. Soc. 130, 178–194 (2020).81.Fabre, A. et al. Metamorphosis and the evolution of morphological diversity in salamanders. Nat. Ecol. Evol. 4, 1129–1140 (2020).82.Nishikawa, K. C. in Feeding: Form, Function and Evolution in Tetrapod Vertebrates (ed. Schwenk, K.) (Academic Press, 2000).83.Trueb, L. & Gans, C. Feeding specializations of the Mexican burrowing toad, Rhinophrynus dorsalis (Anura: Rhinophrynidae). J. Zool. 199, 189–208 (1983).Article
Google Scholar
84.Nishikawa, K. C., Kier, W. M. & Smith, K. K. Morphology and mechanics of tongue movement in the African pig-nosed frog Hemisus marmoratum: a muscular hydrostatic model. J. Exp. Biol. 202, 771–80 (1999).CAS
PubMed
Article
PubMed Central
Google Scholar
85.Henrici, A. C. Digging through the past: the evolutionary history of burrowing and underground feeding in rhinophrynid anurans. Palaeobiodivers. Palaeoenviron. 96, 97–109 (2015).Article
Google Scholar
86.Van Dijk, D. E. Osteology of the ranoid burrowing African anurans Breviceps and Hemisus. Afr. Zool. 36, 137–141 (2001).Article
Google Scholar
87.Womack, M. C., Christensen-Dalsgaard, J., Coloma, L. A. & Hoke, K. L. Sensitive high-frequency hearing in earless and partially eared harlequin frogs (Atelopus). J. Exp. Biol. 221, 1–8 (2018).Article
Google Scholar
88.Boistel, R. et al. How minute sooglossid frogs hear without a middle ear. Proc. Natl Acad. Sci. USA 110, 15360–15364 (2013).ADS
CAS
PubMed
Article
PubMed Central
Google Scholar
89.Womack, M. C., Stynoski, J. L., Voyles, M. K., Coloma, L. A. & Hoke, K. L. Prolonged middle ear development in Rhinella horribilis. J. Morphol. 279, 1518–1523 (2018).PubMed
Article
PubMed Central
Google Scholar
90.Womack, M. C., Christensen-Dalsgaard, J., Coloma, L. A., Chaparro, J. C. & Hoke, K. L. Earless toads sense low frequencies but miss the high notes. Proc. R. Soc. B Biol. Sci. 284, 20171670 (2017).Article
Google Scholar
91.Hetherington, T. E. in The Evolutionary Biology of Hearing (eds. Webster, D. B., Fay, R. R. & Popper, A. N.) (Springer, 1992).92.Hanken, J., Klymkowsky, M. W., Summers, C. H., Seufert, D. W. & Ingebrigtsen, N. Cranial ontogeny in the direct-developing frog, Eleutherodactylus coqui (Anura: Leptodactylidae), analyzed using whole-mount lmmunohistochemistry. J. Morphol. 211, 95–118 (1992).CAS
PubMed
Article
PubMed Central
Google Scholar
93.Hanken, J., Klymkowsky, M. W., Alley, K. E. & Jennings, D. H. Jaw muscle development as evidence for embryonic repatterning in direct-developing frogs. Proc. R. Soc. B Biol. Sci. 264, 1349–1354 (1997).ADS
CAS
Article
Google Scholar
94.Wray, G. A. & Raff, R. A. The evolution of developmental strategy in marine invertebrates. Trends Ecol. Evol. 6, 45–50 (1991).CAS
PubMed
Article
PubMed Central
Google Scholar
95.Watkins, T. B. A quantitative genetic test of adaptive decoupling across metamorphosis for locomotor and life-history traits in the Pacific tree frog, Hyla regilla. Evolution 55, 1668–1677 (2001).CAS
PubMed
Article
PubMed Central
Google Scholar
