More stories

  • in

    Phantom rivers filter birds and bats by acoustic niche

    IACUC approval: all work described below was approved by the Boise State Institutional Animal Care and Use Committee: AC15-021.Site layoutWe selected 20 sites, across five drainages, within the Pioneer Mountains of Idaho—matched for elevation and riparian habitat. We split these 20 sites into 10 noise playback sites, and 10 control sites (Fig. 1A; S1). The control sites ranged from quiet, slow-moving streams to relatively loud whitewater torrents. Noise playback sites, on the other hand, were relatively quiet (not whitewater) sites, where we broadcast loud whitewater river recordings with speaker arrays hung from towers (Fig. S1; S2; S3; S4; see supplementary information for more details on noise file creation, playback equipment, and experimental setup). At five of the noise playback sites we broadcast normal river noise (hereafter referred to as ‘river noise’ sites), and at the other five noise sites we broadcast spectrally-altered river recordings (hereafter referred to as “shifted noise” sites).Our field sites were oriented along the riparian zone, with data collection occurring at three primary locations within each site (Fig. S1): (1) roughly in the middle of the speaker tower systems, (2) at a shorter distance from the middle location (mean: 198.2 ± 54.5 m SD; range: 117.6–384.5 m), and (3) and a longer distance from the middle location (in the opposite direction from the nearer location; mean: 312.7 ± 64.7 m SD; range: 249.1–479.6 m). Thus, sites were approximately 510.9 ± 98.3 m long (range: 374.7–850.6 m), along the riparian corridor. All control sites were, at minimum, 1 km apart along the riparian corridor from any noise site, to maintain acoustic independence (see Fig. 1A; S1).Data collectionBirds
    We conducted three-minute avian point counts between one half hour before sunrise and 6 h after sunrise (roughly 0530–1130 h). During the project, we conducted 1330 point-counts from 28 May to 20 July 2017 and 1639 point-count events occurred from 7 May to 24 July in 2018.
    Caterpillar deploymentWe deployed a total of 720 clay caterpillars throughout the 2018 breeding season. Forty caterpillars were glued to stems and branches of trees between 1 and 2.5 m high at each site (Fig. S8). Twenty caterpillars surrounded the middle point count location at each site (a set of 10 were placed upstream, and another set of 10 were placed downstream starting from the middle ARU location), while the other twenty were at upstream and downstream sampling locations (10 each at upstream and downstream locations). We placed each caterpillar along the riparian corridor, at least 1 m apart from each other30. See Supplementary information for details on caterpillar predation scoring.Bird trait analysisWe performed a trait-based analysis to understand the mechanistic patterns of bird distributions in our study paradigm. Avian vocal frequencies and body mass were collected from Hu and Cardoso 2009, Cardoso 2014, and Francis 201516,31,32. When multiple sources contained data, the values were averaged. There were a few cases where none of those sources contained a vocal frequency or mass measurement for species of interest. Thus, representative songs were downloaded from the Macaulay Library of the Cornell Lab of Ornithology based on recording quality and geographical relevance (MacGillivray’s warbler: ML42249; dusky flycatcher: ML534684; red-naped sapsuckers: ML6956), and analyzed with Avisoft SASLab Pro to obtain a peak frequency measure. Mass measurements for these ‘missing’ birds were taken from the ‘All about birds’ webpage of the Cornell Lab of Ornithology.BatsMeasuring and identifying bat callsWe measured bat activity using Song Meter 3 (hereafter “SM3”) recording units (Wildlife Acoustics Inc., Massachusetts, USA) equipped with a single SMU (Wildlife Acoustics Inc.) ultrasonic microphone. One recording unit was used at each site and we pseudo-randomly rotated the unit between the three point-count locations so that each location was monitored for at least 21 days. We mounted microphones on metal conduit at a height of ~3 m, oriented perpendicular to the ground and facing away from the stream to optimize recording conditions (Fig. S9; S10; see Supplementary information for more information).Robotic insectsWe used a modified version of Lazure and Fenton’s26 apparatus to present bats with a fluttering target (Fig. S12). This consisted of a 3 cm2 piece of masking tape affixed to a metal rod [30.48 cm length × 3.25 mm diameter], which itself was connected to a 12-volt brushed DC motor (AndyMark 9015 12 V, AndyMark Inc., Kokomo, IN, USA). The no-load revolution speed of these motors (267 Hz) falls within the range of wingbeat frequency measured in Chironomidae27,33, a group that is an important food source for many North American bat species34.We attached each motor to a tripod made of PVC piping and positioned the tripod such that the target was approximately 1.2 m above the ground. Each motor was powered by a 12 V battery (35Ah AGM; DURA12-35C, Duracell) which was controlled by a programmable 12 V timer (CN101, FAVOLCANO) to automatically start and stop the motor each night. The rotors were powered for 2 h following sunset.Prey-sound speaker playbackWe created a playlist composed of several insect acoustic cues to present gleaning bats: a beetle (Tenebrio molitor) walking on dried grass, a cricket (Acheta domesticus) walking on leaves, mealworm larvae (Tenebrio molitor) on leaves, fall field cricket (Gryllus pennsylvanicus) calls, and fork-tailed bush katydid (Scudderia furcata) calls. The cricket and katydid calls were sourced from the Macaulay Library (ML527360 and ML107505, respectively).Experimental setup for bat foraging testsMost sites received two rotors (Fig. S12) and two speakers (Fig. S13): one of each at the center of the site, and one of each at approximately 125 m from the center of the site (in opposite directions in order to have tests in a range of acoustic environments), placed roughly 10 m from the edge of the riparian zone. Rotors and speakers at the center locations were separated by at least 50 m. The exception to this setup were the four positive control (loud whitewater river) sites, which only received a single rotor and speaker separated by 50 m because of logistical difficulties of accessing those sites. We paired each rotor and speaker with an SM2BAT + bat detector equipped with an SMX-US microphone (Wildlife Acoustics Inc.)35, using tripods to elevate the microphones approximately 1 m off the ground and ~1 m from the speaker/rotor. We programmed the bat detectors with a gain of 36 dB and a trigger level of 18 dB to limit recordings to bats that were passing within the immediate vicinity. To allow for a comparison of activity between speakers and rotors, bat activity was only considered for the first two hours following sunset.Bat trait analysisWe collected bat foraging behavior and peak echolocation frequency information to use as predictors in a phylogenetically controlled trait analysis (Tables S8; S13). We based our behavioral foraging classifications on the categories of Ratcliffe et al.36 and followed the classifications of Gordon et al.37 where possible, and others38,39,40,41,42,43 where necessary. We extracted peak echolocation frequency from the 2017 and 2018 SM3 field recordings and employed two controls to decrease variability in call parameters potentially introduced via this method. First, we selected only recordings made on control sites in 2017 and 2018 (n = 740,848 calls), as echolocation call characteristics may be affected by local acoustic environments (e.g., Bunkley et al.)22. Secondly, we averaged all call parameters per species per hour at each site to decrease the possible effects of few individuals driving measurements. This resulted in 9538 species-hours of recordings, which themselves were averaged per species (Table S13).Quantifying environmental variablesWe used long-term monitoring of the acoustic environment (via Roland R05 recorders) to calculate daily sound pressure level (L50 dBA) and median frequency (kHz) values for each location (see supplementary information for details on quantification of all predictor variables).Sound pressure level (SPL)We converted 106,769 h of long-term ARU recordings into daily-averaged median sound pressure levels (L50; measured as dBA rel. 20 µPa) see refs. 13,44 using custom software ‘AUDIO2NVSPL’ and ‘Acoustic Monitoring Toolbox’ (Damon Joyce, Natural Sounds and Night Skies Division, National Park Service).Acoustic environment spectrumWe used custom software45 in the programming language R and the package ‘FFmpeg’ in command prompt to convert 106,769 h of long-term recordings into 71,282 individual 3-minute files starting each hour of the day (Fig. S5). Thus 24, 3-min files were created per acoustic recording location per day (one for every hour). We then used the packages “tuneR” and “seewave” to read in and measure the median frequency of sound files, respectively45,46,47. These hourly metrics were then averaged by date to create a daily metric.StatisticsAll models of abundance, activity, and foraging transects were generalized linear mixed effects models (glmm) in R48 using the package ‘lme4’49,50 or ‘glmmTMB’51. All distribution families were selected based on theoretical sampling processes of the data, models were checked for collinearity (VIF scores)52, and model fits were visually checked with residual plots (see supplemental R code)53.Bird abundance and bat activity
    Model predictors and covariates
    Both bird and bat models had the following variables in a glmm: site and bird/bat species were random effects terms and sound pressure level (dBA L50), sound spectrum (median frequency), the interaction between sound pressure level and spectrum, elevation, percent riparian vegetation, ordinal date (and a quadratic version of this), and year as fixed effects. While year is sometimes used as a random-effect term, it is suggested to be used as a fixed effect if fewer than five levels exist for that factor, as variance estimates become imprecise54,55. Additionally, moon phase was a fixed effect in the bat models56, while spectral overlap (the absolute difference between sound spectrum and bird species vocalization frequencies) and the interaction between sound pressure level and spectral overlap were fixed effects in bird models.
    We attempted to fit both sound pressure level and spectrum as having random slopes for each species, yet both bat and bird models would not converge with such complex model structure. Thus, we followed group models with individual species models (see Supplementary information).

    Model family distribution and link function
    For both bird and bat counts, we used a negative binomial distribution with a log link, rather than a Poisson distribution, because data were over-dispersed. We plotted variance-mean relationships and residuals of multiple models to select the appropriate variance structure, and compared these with AIC to select the best-fitting distribution (see R script for further justification of these methods)54.