96.Wilson, A. D. M. & Krause, J. Personality and metamorphosis: is behavioral variation consistent across ontogenetic niche shifts? Behav. Ecol. 23, 1316–1323 (2012).Article
Google Scholar
97.O’Reilly, J. C., Deban, S. M. & Nishikawa., K. C. in Topics in Functional and Ecological Vertebrate Morphology: A Tribute to Frits de Vree (eds. Aerts, P., D’Août, K., Herrel, A. & van Damme, R.) (Shaker Publishing, 2002).98.Philips, P. C. Genetic constraints at the metamorphic boundary: morphological development in the wood frog, Rana sylvatica. J. Evol. Biol. 11, 453–463 (1998).Article
Google Scholar
99.Johansson, F., Lederer, B. & Lind, M. I. Trait performance correlations across life stages under environmental stress conditions in the common frog, Rana temporaria. PLoS ONE 5, e11680 (2010).ADS
PubMed
PubMed Central
Article
CAS
Google Scholar
100.Wassersug, R. J. The adaptive significance of the tadpole stage with comments on the maintenance of complex life cycles in anurans. Am. Zool. 15, 405–417 (1975).Article
Google Scholar
101.Vassilieva, A. B. Heterochronies in the cranial development of Asian tree frogs (Amphibia: Anura: Rhacophoridae) with different life histories. Dokl. Biol. Sci. 473, 110–113 (2017).Article
Google Scholar
102.Kerney, R., Meegaskumbura, M., Manamendra-Arachchi, K. & Hanken, J. Cranial ontogeny in Philautus silus (Anura: Ranidae: Rhacophorinae) reveals few similarities with other direct-developing anurans. J. Morphol. 268, 715–725 (2007).PubMed
Article
PubMed Central
Google Scholar
103.Heatwole, H. & Davies, M. (eds.) Amphibian biology (volume 5), osteology. (Surrey Beatty & Sons, 2003).104.Hanken, J. & Hall, B. K. Skull development during anuran metamorphosis: I. Early development of the first three bones to form–the exoccipital, the parasphenoid, and the frontoparietal. J. Morphol. 195, 247–256 (1988).CAS
PubMed
Article
PubMed Central
Google Scholar
105.Fink, W. L. The conceptual relationship between ontogeny and phylogeny. Paleobiology 8, 254–264 (1982).Article
Google Scholar
106.Strathmann, R. R. in Echinoderm Phylogeny and Evolutionary Biology (eds. Paul, C. R. C. & Smith, A. B.) (Clarendon Press, 1988).107.Laloy, F. et al. A re-interpretation of the Eocene anuran Thaumastosaurus based on MicroCT examination of a “mummified” specimen. PLoS ONE 8, e74874 (2013).ADS
CAS
PubMed
PubMed Central
Article
Google Scholar
108.Frost, D. R. et al. The amphibian tree of life. Bull. Am. Mus. Nat. Hist. 297, 1–370 (2006).109.Quental, T. B. & Marshall, C. R. Diversity dynamics: molecular phylogenies need the fossil record. Trends Ecol. Evol. 25, 435–441 (2010).Article
Google Scholar
110.Slater, G. J. & Harmon, L. J. Unifying fossils and phylogenies for comparative analyses of diversification and trait evolution. Methods Ecol. Evol. 4, 699–702 (2013).Article
Google Scholar
111.Volume Graphics. VGStudio MAX v. 2.0 (Volume Graphics GmbH, 2001).112.Bardua, C., Felice, R. N., Watanabe, A., Fabre, A.-C. & Goswami, A. A practical guide to sliding and surface semilandmarks in morphometric analyses. Integr. Org. Biol. 1, 1–34 (2019).