    Individual species models
    Individual species models were parameterized the same as above (except without the species term). All 12 bat species (see Tables S6; S10) and 26 of the most common birds (see Tables S2; S9) were modeled individually to be able to interpret model parameter estimates, with complex interactions, for each species.
    Clay caterpillar predationWe modeled caterpillar predation with a glmm (binomial family; logit link function), using the number of individual scorers as weights in the model. Like the bird abundance model, we used site as a random effect and sound pressure level (dBA L50), spectral frequency (median), elevation, percent riparian vegetation, ordinal date, and year as fixed effects (Table S4). Additionally, the predicted number of birds at a site were modeled as fixed effects to control for varying amounts of foraging birds on the landscape.Robotic moths and prey-sound speakersRobotic moth and prey-sound speaker models were parameterized exactly the same as the overall bat activity model. That is, the model was fit with a negative binomial family (log link) with site and species as random effects and sound pressure level (dBA L50), sound spectrum (median frequency), the interaction between sound pressure level and spectrum, moon phase, elevation, percent riparian vegetation, ordinal date (and a quadratic version of this), and year as fixed effects. Additionally, the predicted number of bats at a site were modeled as fixed effects to control for varying amounts of foraging bats on the landscape.Trait analysesWe performed trait analyses with phylogenetic generalized least squares (PGLS) to control for relatedness while predicting species responses to noise12. We performed PGLS analyses with the gls function in the R package nlme57, and accounted for error in the response variable with a fixed-variance weighting function of one divided by the square root of the standard error of the response estimate58,59. We accounted for phylogenetic structure by estimating Pagel’s λ60. When λ estimates fell outside of the zero to 1 range, we fixed λ at the nearest boundary. For bird models, we used a pruned consensus tree from a recent class-wide phylogeny61. For bats, we used a pruned mammalian tree62. We used initial global models with all traits as variables that explained the responses to sound pressure level (SPL; birds and bats), spectral overlap with birdsong (birds), background frequency (bats), and the interaction between SPL and each measure of frequency (birds and bats). We then used AIC model selection63 to choose top models in explaining these patterns. Models with dAIC ≤4 are included in Table S3 (birds) and Table S8 (bats), and the top model is interpreted in the main text.Reporting summaryFurther information on research design is available in the Nature Research Reporting Summary linked to this article. More

  • in

    The pest kill rate of thirteen natural enemies as aggregate evaluation criterion of their biological control potential of Tuta absoluta

    1.Malthus, T. An Essay on the Principle of Population (J. Johnson Publisher, London, 1798).
    Google Scholar 
    2.Nicholson, A. J. The balance of animal populations. J. Anim. Ecol. 2(1), 132–588 (1933).Article 

    Google Scholar 
    3.Andrewartha, H. G. & Birch, L. C. The distribution and abundance of animals (University of Chicago Press, 1954).
    Google Scholar 
    4.Turchin, P. Complex Population Dynamics: A Theoretical/Empirical Synthesis. Monographs in Population Biology Vol. 35 (Princeton University Press, 2003).MATH 

    Google Scholar 
    5.Bellows, T. S. & Hassell, M. P. Theories and mechanisms of natural population regulation. In Handbook of Biological Control (eds Bellows, T. S. & Fisher, T. W.) 17–44 (Academic Press, 1999).
    Google Scholar 
    6.Cock, M. J. W. et al. Do new access and benefit sharing procedures under the convention on biological diversity threaten the future of biological control?. Biocontrol 55, 199–218. https://doi.org/10.1007/s10526-009-9234-9 (2010).Article 

    Google Scholar 
    7.Biondi, A., Guedes, R. N. C., Wan, F. H. & Desneux, N. Ecology, worldwide spread, and management of the invasive South American tomato pinworm, Tuta absoluta: past, present, and future. Annu. Rev. Entomol. 63, 239–258. https://doi.org/10.1146/annurev-ento-031616-034933 (2018).CAS 
    Article 
    PubMed 

    Google Scholar 
    8.Ferracini, C. et al. Natural enemies of Tuta absoluta in the Mediterranean basin, Europe and South America. Biocontrol Sci. Technol. 29, 578–609. https://doi.org/10.1080/09583157.2019.1572711 (2019).Article 

    Google Scholar 
    9.Guedes, N.C., Picanco M. Tuta absoluta in South America: pest status, management & insecticide resistance. Proceedings of the EPPO/IOBC/FAO/NEPPO Joint International Symposium on Management of Tuta absoluta (tomato borer). Agadir, Marocco, Nov. 16–18, 2011, 15–16 (2011).10.Urbaneja, A., Monton, H. & Mollá, O. Suitability of the tomato borer Tuta absoluta as prey for Macrolophus pygmaeus and Nesidiocoris tenuis. J. Appl. Entomol. 133, 292–296 (2009).Article 

    Google Scholar 
    11.Parra, J. R. P. & Zucchi, R. A. Trichogramma in Brazil: feasibility of use after 20 years of research. Neotrop. Entomol. 33, 271–281 (2004).Article 

    Google Scholar 
    12.Pérez-Hedo, M. & Urbaneja, A. The zoophytophagous predator Nesidiocoris tenuis: a successful but controversial biocontrol agent in tomato crops. In Advances in Insect Control and Resistance Management (eds Horowitz, A. R. & Ishaaya, I.) 121–138 (Springer, Dordrecht, 2016).
    Google Scholar 
    13.Mollá, O., Biondi, A., Alonso-Valiente, M. & Urbaneja, A. A comparative life history study of two mirid bugs preying on Tuta absoluta and Ephestia kuehniella eggs on tomato crops: implications for biological control. Biocontrol 59, 175–183. https://doi.org/10.1007/s10526-013-9553-8 (2014).Article 

    Google Scholar 
    14.Bajonero, J.G. Tuta absoluta (Meyrick, 1917) (Lepidoptera: Gelechiidae): adequação de uma dieta artificial e avaliação do seu controle biológico com Trichogramma pretiosum Riley em tomateiro. PhD Thesis, Universidade de São Paulo Escola Superior de Agricultura “Luiz de Queiroz”, Piracicaba, Sao Paolo, Brazil, p. 87 (2016).15.Calvo, F. J., Lorente, M. J., Stansly, P. A. & Belda, J. E. Pre-plant release of Nesidiocoris tenuis and supplementary tactics for control of Tuta absoluta and Bemisia tabaci in greenhouse tomato. Entomol. Exp. Appl. 143, 111–119 (2012).Article 

    Google Scholar 
    16.van Lenteren, J. C. et al. Pest kill rate as aggregate evaluation criterion to rank biological control agents: a case study with Neotropical predators of Tuta absoluta on tomato. Bull. Entomol. Res. 109, 812–820. https://doi.org/10.1017/S0007485319000130 (2019).CAS 
    Article 
    PubMed 

    Google Scholar 
    17.Tommasini, M. G., van Lenteren, J. C. & Burgio, G. Biological traits and predation capacity of four Orius species on two prey species. Bull. Insectol. 57, 79–94 (2004).
    Google Scholar 
    18.van Lenteren, J. C. Ecology: Cool Science, But Does It Help? 44 (Wageningen University, Wageningen, 2010).
    Google Scholar 
    19.Biondi, A., Desneux, N., Amiens-Desneux, E., Siscaro, G. & Zappalà, L. Biology and developmental strategies of the Palaearctic parasitoid Bracon nigricans (Hymenoptera: Braconidae) on the Neotropical moth Tuta absoluta (Lepidoptera: Gelechiidae). J. Econ. Entomol. 106, 1638–1647 (2013).Article 

    Google Scholar 
    20.Bin, F., Vinson, S. B. Efficacy assessment in egg parasitoids (Hymenoptera): proposal for a unified terminology. In Trichogramma and other egg Parasitoids (eds. Wajnberg E. & Vinson S.B.). Proceedings 3rd International Symposium, San Antonio, Texas, pp. 175–179 (1990).21.Abram, P. K., Brodeur, J., Urbaneja, A. & Tena, A. Nonreproductive effects of insect parasitoids on their hosts. Annu. Rev. Entomol. 64, 259–276. https://doi.org/10.1146/annurev-ento-011118-111753 (2019).CAS 
    Article 
    PubMed 

    Google Scholar 
    22.Chailleux, A., Droui, A., Bearez, P. & Desneux, N. Survival of a specialist natural enemy experiencing resource competition with an omnivorous predator when sharing the invasive prey Tuta absoluta. Ecol. Evol. 7, 8329–8337 (2017).Article 

    Google Scholar 
    23.Han, P. et al. Bottom-up efects of irrigation, fertilization and plant resistance on Tuta absoluta: implications for Integrated Pest Management. J. Pest Sci. 92, 1359–1370. https://doi.org/10.1007/s10340-018-1066-x (2019).Article 

    Google Scholar 
    24.Calvo, F. J., Bolckmans, K. & Belda, J. E. Release rate for a pre-plant application of Nesidiocoris tenuis for Bemisia tabaci control in tomato. Biocontrol 57, 809–817 (2012).Article 

    Google Scholar 
    25.van Lenteren, J. C., Bueno, V. H. P., Calvo, F. J., Calixto, A. M. & Montes, F. C. Comparative effectiveness and injury to tomato plants of three Neotropical mirid predators of Tuta absoluta (Lepidoptera: Gelechiidae). J. Econ. Entomol. 111, 1080–1086. https://doi.org/10.1093/jee/toy057 (2018).Article 
    PubMed 

    Google Scholar 
    26.Calvo, F. J., Soriano, J. D., Stansly, P. A. & Belda, J. E. Can the parasitoid Necremnus tutae (Hymenoptera: Eulophidae) improve existing biological control of the tomato leafminer Tuta aboluta (Lepidoptera: Gelechiidae). Bull. Entomol. Res. 406, 502–511. https://doi.org/10.1017/S0007485316000183 (2016).CAS 
    Article 

    Google Scholar 
    27.Crisol-Marinez, E. & van der Blom, J. Necremnus tutae (Hymenoptera, Eulophidae) is widespread and efficiently controls Tuta absoluta in tomato greenhouses in SE Spain. IOBC/WPRS Bull. 147, 22–29 (2019).
    Google Scholar 
    28.Castañé, C., van der Blom, J. & Nicot, P. C. Tomatoes. In Integrated Pest And Disease Management In Greenhouse Crops (eds Gullino, M. L. et al.) 487–511 (Springer, Switzerland, 2020). https://doi.org/10.1007/978-3-030-22304-5_17.
    Google Scholar 
    29.Knapp, M., Palevsky, E. & Rapisarda, C. Insect and mite pests. In Integrated Pest and Disease Management in Greenhouse Crops (eds Gullino, M. L. et al.) 101–144 (Springer, Switzerland, 2020). https://doi.org/10.1007/978-3-030-22304-5_17.
    Google Scholar 
    30.van Lenteren, J. C., Alomar, O., Ravensberg, W. J. & Urbaneja, A. Biological control agents for control of pests in greenhouses. In Integrated Pest And Disease Management In Greenhouse Crops (eds Gullino, M. L. et al.) 409–440 (Springer, Switzerland, 2020).
    Google Scholar 
    31.Pratissoli, D. & de Carvalho, J.D. Guia de Campo: Pragas da Cultura do Tomateiro. Alegre, ES: NUDEMAFI, Centro de Ciências Agrárias, UFES, 35pp. (Série Técnica/NUDEMAFI, ISSN 2359-4179; 1) (2015).32.Bodino, N., Ferracini, C. & Tavella, L. Functional response and age-specific foraging behaviour of Necremnus tutae and N. cosmopterix, native natural enemies of the invasive pest Tuta absoluta in Mediterranean area. J. Pest Sci. 92, 1467–1478. https://doi.org/10.1007/s10340-018-1025-6 (2019).Article 

    Google Scholar 
    33.Pérez-Hedo, M., Riahi, C. & Urbaneja, A. Use of zoophytophagous mirid bugs in horticultural crops: current challenges and future perspectives. Pest Manag. Sci. 77, 33–42 (2021).Article 

    Google Scholar 
    34.Wheeler, A. G. Jr. & Krimmel, B. A. Mirid (Hemiptera: Heteroptera) specialists of sticky plants: adaptations, interactions and ecological implications. Annu. Rev. Entomol. 60, 393–414 (2015).CAS 
    Article 

    Google Scholar 
    35.Bueno, V. H. P., Lins, J. C., Silva, D. B. & van Lenteren, J. C. Is predation of Tuta absoluta by three Neotropical mirid predators affected by tomato lines with different densities in glandular trichomes?. Arthropod-Plant Int. 13, 41–48. https://doi.org/10.1007/s11829-018-9658-1 (2019).Article 

    Google Scholar 
    36.Pérez-Hedo, M., Arias-Sanguino, A. M. & Urbaneja, A. Induced tomato plant resistance against Tetranychus urticae triggered by the phytophagy of Nesidiocoris tenuis. Front. Plant Sci. 9, 1419. https://doi.org/10.3389/fpls.2018.01419 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    37.Barra-Bucarei, L., Devotto Moreno, L. & Iglesis, A. F. Biological control in Chile. In Biological Control in Latin America and the Caribbean: Its Rich History and Bright Future (eds van Lenteren, J. C. et al.) 108–123 (CAB International, Wallingford, 2020).
    Google Scholar 
    38.López, S. N., OrozcoMuñoz, A., Andorno, A. V., Cuello, E. M. & Cagnotti, C. L. Predatory capacity of Tupiocoris cucurbitaceus (Hemiptera Miridae) on several pests of tomato. Bull. Insectol. 72, 201–205 (2019).
    Google Scholar 
    39.Fauvel, G., Malausa, J. C. & Kaspar, B. Etude en laboratoire des principales caracteristiques biologiques de Macrolophus caliginosus (Heteroptera: Miridae). Entomophaga 32, 529–543 (1987).Article 

    Google Scholar 
    40.Mollá, O., Montón, H., Vanaclocha, P., Beitia, F. & Urbaneja, A. Predation by the mirids Nesidiocoris tenuis and Macrolophus pygmaeus on the tomato borer Tuta absoluta. IOBC/WPRS Bull. 49, 203–208 (2009).
    Google Scholar 
    41.Sánchez, J. A., Lacasa, A., Arnó, J., Castañé, C. & Alomar, O. Life history parameters for Nesidiocoris tenuis (Reuter) (Het., Miridae) under different temperature regimes. J. Appl. Entomol. 133, 125–132. https://doi.org/10.1111/j.1439-0418.2008.01342.x (2009).Article 

    Google Scholar 
    42.Sánchez, J. A., La-Spina, M. & Lacasa, A. Numerical response of Nesidiocoris tenuis (Hemiptera: Miridae) preying on Tuta absoluta (Lepidoptera: Gelechiidae) in tomato crops. Eur. J. Entomol. 11, 387–395 (2014).Article 

    Google Scholar 
    43.Arnó, J. et al. Tuta absoluta, a new pest in IPM tomatoes in the northeast of Spain. IOBC/WPRS Bull. 49, 203–208 (2009).
    Google Scholar 
    44.Mahdavi, T. S., Madadi, H. & Biondi, A. Predation and reproduction of the generalist predator Nabis pseudoferus preying on Tuta absoluta. Entomol. Exp. Appl. 168, 732–741. https://doi.org/10.1111/eea.12975 (2020).Article 

    Google Scholar 
    45.Salas Gervassio, N. G., Aquino, D., Vallina, C., Biondi, A. & Luna, M. G. A re-examination of Tuta absoluta parasitoids in South America for optimized biological control. J. Pest Sci. 92, 1343–1357. https://doi.org/10.1007/s10340-018-01078-1 (2019).Article 

    Google Scholar 
    46.Idriss, G. E. A., Mohamed, S. A., Khamis, F., Du Plessis, H. & Ekesi, S. Biology and performance of two indigenous larval parasitoids on Tuta absoluta (Lepidoptera: Gelechiidae) in Sudan. Biocontrol Sci. Technol. 28, 614–628. https://doi.org/10.1080/09583157.2018.1477117 (2018).Article 

    Google Scholar 
    47.Cagnotti, C. L., Riquelme Virgala, M., Botto, E. N. & López, S. N. Dispersion and persistence of Trichogrammatoidea bactrae (Nagaraja) over Tuta absoluta (Meyrick), in tomato greenhouses. Neotrop. Entomol. 47, 553–559. https://doi.org/10.1007/s13744-017-0573-4 (2018).CAS 
    Article 
    PubMed 

    Google Scholar 
    48.Pratissoli, D. Bioecologia de Trichogramma pretiosum Riley, 1879, nas traças, Scrobipalpuloides absoluta (Meyrick, 1917) e Phthorimaea operculella (Zeller, 1873), em tomateiro. Piracicaba: Doutorado – Escola Superior de Agricultura “Luiz de Queiroz”/USP, p. 153 (1995).49.Pratissoli, D. & Parra, J. R. P. Fertility life table of Trichogramma pretiosum (Hym., Trichogrammatidae) in eggs of Tuta absoluta and Phthorimaea operculella (Lep., Gelechiidae) at different temperatures. J. Appl. Entomol. 124, 339–342 (2000).Article 

    Google Scholar 
    50.Riquelme Virgala, M. B. & Botto, E. N. Estudios biológicos de Trichogrammatoidea bactrae Nagaraja (Hymenoptera: Trichogrammatidae), parasitoide de huevos de Tuta absoluta Meyrick (Lepidoptera: Gelechiidae). Neotrop. Entomol. 36, 612–617 (2010).Article 

    Google Scholar 
    51.Aigbedion-Atalor, P.O, Abuelgasim Mohamed, S., Hill, M.P., Zalucki, M.P., Azrag, A.G.A., Srinivasan, R. & Ekesi, S. Host stage preference and performance of Dolichogenidea gelechiidivoris (Hymenoptera: Braconidae), a candidate for classical biological control of Tuta absoluta in Africa. Biol. Control. Preprint at https://doi.org/https://doi.org/10.1016/j.biocontrol.2020.104215 (2020).52.Guleria, P., Sharma, P. L., Verma, S. C. & Chandel, R. S. Life history traits and host-killing rate of Neochrysocharis formosa on Tuta absoluta. Biocontrol 65, 401–411. https://doi.org/10.1007/s10526-020-10016-z (2020).CAS 
    Article 

    Google Scholar 
    53.Calvo, F. J., Soriano, J. D., Bolckmans, K. & Belda, J. E. Host instar suitability and life-history parameters under different temperature regimes of Necremnus artynes on Tuta absoluta. Biocontrol Sci. Technol. 23, 803–815 (2013).Article 

    Google Scholar 
    54.Nieves, E. L., Pereyra, P. C., Luna, M. G., Medone, P. & Sánchez, N. E. Laboratory population parameters and field impact of the larval endoparasitoid Pseudapanteles dignus (Hymenoptera: Braconidae) on its host Tuta absoluta (Lepidoptera: Gelechiidae) in tomato crops in Argentina. J. Econ. Entomol. 108, 1553–1559 (2015).Article 

    Google Scholar 
    55.Luna, M. G., Wada, V. & Sánchez, N. E. Biology of Dineulophus phtorimaeae (Hymenoptera: Eulophidae), and field interaction with Pseudapanteles dignus (Hymenoptera: Braconidae), larval parasitoids of Tuta absoluta (Lepidoptera: Gelechiidae) in tomato. Ann. Entomol. Soc. Am. 106, 936–942 (2010).Article 

    Google Scholar 
    56.Savino, V., Coviella, C. E. & Luna, M. G. Reproductive biology and functional response of Dineulophus phtorimaeae a natural enemy of the tomato moth Tuta absoluta. J. Insect Sci. 12, 1–14 (2012).Article 

    Google Scholar 
    57.Birch, L. C. The intrinsic rate of natural increase of an insect population. J. Anim. Ecol. 17, 15–26 (1948).Article 

    Google Scholar 
    58.Lotka, A. J. Relation between birth rates and death rates. Science 26, 21–22 (1907).ADS 
    CAS 
    Article 

    Google Scholar 
    59.Lotka, A. J. & Sharpe, F. R. A problem in age distribution. Philos. Mag. 6(21), 339–345 (1911).MATH 

    Google Scholar 
    60.Dalgaard, P. Introductory Statistics With R 2nd edn. (Springer, New York, 2008).Book 

    Google Scholar  More

  • in

    Nutrient content and stoichiometry of pelagic Sargassum reflects increasing nitrogen availability in the Atlantic Basin

    1.Ryther, J. H. The Sargasso Sea. Sci. Am. 194, 98–108 (1956).ADS 
    Article 

    Google Scholar 
    2.Littler, D. S. & Littler, M. M. Caribbean Reef Plants (Offshore Graphics, 2000).3.Winge, O. The Sargasso Sea, Its Boundaries and Vegetation In Report of the Danish Oceanographic Expedition, Vol. III, 1908–1910, (Copenhagen: Andr. Fred. Hòst and Sòn) 34 pp. Miscellaneous Paper Number 2. (1923).4.Parr, A. E. Quantitative observations on the pelagic Sargassum vegetation of the western North Atlantic. Bull. Bingham Oceanogr. Collect. 6, 1–94 (1939).
    Google Scholar 
    5.Lapointe, B. E. A comparison of nutrient-limited productivity in Sargassum natans from neritic vs. oceanic waters of the western North Atlantic Ocean. Limnol. Oceanogr. 40, 625–633 (1995).ADS 
    CAS 
    Article 

    Google Scholar 
    6.Lapointe, B. E., West, L. E., Sutton, T. T. & Hu, C. Ryther revisited: nutrient excretions by fishes enhance productivity of pelagic Sargassum in the western North Atlantic Ocean. J. Exp. Mar. Biol. Ecol. 458, 46–56 (2014).CAS 
    Article 

    Google Scholar 
    7.Gower, J., Hu, C., Borstad, G. & King, S. Ocean color satellites show extensive lines of floating Sargassum in the Gulf of Mexico. IEEE Trans. Geosci. Remote Sens. 44, 3619–3625 (2006).ADS 
    Article 

    Google Scholar 
    8.Williams, A., Feagin, R. & Stafford, A. W. Environmental impacts of beach raking of Sargassum spp. on Galveston Island, TX. Shore Beach 76, 63–69 (2008).
    Google Scholar 
    9.Moritsugu, K. Tampa Bay Times (Times Publishing Company, 1991).10.Turner, R. E. & Rabalais, N. N. Coastal eutrophication near the Mississippi river delta. Nature 368, 619–621 (1994).ADS 
    Article 

    Google Scholar 
    11.Gower, J. F. R. & King, S. A. Distribution of floating Sargassum in the Gulf of Mexico and the Atlantic Ocean mapped using MERIS. Int. J. Remote Sens. 32, 1917–1929 (2011).ADS 
    Article 

    Google Scholar 
    12.Johnson, D. R., Ko, D. S., Franks, J. S., Moreno, P. & Sanchez-Rubio, G. The Sargassum invasion of the Eastern Caribbean and dynamics of the Equatorial North Atlantic. In Proceedings of the 65th Annual Gulf and Caribbean Fisheries Institute Conference pp. 102–103 (2013). http://aquaticcommons.org/21444/1/GCFI_65-17.pdf.13.Gower, J., Young, E. & King, S. Satellite images suggest a new Sargassum source region in 2011. Remote Sens. Lett. 4, 764–773 (2013).Article 