Google Scholar
113.Jetz, W. & Pyron, R. A. The interplay of past diversification and evolutionary isolation with present imperilment across the amphibian tree of life. Nat. Ecol. Evol. 2, 850–858 (2018).PubMed
Article
PubMed Central
Google Scholar
114.Paradis, E., Claude, J. & Strimmer, K. APE: analyses of phylogenetics and evolution in R language. Bioinformatics 20, 289–290 (2004).CAS
Article
Google Scholar
115.Paradis, E. & Schliep, K. ape 5.0: an environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics 35, 526–528 (2018).Article
CAS
Google Scholar
116.Wiley, D. F. et al. Evolutionary morphing. In Proc. Visualization Conference (IEEE, 2005).117.Schlager, S. in Statistical Shape and Deformation Analysis (eds. Zheng, G., Li, S. & Szekely, G.) (Academic Press, 2017).118.Cardini, A. Left, right or both? Estimating and improving accuracy of one-side-only geometric morphometric analyses of cranial variation. J. Zool. Syst. Evol. Res. 55, 1–10 (2016).Article
Google Scholar
119.Marshall, A. F. et al. High-density three-dimensional morphometric analyses support conserved static (intraspecific) modularity in caecilian (Amphibia: Gymnophiona) crania. Biol. J. Linn. Soc. 126, 721–742 (2019).Article
Google Scholar
120.Bossuyt, F. & Milinkovitch, M. C. Convergent adaptive radiations in Madagascan and Asian ranid frogs reveal covariation between larval and adult traits. Proc. Natl Acad. Sci. USA 97, 6585–90 (2000).ADS
CAS
PubMed
Article
PubMed Central
Google Scholar
121.Young, J. E., Christian, K. A., Donnellan, S. C., Tracy, C. R. & Parry, D. Comparative analysis of cutaneous evaporative water loss in frogs demonstrates correlation with ecological habits. Physiol. Biochem. Zool. 78, 847–856 (2005).PubMed
Article
PubMed Central
Google Scholar
122.Portik, D. M. & Blackburn, D. C. The evolution of reproductive diversity in Afrobatrachia: a phylogenetic comparative analysis of an extensive radiation of African frogs. Evolution 70, 2017–2032 (2016).PubMed
PubMed Central
Article
Google Scholar
123.Scott, E. A phylogeny of ranid frogs (Anura: Ranoidea: Ranidae), based on a simultaneous analysis of morphological and molecular data. Cladistics 21, 507–574 (2005).Article
Google Scholar
124.Adams, D. C. & Otárola-Castillo, E. geomorph: an R package for the collection and analysis of geometric morphometric shape data. Methods Ecol. Evol. 4, 393–399 (2013).Article
Google Scholar
125.Revell, L. J. phytools: an R package for phylogenetic comparative biology (and other things). Methods Ecol. Evol. 3, 217–223 (2012).Article
Google Scholar
126.Clavel, J., Escarguel, G. & Merceron, G. mvmorph: an r package for fitting multivariate evolutionary models to morphometric data. Methods Ecol. Evol. 6, 1311–1319 (2015).Article
Google Scholar
127.Clavel, J., Aristide, L. & Morlon, H. A penalized likelihood framework for high-dimensional phylogenetic comparative methods and an application to new-world monkeys brain evolution. Syst. Biol. 68, 93–116 (2019).PubMed
Article
PubMed Central
Google Scholar
128.Clavel, J. & Morlon, H. Reliable phylogenetic regressions for multivariate comparative data: illustration with the MANOVA and application to the effect of diet on mandible morphology in phyllostomid bats. Syst. Biol. 69, 927–943 (2020).PubMed
Article
PubMed Central
Google Scholar
129.Housworth, E. A., Martins, E. P. & Lynch, M. The phylogenetic mixed model. Am. Nat. 163, 84–96 (2004).PubMed
Article
PubMed Central
Google Scholar
130.Revell, L. J. Phylogenetic signal and linear regression on species data. Methods Ecol. Evol. 1, 319–329 (2010).Article
Google Scholar
131.Freckleton, R. P., Harvey, P. H. & Pagel, M. Phylogenetic analysis and comparative data: a test and review of evidence. Am. Nat. 160, 712–726 (2002).CAS
PubMed
Article
PubMed Central
Google Scholar
132.Goolsby, E. W., Bruggeman, J. & Ane, C. Rphylopars: phylogenetic comparative tools for missing data and within-species variation. R package version 0.2.11 https://CRAN.R-project.org/package=Rphylopars (2019).133.Goolsby, E. W., Bruggeman, J. & Ané, C. Rphylopars: fast multivariate phylogenetic comparative methods for missing data and within-species variation. Methods Ecol. Evol. 8, 22–27 (2017).Article
Google Scholar
134.Bardua, C. & Goswami, A. Frog skull shape data for modularity and macroevolution. https://doi.org/10.5281/zenodo.4619880 (2020). More