    Google Scholar 
    14.Johns, E. M. et al. The establishment of a pelagic Sargassum population in the tropical Atlantic: biological consequences of a basin-scale long distance dispersal event. Prog. Oceanogr. 182, 102269–102269 (2020).Article 

    Google Scholar 
    15.Wang, M. et al. The great Atlantic Sargassum belt. Science 364, 83–87 (2019).ADS 
    Article 
    CAS 

    Google Scholar 
    16.Djakouré, S., Araujo, M., Hounsou-Gbo, A., Noriega, C. & Bourlès, B. On the potential causes of the recent Pelagic Sargassum blooms events in the tropical North Atlantic Ocean. Biogeosci. Discuss. https://doi.org/10.5194/bg-2017-346 (2017).17.Oviatt, C. A., Huizenga, K., Rogers, C. S. & Miller, W. J. What nutrient sources support anomalous growth and the recent Sargassum mass stranding on Caribbean beaches? A review. Mar. Pollut. Bull. 145, 517–525 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    18.McGillicuddy, D. J., Jr, Anderson, L. A., Doney, S. C. & Maltrud, M. E. Eddy‐driven sources and sinks of nutrients in the upper ocean: results from a 0.1 resolution model of the North Atlantic. Global Biogeochem. Cycles 17, 1035 (2003).19.Barkley, A. E. et al. African biomass burning is a substantial source of phosphorus deposition to the Amazon, Tropical Atlantic Ocean, and Southern Ocean. Proc. Natl Acad. Sci. USA 116, 16216–16221 (2019).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    20.Qi, L., Hu, C., Xing, Q. & Shang, S. Long-term trend of Ulva prolifera blooms in the western Yellow Sea. Harmful Algae 58, 35–44 (2016).PubMed 
    Article 

    Google Scholar 
    21.Qi, L., Hu, C., Wang, M., Shang, S. & Wilson, C. Floating algae blooms in the East China Sea. Geophys. Res. Lett. 44, 501–511,509 (2017).Article 
    CAS 

    Google Scholar 
    22.Smetacek, V. & Zingone, A. Green and golden seaweed tides on the rise. Nature 504, 84–88 (2013).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    23.Van Tussenbroek, B. I. et al. Severe impacts of brown tides caused by Sargassum spp. on near-shore Caribbean seagrass communities. Mar. Pollut. Bull. 122, 272–281 (2017).PubMed 
    Article 
    CAS 

    Google Scholar 
    24.Alvarez-Filip, L., Estrada-Saldívar, N., Pérez-Cervantes, E., Molina-Hernández, A. & González-Barrios, F. J. A rapid spread of the stony coral tissue loss disease outbreak in the Mexican Caribbean. PeerJ 7, e8069–e8069 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    25.Cabanillas-Terán, N., Hernández-Arana, H. A., Ruiz-Zárate, M.-Á., Vega-Zepeda, A. & Sanchez-Gonzalez, A. Sargassum blooms in the Caribbean alter the trophic structure of the sea urchin Diadema antillarum. PeerJ 7, e7589–e7589 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    26.Maurer, A. S., De Neef, E. & Stapleton, S. Sargassum accumulation may spell trouble for nesting sea turtles. Front. Ecol. Environ. 13, 394–395 (2015).Article 

    Google Scholar 
    27.Webster, R. K. & Linton, T. Development and implementation of Sargassum early advisory system (SEAS). Shore Beach 81, 1–1 (2013).
    Google Scholar 
    28.Resiere, D. et al. Sargassum seaweed on Caribbean islands: an international public health concern. Lancet 392, 2691–2691 (2018).Article 

    Google Scholar 
    29.Glibert, P. et al. The role of in the global proliferation of harmful algal blooms: new perspectives and approaches. Oceanography 18, 196–207 (2005).
    Google Scholar 
    30.Glibert, P. M. Eutrophication, harmful algae and biodiversity — Challenging paradigms in a world of complex nutrient changes. Mar. Pollut. Bull. 124, 591–606 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    31.Steffen, W. et al. Planetary boundaries: guiding human development on a changing planet. Science 347, 6223 https://doi.org/10.1126/science.1259855 (2015).32.Ryther, J. H. The ecology of phytoplankton blooms in Moriches bay and Great South bay, Long Island, New York. Biol. Bull. 106, 198–209 (1954).Article 

    Google Scholar 
    33.Ryther, J. H. & Dunstan, W. M. Nitrogen, Phosphorus, and Eutrophication in the coastal marine environment. Science 171, 1008 LP-1013 (1971).Article 

    Google Scholar 
    34.Howarth, R. W. & Marino, R. Nitrogen as the limiting nutrient for eutrophication in coastal marine ecosystems: evolving views over three decades. Limnol. Oceanogr. 51, 364–376 (2006).ADS 
    CAS 
    Article 

    Google Scholar 
    35.Oelsner, G. P. & Stets, E. G. Recent trends in nutrient and sediment loading to coastal areas of the conterminous U.S.: insights and global context. Sci. Total Environ. 654, 1225–1240 (2019).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    36.Falkowski, P. G. Evolution of the nitrogen cycle and its influence on the biological sequestration of CO2 in the ocean. Nature 387, 272–275 (1997).ADS 
    CAS 
    Article 

    Google Scholar 
    37.Tyrrell, T. The relative influences of nitrogen and phosphorus on oceanic primary production. Nature 400, 525–531 (1999).ADS 
    CAS 
    Article 

    Google Scholar 
    38.Lapointe, B. E., Littler, M. M. & Littler, D. S. A comparison of nutrient-limited productivity in macroalgae from a Caribbean barrier reef and from a mangrove ecosystem. Aquat. Bot. 28, 243–255 (1987).Article 

    Google Scholar 
    39.Culliney, J. L. Measurements of reactive phosphorus associated with pelagic Sargassum in the Northwest Sargasso Sea1. Limnol. Oceanogr. 15, 304–305 (1970).ADS 
    CAS 
    Article 

    Google Scholar 
    40.Schaffelke, B. Particulate organic matter as an alternative nutrient source for tropical Sargassum species (Fucales, Phaeophyceae). J. Phycol. 35, 1150–1157 (1999).CAS 
    Article 

    Google Scholar 
    41.Vonk, J. A., Middelburg, J. J., Stapel, J. & Bouma, T. J. Dissolved organic nitrogen uptake by seagrasses. Limnol. Oceanogr. 53, 542–548 (2008).ADS 
    CAS 
    Article 

    Google Scholar 
    42.Han, T., Qi, Z., Huang, H., Liao, X. & Zhang, W. Nitrogen uptake and growth responses of seedlings of the brown seaweed Sargassum hemiphyllum under controlled culture conditions. J. Appl. Phycol. 30, 507–515 (2018).CAS 
    Article 

    Google Scholar 
    43.Fujita, R., Wheeler, P. & Edwards, R. Assessment of macroalgal nitrogen limitation in a seasonal upwelling region. Mar. Ecol. Prog. Ser. 53, 293–303 (1989).ADS 
    Article 

    Google Scholar 
    44.Prospero, J. M. et al. in Nitrogen Cycling in the North Atlantic Ocean and its Watersheds (ed. Robert, W. H.) (Springer, 1996).45.Howarth, R. W. Coastal nitrogen pollution: a review of sources and trends globally and regionally. Harmful Algae 8, 14–20 (2008).CAS 
    Article 

    Google Scholar 
    46.Rockström, J. & Karlberg, L. The quadruple squeeze: defining the safe operating space for freshwater use to achieve a triply green revolution in the Anthropocene. Ambio 39, 257–265 (2010).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    47.Hanisak, M. D. & Samuel, M. A. Twelfth International Seaweed Symposium (Springer, 1986).48.Rabalais, N. N. et al. Hypoxia in the northern Gulf of Mexico: does the science support the plan to reduce, mitigate, and control hypoxia? Estuar. Coasts 30, 753–772 (2007).CAS 
    Article 

    Google Scholar 
    49.Tian, H. et al. Long-term trajectory of nitrogen loading and delivery from Mississippi river basin to the Gulf of Mexico. Glob. Biogeochem. Cycles 34, e2019GB006475–e002019GB006475 (2020).ADS 
    CAS 
    Article 

    Google Scholar 
    50.Lapointe, B. E., Brewton, R. A., Herren, L. W., Porter, J. W. & Hu, C. Nitrogen enrichment, altered stoichiometry, and coral reef decline at Looe Key, Florida Keys, USA: a 3-decade study. Mar. Biol. 166, 108–108 (2019).Article 
    CAS 

    Google Scholar 
    51.Lapointe, B. E., Barile, P. J. & Littler, M. M. & Littler, D. S. Macroalgal blooms on southeast Florida coral reefs: II. Cross-shelf discrimination of nitrogen sources indicates widespread assimilation of sewage nitrogen. Harmful Algae 4, 1106–1122 (2005).CAS 
    Article 

    Google Scholar 
    52.Dunn, D. E. Trends in Nutrient Inflows to the Gulf of Mexico from Streams Draining the Conterminous United States, 1972-93. Report No. 96-4113 (Austin, TX, 1996).53.Turner, R. E. & Rabalais, N. N. Changes in Mississippi River water quality this century: implications for coastal food webs. Bioscience 41, 140–147 (1991).Article 

    Google Scholar 
    54.Rabalais, N. N. et al. Nutrient changes in the Mississippi River and system responses on the adjacent continental shelf. Estuaries 19, 386–407 (1996).CAS 
    Article 

    Google Scholar 
    55.Weber, S. C. et al. Amazon River influence on nitrogen fixation and export production in the western tropical North Atlantic. Limnol. Oceanogr. 62, 618–631 (2017).ADS 
    Article 

    Google Scholar 
    56.Ryther, J. H., Menzel, D. W. & Corwin, N. Influence of Amazon River outflow on ecology of Western Tropical Atlantic. I. Hydrography and nutrient chemistry. J. Mar. Res. 25, 69–69 (1967).
    Google Scholar 
    57.Subramaniam, A. et al. Amazon River enhances diazotrophy and carbon sequestration in the tropical North Atlantic Ocean. Proc. Natl Acad. Sci.USA 105, 10460 LP–10410465 (2008).ADS 
    Article 

    Google Scholar 
    58.Barichivich, J. et al. Recent intensification of Amazon flooding extremes driven by strengthened Walker circulation. Sci. Adv. 4, eaat8785–eaat8785 (2018).ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    59.Howarth, R. W. et al. Regional nitrogen budgets and riverine N & P fluxes for the drainages to the North Atlantic Ocean: Natural and human influences. In Nitrogen Cycling in the North Atlantic Ocean and its Watersheds (ed. Robert, W. Howarth) (Springer, Dordrecht, 1996). https://doi.org/10.1007/978-94-009-1776-7_3.60.Galloway, J. N. et al. Regional nitrogen budgets and riverine N & P fluxes for the drainages to the North Atlantic Ocean: Natural and human influences. Biogeochemistry (ed. Robert, W. Howarth) 35, 181–226 (Springer, 1996).61.Gower, J. & King, S. Satellite images show the movement of floating Sargassum in the Gulf of Mexico and Atlantic Ocean. Nat. Preced. https://doi.org/10.1038/npre.2008.1894.1 (2008).62.Chapman, A. R. O. & Craigie, J. S. Seasonal growth in Laminaria longicruris: relations with dissolved inorganic nutrients and internal reserves of nitrogen. Mar. Biol. 40, 197–205 (1977).CAS 
    Article 

    Google Scholar 
    63.Zimmerman, R. C. & Kremer, J. N. Episodic nutrient supply to a kelp forest ecosystem in Southern California. J. Mar. Res. 42, 591–604 (1984).Article 

    Google Scholar 
    64.Kain, J. M. The seasons in the subtidal. Br. Phycol. J. 24, 203–215 (1989).Article 

    Google Scholar 
    65.Dorado, S., Rooker, J. R., Wissel, B. & Quigg, A. Isotope baseline shifts in pelagic food webs of the Gulf of Mexico. Mar. Ecol. Prog. Ser. 464, 37–49 (2012).ADS 
    CAS 
    Article 

    Google Scholar 
    66.Kendall, C., Elliott, E. M. & Wankel, S. D. Wiley Online Books 375-449 (2007).67.Altieri, K. E., Hastings, M. G., Peters, A. J., Oleynik, S. & Sigman, D. M. Isotopic evidence for a marine ammonium source in rainwater at Bermuda. Glob. Biogeochem. Cycles 28, 1066–1080 (2014).ADS 
    CAS 
    Article 

    Google Scholar 
    68.Bateman, A. S. & Kelly, S. D. Fertilizer nitrogen isotope signatures. Isotopes Environ. Health Stud. 43, 237–247 (2007).CAS 
    PubMed 
    Article 

    Google Scholar 
    69.Knapp, A. N., DiFiore, P. J., Deutsch, C., Sigman, D. M. & Lipschultz, F. Nitrate isotopic composition between Bermuda and Puerto Rico: implications for N2 fixation in the Atlantic Ocean. Global Biogeochem. Cycles 22, GB3014 https://doi.org/10.1029/2007GB003107 (2008).70.Knapp, A. N., Sigman, D. M. & Lipschultz, F. N isotopic composition of dissolved organic nitrogen and nitrate at the Bermuda Atlantic Time-series Study site. Global Biogeochem. Cycles 19, GB1018 https://doi.org/10.1029/2004GB002320 (2005).71.Montoya, J. P. Nitrogen stable isotopes in marine environments. Nitrogen Mar. Environ. 2, 1277–1302 (2008).Article 

    Google Scholar 
    72.Wissel, B. & Fry, B. Sources of particulate organic matter in the Mississippi River, USA. Large Rivers 15 105–118 (2003).73.Zaia Alves, G. H., Hoeinghaus, D. J., Manetta, G. I. & Benedito, E. Dry season limnological conditions and basin geology exhibit complex relationships with δ13C and δ15N of carbon sources in four Neotropical floodplains. PLoS ONE 12, e0174499 (2017).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    74.Smith, N. P. Upwelling in Atlantic shelf waters of South Florida. Florida Scientist 45, 125–138 (1982).75.Atkinson, L. P., O’Malley, P. G., Yoder, J. A. & Paffenhöfer, G. A. The effect of summertime shelf break upwelling on nutrient flux in southeastern United States continental shelf waters. J. Mar. Res. 42, 969–993 (1984).Article 

    Google Scholar 
    76.Subramaniam, A., Mahaffey, C., Johns, W. & Mahowald, N. Equatorial upwelling enhances nitrogen fixation in the Atlantic Ocean. Geophys. Res. Lett. 40, 1766–1771 (2013).ADS 
    Article 

    Google Scholar 
    77.Carpenter, E. J. Nitrogen fixation by a blue-green epiphyte on Pelagic Sargassum. Science 178, 1207–1209 (1972).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    78.Phlips, E. J., Willis, M. & Verchick, A. Aspects of nitrogen fixation in Sargassum communities off the coast of Florida. J. Exp. Mar. Biol. Ecol. 102, 99–119 (1986).CAS 
    Article 

    Google Scholar 
    79.Subramaniam, A., Montoya, J. P., Foster, R. A. & Capone, D. G. Nitrogen fixation in the eastern equatorial Atlantic: who and how much? European Geosciences Union General Assembly 11, 10156–10156 (2009).80.Carpenter, E. J. et al. Extensive bloom of a N2-fixing diatom/cyanobacterial association in the tropical Atlantic Ocean. Mar. Ecol. Prog. Ser. 185, 273–283 (1999).ADS 
    CAS 
    Article 

    Google Scholar 
    81.Zubkova, M., Boschetti, L., Abatzoglou, J. T. & Giglio, L. Changes in fire activity in Africa from 2002 to 2016 and their potential drivers. Geophys. Res. Lett. 46, 7643–7653 (2019).ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    82.Baker, A. R., French, M. & Linge, K. L. Trends in aerosol nutrient solubility along a west–east transect of the Saharan dust plume. Geophys. Res. Lett. 33 L07805, https://doi.org/10.1029/2005GL024764 (2006).83.Baker, A. R., Jickells, T. D., Witt, M. & Linge, K. L. Trends in the solubility of iron, aluminium, manganese and phosphorus in aerosol collected over the Atlantic Ocean. Mar. Chem. 98, 43–58 (2006).CAS 
    Article 

    Google Scholar 
    84.Shelley, R. U., Morton, P. L. & Landing, W. M. Elemental ratios and enrichment factors in aerosols from the US-GEOTRACES North Atlantic transects. Deep Sea Res. Part II Top. Stud. Oceanogr. 116, 262–272 (2015).ADS 
    CAS 
    Article 

    Google Scholar 
    85.Giglio, L., Schroeder, W. & Justice, C. O. The collection 6 MODIS active fire detection algorithm and fire products. Remote Sens. Environ. 178, 31–41 (2016).ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    86.Giglio, L., Descloitres, J., Justice, C. O. & Kaufman, Y. J. An enhanced contextual fire detection algorithm for MODIS. Remote Sens. Environ. 87, 273–282 (2003).ADS 
    Article 

    Google Scholar 
    87.Giglio, L., van der Werf, G. R., Randerson, J. T., Collatz, G. J. & Kasibhatla, P. Global estimation of burned area using MODIS active fire observations. Atmos. Chem. Phys. 6, 957–974 (2006).ADS 
    CAS 
    Article 

    Google Scholar 
    88.Roberts, G., Wooster, M. J. & Lagoudakis, E. Annual and diurnal african biomass burning temporal dynamics. Biogeosciences 6, 849–866 (2009).ADS 
    Article 

    Google Scholar 
    89.Baker, A. R. & Jickells, T. D. Atmospheric deposition of soluble trace elements along the Atlantic Meridional Transect (AMT). Prog. Oceanogr. 158, 41–51 (2017).ADS 
    Article 

    Google Scholar 
    90.Chance, R., Jickells, T. D. & Baker, A. R. Atmospheric trace metal concentrations, solubility and deposition fluxes in remote marine air over the south-east Atlantic. Mar. Chem. 177, 45–56 (2015).CAS 
    Article 

    Google Scholar 
    91.Myriokefalitakis, S., Nenes, A., Baker, A. R., Mihalopoulos, N. & Kanakidou, M. Bioavailable atmospheric phosphorous supply to the global ocean: a 3-D global modeling study. Biogeosciences 13, 6519–6543 (2016).ADS 
    CAS 
    Article 

    Google Scholar 
    92.Kanakidou, M., Myriokefalitakis, S. & Tsigaridis, K. Aerosols in atmospheric chemistry and biogeochemical cycles of nutrients. Environ. Res. Lett. 13, 063004 (2018).93.Rosenzweig, M. L. Paradox of enrichment: destabilization of exploitation ecosystems in ecological time. Science 171, 385–387 (1971).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    94.McCann, K. S. et al. Landscape modification and nutrient‐driven instability at a distance. Ecol. Lett. 24, 398–414 (2021).PubMed 
    Article 

    Google Scholar 
    95.Meybeck, M. Carbon, nitrogen, and phosphorus transport by world rivers. Am. J. Sci. 282, 401–450 (1982).ADS 
    CAS 
    Article 

    Google Scholar 
    96.Fanning, K. A. Nutrient provinces in the sea: concentration ratios, reaction rate ratios, and ideal covariation. J. Geophys. Res. Oceans 97, 5693–5712 (1992).ADS 
    Article 

    Google Scholar 
    97.Ammerman, J. W., Hood, R. R., Case, D. A. & Cotner, J. B. Phosphorus deficiency in the Atlantic: an emerging paradigm in oceanography. Eos, Trans. Am. Geophys. Union 84, 165–170 (2003).ADS 
    Article 

    Google Scholar 
    98.Lomas, M. W., Bonachela, J. A., Levin, S. A. & Martiny, A. C. Impact of ocean phytoplankton diversity on phosphate uptake. Proc. Natl Acad. Sci. USA 111, 17540–17545 (2014).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    99.Richey, J. E. et al. (ORNL Distributed Active Archive Center, 2008).100.Cochonneau, G. et al. The environmental observation and research project, ORE HYBAM, and the rivers of the Amazon basin. In Climate Variability and Change—Hydrological Impacts (eds Demuth, S. et al.) vol. 308, 44–50 (2006). More

  • in

    Genome-wide SNPs redefines species boundaries and conservation units in the freshwater mussel genus Cyprogenia of North America

    1.Frankham, R. Challenges and opportunities of genetic approaches to biological conservation. Biol. Conserv. 143, 1919–1927 (2010).Article 

    Google Scholar 
    2.Goldstein, P. Z., Desalle, R., Amato, G. & Vogler, A. P. Conservation genetics at the species boundary. Conserv. Biol. 14, 120–131 (2000).Article 

    Google Scholar 
    3.Isaac, N. J. B., Mallet, J. & Mace, G. M. Taxonomic inflation: Its influence on macroecology and conservation. Trends Ecol. Evol. 19, 464–469 (2004).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    4.Lydeard, C. et al. The global decline of nonmarine mollusks. Bioscience 54, 321–330 (2004).Article 

    Google Scholar 
    5.Haag, W. R. & Williams, J. D. Biodiversity on the brink: An assessment of conservation strategies for North American freshwater mussels. Hydrobiologia 735, 45–60 (2014).Article 

    Google Scholar 
    6.Ricciardi, A. & Rasmussen, J. Extinction rates of North American freshwater fauna. Conserv. Biol. 13, 1220–1222 (1999).7.Spooner, D. E. & Vaughn, C. C. Context-dependent effects of freshwater mussels on stream benthic communities. Freshw. Biol. 51, 1016–1024 (2006).CAS 
    Article 

    Google Scholar 
    8.Vaughn, C. C., Spooner, D. E. & Galbraith, H. S. Contex-dependent species identity effects within a functional group of filter-feeding bivalves. Ecology 88, 1654–1662 (2007).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    9.Vaughn, C. C., Nichols, S. J. & Spooner, D. E. Community and foodweb ecology of freshwater mussels. J. N. Am. Benthol. Soc. 27, 409–423 (2008).Article 

    Google Scholar 
    10.McMahon, R. F. Ecology and Classification of North American Freshwater Invertebrates (Academic Press, 1991).
    Google Scholar 
    11.Watters, G. T. Unionids, fishes, and the species-area curve. J. Biogeogr. 19, 481–490 (1992).Article 

    Google Scholar 
    12.Haag, W. R. & Warren, M. L. Host fishes and reproductive biology of 6 freshwater mussel species from the Mobile Basin, USA. J. N. Am. Benthol. Soc. 16, 576–585 (1997).Article 

    Google Scholar 
    13.Eckert, N. L. Reproductive biology and host requirement differences among isolated populations of Cyprogenia aberti (Conrad, 1850). MS Thesis, Southwest Missouri State University, Springfield (2003).14.Barnhart, M. C., Haag, W. R. & Roston, W. N. Adaptations to host infection and larval parasitism in Unionoida. J. N. Am. Benthol. Soc. 27, 370–394 (2008).Article 

    Google Scholar 
    15.Rogers, S. O., Watson, B. T. & Neves, R. J. Life history and population biology of the endangered tan riffleshell (Epioblasma florentina walkeri) (Bivalvia: Unionidae). J. N. Am. Benthol. Soc. 20, 582–594 (2001).Article 

    Google Scholar 
    16.Burr, B. M. & Mayden, R. L. Phylogenetics and North American freshwater fishes. In: Systematics, Historical Ecology, and North American Freshwater Fishes. (Stanford University Press, 1992).17.Oesch, R. D. Missouri Naiades: A Guide to the Mussels of Missouri (Missouri Department of Conservation, 1995).
    Google Scholar 
    18.Harris, J. L. et al. Unionoida (Mollusca: Margaritiferidae, Unionidae) in Arkansas, third status review. J. Ark. Acad. Sci. 63, 50–86 (2009).
    Google Scholar 
    19.Obermeyer, B. K. Recovery plan for four freshwater mussels in southeast Kansas: Neosho mucket (Lampsilis rafinesqueana), Ouachita kidneyshell (Ptychobranchus occidentalis), rabbitsfoot (Quadrula cylindrica cylindrica), and western fanshell (Cyprogenia aberti). Kansas Department of Parks and Wildlife (2000).20.Serb, J. M. Discovery of genetically distinct sympatric lineages in the freshwater mussel Cyprogenia aberti (Bivalvia: Unionidae). J. Molluscan Stud. 72, 425–434 (2006).Article 

    Google Scholar 
    21.Grobler, J. P., Jones, J. W., Johnson, N. A., Neves, R. J. & Hallerman, E. M. Homogeneity at nuclear microsatellite loci masks mitochondrial haplotype diversity in the endangered fanshell pearlymussel (Cyprogenia stegaria). J. Hered. 102, 196–206 (2011).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    22.Serb, J. M. & Barnhart, M. C. Congruence and conflict between molecular and reproductive characters when assessing biological diversity in the Western Fanshell Cyprogenia aberti (Bivalvia, Unionidae)1. Ann. Missouri Bot. Gard. 95, 248–261 (2008).Article 

    Google Scholar 
    23.Chong, J. P., Harris, J. L. & Roe, K. J. Incongruence between mtDNA and nuclear data in the freshwater mussel genus Cyprogenia (Bivalvia: Unionidae) and its impact on species delineation. Ecol. Evol. 6, 2439–2452 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    24.Hohenlohe, P. A. et al. Population genomics of parallel adaptation in threespine stickleback using sequenced RAD tags. PLoS Genet. 6, e1000862 (2010).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    25.Leaché, A. D., Fujita, M. K., Minin, V. N. & Bouckaert, R. R. Species delimitation using genome-wide SNP Data. Syst. Biol. 63, 534–542 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    26.Bruneaux, M. et al. Molecular evolutionary and population genomic analysis of the nine-spined stickleback using a modified restriction-site-associated DNA tag approach. Mol. Ecol. 22, 565–582 (2013).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    27.Wagner, C. et al. Genome-wide RAD sequence data provide unprecedented resolution of species boundaries and relationships in the Lake Victoria cichlid adaptive radiation. Mol. Ecol. 22, 787–798 (2013).28.Larson, W. A. et al. Genotyping by sequencing resolves shallow population structure to inform conservation of Chinook salmon (Oncorhynchus tshawytscha). Evol. Appl. 7, 355–369 (2014).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    29.Lee, S.-R., Jo, Y.-S., Park, C.-H., Friedman, J. M. & Olson, M. S. Population genomic analysis suggests strong influence of river network on spatial distribution of genetic variation in invasive saltcedar across the southwestern United States. Mol. Ecol. 27, 636–646 (2017).Article 
    CAS 

    Google Scholar 
    30.Massatti, R., Reznicek, A. A. & Knowles, L. L. Utilizing RADseq data for phylogenetic analysis of challenging taxonomic groups: A case study in carex sect. Racemosae. Am. J. Bot. 103, 337–347 (2016).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    31.Razkin, O. et al. Species limits, interspecific hybridization and phylogeny in the cryptic land snail complex Pyramidula: The power of RADseq data. Mol. Phylogenet. Evol. https://doi.org/10.1016/j.ympev.2016.05.002 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    32.Rubin, B. E. R., Ree, R. H. & Moreau, C. S. Inferring phylogenies from RAD sequence data. PLoS ONE 7, e33394 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    33.Takahashi, T., Nagata, N. & Sota, T. Application of RAD-based phylogenetics to complex relationships among variously related taxa in a species flock. Mol. Phylogenet. Evol. https://doi.org/10.1016/j.ympev.2014.07.016 (2014).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    34.Boucher, F. C., Casazza, G., Szövényi, P. & Conti, E. Sequence capture using RAD probes clarifies phylogenetic relationships and species boundaries in Primula sect. Auricula. Mol. Phylogenet. Evol. https://doi.org/10.1016/j.ympev.2016.08.003 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    35.Combosch, D. J., Lemer, S., Ward, P. D., Landman, N. H. & Giribet, G. Genomic signatures of evolution in Nautilus—An endangered living fossil. Mol. Ecol. 26, 5923–5938 (2017).PubMed 
    Article 

    Google Scholar 
    36.Cruaud, A. et al. Empirical assessment of RAD sequencing for interspecific phylogeny. Mol. Biol. Evol. 31, 1272–1274 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    37.Eaton, D. A. R. & Ree, R. H. Inferring phylogeny and introgression using RADseq data: An example from flowering plants (Pedicularis: Orobanchaceae). Syst. Biol. 62, 689–706 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    38.Emerson, K. J. et al. Resolving postglacial phylogeography using high-throughput sequencing. Proc. Natl. Acad. Sci. USA 107, 16196–16200 (2010).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    39.Herrera, S. & Shank, T. M. RAD sequencing enables unprecedented phylogenetic resolution and objective species delimitation in recalcitrant divergent taxa. Mol. Phylogenet. Evol. 100, 70–79 (2016).PubMed 
    Article 

    Google Scholar 
    40.Hipp, A. L. et al. A framework phylogeny of the American Oak Clade based on sequenced RAD data. PLoS ONE 9, e93975 (2014).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    41.Jones, J. C., Fan, S., Franchini, P., Schartl, M. & Meyer, A. The evolutionary history of Xiphophorus fish and their sexually selected sword: A genome-wide approach using restriction site-associated DNA sequencing. Mol. Ecol. 22, 2986–3001 (2013).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    42.Funk, W. C. et al. Adaptive divergence despite strong genetic drift: Genomic analysis of the evolutionary mechanisms causing genetic differentiation in the island fox (Urocyon littoralis). Mol. Ecol. 25, 2176–2194 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    43.Taberlet, P. & Luikart, G. Non-invasive genetic sampling and individual identification. Biol. J. Linn. Soc. 68, 41–55 (1999).Article 

    Google Scholar 
    44.Palsbøll, P. J., Bérubé, M. & Allendorf, F. W. Identification of management units using population genetic data. Trends Ecol. Evol. 22, 11–16 (2007).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    45.Gibbs, J., Jr. Hunter, M. & Sterling, E. Population genetics: Diversity within versus diversity among populations. In: Problem-Solving in Conservation Biology and Wildlife Management: Exercises for Class, Field, and Laboratory 29–35 (Blackwell Publishing Ltd., 2008). https://doi.org/10.1002/9781444319576.ch4.46.Berendzen, P. B., Simons, A. M., Wood, R. M., Dowling, T. E. & Secor, C. L. Recovering cryptic diversity and ancient drainage patterns in eastern North America: Historical biogeography of the Notropis rubellus species group (Teleostei: Cypriniformes). Mol. Phylogenet. Evol. 46, 721–737 (2008).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    47.Ray, J. M., Wood, R. M. & Simons, A. M. Phylogeography and post-glacial colonization patterns of the rainbow darter, Etheostoma caeruleum (Teleostei: Percidae). J. Biogeogr. 33, 1550–1558 (2006).Article 

    Google Scholar 
    48.Strange, R. M. & Burr, B. M. Intraspecific phylogeography of North American highland fishes: A test of the pleistocene vicariance hypothesis. Evolution (N. Y.) 51, 885–897 (1997).
    Google Scholar 
    49.Pflieger, W. L. A distributional study of missouri fishes. Univ. Kans. Publ. Mus. Nat. Hist. 20 (1971).50.Thornbury, W. D. Regional geomorphology of the United States. J. Geol. 73, 815–816 (1965).Article 

    Google Scholar 
    51.Mayden, R. Vicariance biogeography, parsimony, and evolution in North American freshwater fishes. Syst. Zool. 37, 329–355 (1988).52.Echelle, A. A., Echelle, A. F., Smith, M. H. & Hill, L. G. Analysis of genic continuity in a headwater fish, Etheostoma radiosum (Percidae). Copeia 1975, 197–204 (1975).Article 

    Google Scholar 
    53.Haponski, A. E., Bollin, T. L., Jedlicka, M. A. & Stepien, C. A. Landscape genetic patterns of the rainbow darter Etheostoma caeruleum: A catchment analysis of mitochondrial DNA sequences and nuclear microsatellites. J. Fish Biol. 75, 2244–2268 (2010).Article 
    CAS 

    Google Scholar 
    54.Turner, T. F. & Trexler, J. C. Ecological and historical associations of gene flow in darters (Teleostei: Percidae). Evolution (N. Y.) 52, 1781–1801 (1998).
    Google Scholar 
    55.Turner, T. F., Trexler, J. C., Kuhn, D. N. & Robison, H. W. Life-history variation and comparative phylogeography of darters (Pisces: Percidae) From the North American Central Highlands. Evolution (N. Y.) 50, 2023–2036 (1996).
    Google Scholar 
    56.Cross, F., Mayden, R. & Stewart, J. Fishes in the Western Mississippi Drainage. The Zoogeography of North American Freshwater Fishes (Wiley, 1986).
    Google Scholar 
    57.Barnhart, M. C. Reproduction and Fish Host of the Western Fanshell, Cyprogenia aberti (Conrad 1850) (Kansas Department of Wildlife and Parks, 1997).
    Google Scholar 
    58.Inoue, K., Monroe, E. M., Elderkin, C. L. & Berg, D. J. Phylogeographic and population genetic analyses reveal Pleistocene isolation followed by high gene flow in a wide ranging, but endangered, freshwater mussel. Heredity (Edinb). 112, 282–290 (2014).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    59.Catchen, J. M., Amores, A., Hohenlohe, P. A., Cresko, W. A. & Postlethwait, J. H. Stacks: Building and genotyping Loci de novo from short-read sequences. G3 Genes Genomes Genet. 1, 171–182 (2011).CAS 

    Google Scholar 
    60.Catchen, J. M., Hohenlohe, P. A., Bassham, S., Amores, A. & Cresko, W. A. Stacks: an analysis tool set for population genomics. Mol. Ecol. 22, 3124–3140 (2013).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    61.Peterson, B. K., Weber, J. N., Kay, E. H., Fisher, H. S. & Hoekstra, H. E. Double digest RADseq: An inexpensive method for De Novo SNP discovery and genotyping in model and non-model species. PLoS ONE 7, e37135 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    62.Mastretta-Yanes, A. et al. Restriction site-associated DNA sequencing, genotyping error estimation and de novo assembly optimization for population genetic inference. Mol. Ecol. Resour. 15, 28–41 (2015).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    63.Meirmans, P. G. & Van Tienderen, P. H. Genotype and genodive: two programs for the analysis of genetic diversity of asexual organisms. Mol. Ecol. Notes 4, 792–794 (2004).Article 

    Google Scholar 
    64.Weir, B. S. & Cockerham, C. C. Estimating F-statistics for the analysis of population structure. Evolution (N. Y.) 38, 1358–1370 (1984).CAS 

    Google Scholar 
    65.Raymond, M. & Rousset, F. GENEPOP (Version 1.2): Population genetics software for exact tests and ecumenicism. J. Hered. 86, 248–249 (1995).Article 

    Google Scholar 
    66.Excoffier, L., Smouse, P. E. & Quattro, J. M. Analysis of molecular variance inferred from metric distances among DNA haplotypes: Application to human mitochondrial DNA restriction data. Genetics 131, 479–491 (1992).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    67.Jombart, T. adegenet: A R package for the multivariate analysis of genetic markers. Bioinformatics 24, 1403–1405 (2008).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    68.R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing. Vienna, Austria. Available online at https://www.R-project.org/ (2018).69.Jombart, T., Devillard, S. & Balloux, F. Discriminant analysis of principal components: A new method for the analysis of genetically structured populations. BMC Genet. 11, 94 (2010).70.Pritchard, J. K., Stephens, M. & Donnelly, P. Inference of population structure using multilocus genotype data. Genetics 155, 945–959 (2000).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    71.Evanno, G., Regnaut, S. & Goudet, J. Detecting the number of clusters of individuals using the software structure: A simulation study. Mol. Ecol. 14, 2611–2620 (2005).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    72.Earl, D. A. & Vonholdt, B. M. Structure Harvester: A website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv. Genet. Resour. 4, 359–361 (2012).Article 

    Google Scholar 
    73.Rosenberg, N. A. distruct: A program for the graphical display of population structure. Mol. Ecol. Notes 4, 137–138 (2004).Article 

    Google Scholar 
    74.Minh, B., Nguyen, M.-A. & von Haeseler, A. Ultrafast approximation for phylogenetic bootstrap. Mol. Biol. Evol. 30, 1188–1195 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    75.Nguyen, L.-T., Schmidt, H. A., von Haeseler, A. & Minh, B. Q. IQ-TREE: A fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 32, 268–274 (2015).CAS 
    Article 

    Google Scholar 
    76.Ronquist, F. & Huelsenbeck, J. P. MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19, 1572–1574 (2003).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    77.Bryant, D., Bouckaert, R., Felsenstein, J., Rosenberg, N. A. & Roychoudhury, A. Inferring species trees directly from biallelic genetic markers: Bypassing gene trees in a full coalescent analysis. Mol. Biol. Evol. 29, 1917–1932 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    78.Bouckaert, R. et al. BEAST 2: A software platform for Bayesian evolutionary analysis. PLoS Comput. Biol. 10, 1–6 (2014).Article 
    CAS 

    Google Scholar 
    79.Kass, R. E. & Raftery, A. E. kass1995BayesFactors. J. Am. Stat. Assoc. 90, 773–795 (1995).Article 

    Google Scholar 
    80.Cornuet, J.-M. et al. DIYABC v2.0: A software to make approximate Bayesian computation inferences about population history using single nucleotide polymorphism, DNA sequence and microsatellite data. Bioinformatics 30, 1187–1189 (2014).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    81.Cabrera, A. A. & Palsbøll, P. J. Inferring past demographic changes from contemporary genetic data: A simulation-based evaluation of the ABC methods implemented in diyabc. Mol. Ecol. Resour. 17, e94–e110 (2017).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    82.Jones, J. W. & Neves, R. J. Life history and propagation of the endangered fanshell pearlymussel, Cyprogenia stegaria Rafinesque (Bivalvia: Unionidae) The University of Chicago Press on behalf of the Society for F. J. N. Am. Benthol. Soc. 21, 76–88 (2002).Article 

    Google Scholar  More

  • in

    Temperatures that sterilize males better match global species distributions than lethal temperatures

    1.Pecl, G. T. et al. Biodiversity redistribution under climate change: impacts on ecosystems and human well-being. Science 355, eaai9214 (2017).Article 

    Google Scholar 
    2.Kearney, M. & Porter, W. Mechanistic niche modelling: combining physiological and spatial data to predict species’ ranges. Ecol. Lett. 12, 334–350 (2009).Article 

    Google Scholar 
    3.Nowakowski, A. J. et al. Thermal biology mediates responses of amphibians and reptiles to habitat modification. Ecol. Lett. 21, 345–355 (2018).Article 

    Google Scholar 
    4.Metelmann, S. et al. The UK’s suitability for Aedes albopictus in current and future climates. J. R. Soc. Interface 16, 20180761 (2019).CAS 
    Article 

    Google Scholar 
    5.Kellermann, V. et al. Upper thermal limits of Drosophila are linked to species distributions and strongly constrained phylogenetically. Proc. Natl Acad. Sci. USA 109, 16228–16233 (2012).CAS 
    Article 

    Google Scholar 
    6.Lancaster, L. T. & Humphreys, A. M. Global variation in the thermal tolerances of plants. Proc. Natl Acad. Sci. USA 117, 13580–13587 (2020).CAS 
    Article 

    Google Scholar 
    7.Sunday, J. M. et al. Thermal-safety margins and the necessity of thermoregulatory behavior across latitude and elevation. Proc. Natl Acad. Sci. USA 111, 5610–5615 (2014).CAS 
    Article 

    Google Scholar 
    8.Rezende, E. L., Bozinovic, F., Szilàgyi, A. & Santos, M. Predicting temperature mortality and selection in natural Drosophila populations. Science 369, 1242–1245 (2020).CAS 
    Article 

    Google Scholar 
    9.Jørgensen, L. B., Malte, H. & Overgaard, J. How to assess Drosophila heat tolerance: unifying static and dynamic tolerance assays to predict heat distribution limits. Funct. Ecol. 33, 629–642 (2019).Article 

    Google Scholar 
    10.Rezende, E. L., Castañeda, L. E. & Santos, M. Tolerance landscapes in thermal ecology. Funct. Ecol. 28, 799–809 (2014).Article 

    Google Scholar 
    11.Terblanche, J. S. & Hoffmann, A. A. Validating measurements of acclimation for climate change adaptation. Curr. Opin. Insect Sci. 41, 7–16 (2020).Article 

    Google Scholar 
    12.Walsh, B. S. et al. The impact of climate change on fertility. Trends Ecol. Evol. 34, 249–259 (2019).Article 

    Google Scholar 
    13.Sage, T. L. et al. The effect of high temperature stress on male and female reproduction in plants. Field Crops Res. 182, 30–42 (2015).Article 

    Google Scholar 
    14.Sales, K. et al. Experimental heatwaves compromise sperm function and cause transgenerational damage in a model insect. Nat. Commun. 9, 4771 (2018).Article 

    Google Scholar 
    15.Porcelli, D., Gaston, K. J., Butlin, R. K. & Snook, R. R. Local adaptation of reproductive performance during thermal stress. J. Evol. Biol. 30, 422–429 (2016).Article 

    Google Scholar 
    16.Saxon, A. D., O’Brien, E. K. & Bridle, J. R. Temperature fluctuations during development reduce male fitness and may limit adaptive potential in tropical rainforest Drosophila. J. Evol. Biol. 31, 405–415 (2018).CAS 
    Article 

    Google Scholar 
    17.Breckels, R. D. & Neff, B. D. The effects of elevated temperature on the sexual traits, immunology and survivorship of a tropical ectotherm. J. Exp. Biol. 216, 2658–2664 (2013).Article 

    Google Scholar 
    18.Paxton, C. W., Baria, M. V. B., Weis, V. M. & Harii, S. Effect of elevated temperature on fecundity and reproductive timing in the coral Acropora digitifera. Zygote 24, 511–516 (2016).Article 

    Google Scholar 
    19.Hurley, L. L., McDiarmid, C. S., Friesen, C. R., Griffith, S. C. & Rowe, M. Experimental heatwaves negatively impact sperm quality in the zebra finch. Proc. R. Soc. Lond. B 285, 20172547 (2018).
    Google Scholar 
    20.Yogev, L. et al. Seasonal variations in pre‐ and post‐thaw donor sperm quality. Hum. Reprod. 19, 880–885 (2004).CAS 
    Article 

    Google Scholar 
    21.Terblanche, J. S., Deere, J. A., Clusella Trullas, S., Janion, C. & Chown, S. L. Critical thermal limits depend on methodological context. Proc. R. Soc. Lond. B 274, 2935–2942 (2007).
    Google Scholar 
    22.Ives, A. R. R2s for correlated data: phylogenetic models, LMMs, and GLMMs. Syst. Biol. 68, 234–251 (2019).Article 

    Google Scholar 
    23.Dillon, M. E., Wang, G., Garrity, P. A. & Huey, R. B. Thermal preference in Drosophila. J. Therm. Biol. 34, 109–119 (2009).Article 

    Google Scholar 
    24.Tratter-Kinzner, M. et al. Is temperature preference in the laboratory ecologically relevant for the field? The case of Drosophila nigrosparsa. Glob. Ecol. Conserv. 18, e00638 (2019).Article 

    Google Scholar 
    25.van Heerwaarden, B. & Sgrò, C. M. Male fertility thermal limits predict vulnerability to climate warming. Nat. Commun. 12, 2214 (2021).CAS 
    Article 

    Google Scholar  More

  • in

    Author Correction: Priority list of biodiversity metrics to observe from space

    Faculty of Geo-Information Science and Earth Observation (ITC), University of Twente, Enschede, the NetherlandsAndrew K. Skidmore, Elnaz Neinavaz, Abebe Ali, Roshanak Darvishzadeh, Marcelle C. Lock & Tiejun WangDepartment of Earth and Environmental Science, Macquarie University, Sydney, New South Wales, AustraliaAndrew K. Skidmore & Marcelle C. LockDepartment of Forest Resources Management, University of British Columbia, Vancouver, British Columbia, CanadaNicholas C. CoopsDepartment of Geography and Environmental Studies, Wollo University, Dessie, EthiopiaAbebe AliRemote Sensing Laboratories, Department of Geography, University of Zurich, Zurich, SwitzerlandMichael E. SchaepmanEuropean Space Research Institute (ESRIN), European Space Agency, Frascati, ItalyMarc PaganiniInstitute for Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, Amsterdam, the NetherlandsW. Daniel KisslingBiodiversity Centre, Finnish Environment Institute (SYKE), Helsinki, FinlandPetteri VihervaaraInstitute of Geographical Sciences, Freie Universität Berlin, Berlin, GermanyHannes FeilhauerRemote Sensing Center for Earth System Research, University of Leipzig, Leipzig, GermanyHannes FeilhauerNatureServe, Arlington, VA, USAMiguel FernandezGeorge Mason University, Fairfax, VA, USAMiguel FernandezGerman Centre for Integrative Biodiversity Research (iDiv), Leipzig, GermanyNéstor FernándezInstitute of Biology, Martin Luther University Halle-Wittenberg, Halle (Saale), GermanyNéstor FernándezGoogle, Zurich, SwitzerlandNoel GorelickTour du Valat, Arles, FranceIlse GeijzendorfferEarth Observation Center (EOC), Remote Sensing Technology Institute, German Aerospace Center (DLR), Oberpfaffenhofen, GermanyUta Heiden & Stefanie HolzwarthDepartment of Visitor Management and National Park Monitoring, Bavarian Forest National Park Administration, Grafenau, GermanyMarco HeurichAlbert Ludwigs University of Freiburg, Freiburg, GermanyMarco HeurichGBIF Secretariat, Copenhagen, DenmarkDonald HobernCollege of Marine Science, University of South Florida, St Petersburg, FL, USAFrank E. Muller-KargerFlemish Institute for Technological Research (VITO), Mol, BelgiumRuben Van De KerchoveComputational Landscape Ecology, Helmholtz Centre for Environmental Research (UFZ), Leipzig, GermanyAngela LauschGeography Department, Humboldt University of Berlin, Berlin, GermanyAngela LauschTechnische Universität Braunschweig, Braunschweig, GermanyPedro J. LeitãoHumboldt-Universität zu Berlin, Berlin, GermanyPedro J. LeitãoWageningen Environmental Research, Wageningen University & Research, Wageningen, the NetherlandsCaspar A. MücherUN Environment World Conservation Monitoring Centre, Cambridge, UKBrian O’ConnorDepartment of Biological, Geological and Environmental Sciences, University of Bologna, Bologna, ItalyDuccio RocchiniDepartment of Applied Geoinformatics and Spatial Planning, Faculty of Environmental Sciences, Czech University of Life Sciences, Prague, Czech RepublicDuccio RocchiniEarth Science Division, NASA, Washington DC, USAWoody TurnerUnilever Europe B.V., Rotterdam, the NetherlandsJan Kees VisInstitute of Geography and Geology, University of Wuerzburg, Würzburg, GermanyMartin WegmannLand Systems and Sustainable Land Management, Geographisches Institut, Universität Bern, Bern, SwitzerlandVladimir Wingate More

  • in

    Effects of long-term integrated agri-aquaculture on the soil fungal community structure and function in vegetable fields

    Effects of the two planting systems on soil fungal diversityIn this study, 561,254 sequences were generated from 15 samples obtained from 5 treatments. Base sequences with a length of 201–300 bp accounted for 97.82% of all sequences (Table S1a,b). Rarefaction curves at a similarity level of 97% indicated that the number of sequences extracted from most samples tended to plateau above 10,000. The number of sequences extracted in the test exceeded 30,000, suggesting that the sequencing data were close to saturation, sequencing depth was reasonable, and the results reflected true sample conditions (Fig. 1). The coverage of all samples was above 99.84%. The range of reads in each sample was between 34,390 and 43,510. The range of Operational Taxonomic Units (OTUs) in each sample was between 145 and 318 (Table 1).Figure 1α-Diversity comparison. Rarefaction curves for OTUs were calculated using Mothur (v1.27.0) with reads normalized to more than 30,000 for each sample using a distance of 0.03 OTU.Full size imageTable 1 Comparison of α-diversity indices in TPP and VEE soil samples.Full size tableThe analysis of alpha diversity showed that with increasing planting time, soil fungal OTUs, the Chao index, and the ACE index in TPP-treated plots increased and then decreased with time. In the VEE-IPBP-treated plots, these 3 indexes increased with time and were 56.94%, 33.81%, and 32.50% higher than those in the TPP-treated plots, respectively, after 6 years of implementation (p  More

  • in

    Distinguishing anthropogenic and natural contributions to coproduction of national crop yields globally

    1.Pellegrini, P. & Fernández, R. J. Crop intensification, land use, and on-farm energy-use efficiency during the worldwide spread of the green revolution. Proc. Natl. Acad. Sci. U. S. A. 115(10), 2335–2340 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    2.Ray, D. K., Ramankutty, N., Mueller, N. D., West, P. C. & Foley, J. A. Recent patterns of crop yield growth and stagnation. Nat. Commun. 3(1), 1293 (2012).ADS 
    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    3.Palomo, I., Felipe-Lucia, M. R., Bennett, E. M., Martín-López, B. & Pascual, U. Chapter six—disentangling the pathways and effects of ecosystem service co-production. In Advance Ecology Research (eds Woodward, G. & Bohan, D. A.) 245–283 (Academic Press, 2016).
    Google Scholar 
    4.Lavorel, S., Locatelli, B., Colloff, M. J. & Bruley, E. Co-producing ecosystem services for adapting to climate change. Philos. T. Roy. Soc. B. 375(1794), 20190119 (2020).Article 

    Google Scholar 
    5.Boerema, A., Rebelo, A. J., Bodi, M. B., Esler, K. J. & Meire, P. Are ecosystem services adequately quantified?. J. Appl. Ecol. 54(2), 358–370 (2017).Article 

    Google Scholar 
    6.Maes, J. et al. An indicator framework for assessing ecosystem services in support of the EU Biodiversity Strategy to 2020. Ecosyst. Serv. 17, 14–23 (2016).Article 

    Google Scholar 
    7.Jones, L. et al. Stocks and flows of natural and human-derived capital in ecosystem services. Land Use Policy 52, 151–162 (2016).Article 

    Google Scholar 
    8.Barot, S., Yé, L., Abbadie, L., Blouin, M. & Frascaria-Lacoste, N. Ecosystem services must tackle anthropized ecosystems and ecological engineering. Ecol. Eng. 99, 486–495 (2017).Article 

    Google Scholar 
    9.Remme, R. P., Edens, B., Schröter, M. & Hein, L. Monetary accounting of ecosystem services: a test case for Limburg province, the Netherlands. Ecol. Econ. 112, 116–128 (2015).Article 

    Google Scholar 
    10.Gaiser, T. & Stahr, K. Soil organic carbon, soil formation and soil fertility. In Ecosystem Services and Carbon Sequestration in the Biosphere (eds Lal, R. et al.) 407–418 (Springer, 2013).
    Google Scholar 
    11.FAO and ITPS. Status of the World’s Soil Resources (SWSR)—Main Report (Food and Agriculture Organization of the United Nations and Intergovernmental Technical Panel on Soils, 2015).
    Google Scholar 
    12.Dainese, M. et al. A global synthesis reveals biodiversity-mediated benefits for crop production. Sci. Adv. 5(10), eaax0121 (2019).ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    13.Bommarco, R., Kleijn, D. & Potts, S. G. Ecological intensification: harnessing ecosystem services for food security. Trends Ecol. Evol. 28(4), 230–238 (2013).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    14.Zabel, F., Putzenlechner, B. & Mauser, W. Global agricultural land resources—a high resolution suitability evaluation and its perspectives until 2100 under climate change conditions. PLoS ONE 9(9), e107522 (2014).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    15.Pelletier, N. et al. Energy intensity of agriculture and food systems. Annu. Rev. Environ. Resour. 36(1), 223–246 (2011).Article 

    Google Scholar 
    16.Díaz, S. et al. The IPBES conceptual framework—connecting nature and people. Curr. Opin. Environ. Sustain. 14, 1–16 (2015).Article 

    Google Scholar 
    17.Bennett, E. M. Research frontiers in ecosystem service science. Ecosystems 20(1), 31–37 (2017).Article 

    Google Scholar 
    18.Woods, J., Williams, A., Hughes, J. K., Black, M. & Murphy, R. Energy and the food system. Philos. T. Roy. Soc. B. 365(1554), 2991–3006 (2010).Article 

    Google Scholar 
    19.Foley, J. A. et al. Global consequences of land use. Science 309(5734), 570–574 (2005).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    20.Seppelt, R., Manceur, A. M., Liu, J., Fenichel, E. P. & Klotz, S. Synchronized peak-rate years of global resources use. Ecol. Soc. 19(4), 50 (2014).Article 

    Google Scholar 
    21.Meyfroidt, P. et al. Middle-range theories of land system change. Glob. Environ. Chang. 53, 52–67 (2018).Article 

    Google Scholar 
    22.Fitter, A. H. Are ecosystem services replaceable by technology?. Environ. Res. Econ. 55(4), 513–524 (2013).Article 

    Google Scholar 
    23.Cohen, F., Hepburn, C. J. & Teytelboym, A. Is natural capital really substitutable?. Annu. Rev. Environ. Resour. 44(1), 425–448 (2019).Article 

    Google Scholar 
    24.Ekins, P., Simon, S., Deutsch, L., Folke, C. & De Groot, R. A framework for the practical application of the concepts of critical natural capital and strong sustainability. Ecol. Econ. 44(2–3), 165–185 (2003).Article 

    Google Scholar 
    25.Lassaletta, L., Billen, G., Grizzetti, B., Anglade, J. & Garnier, J. 50 year trends in nitrogen use efficiency of world cropping systems: the relationship between yield and nitrogen input to cropland. Environ. Res. Lett. 9(10), 105011 (2014).ADS 
    Article 

    Google Scholar 
    26.Levers, C., Butsic, V., Verburg, P. H., Müller, D. & Kuemmerle, T. Drivers of changes in agricultural intensity in Europe. Land Use Policy 58, 380–393 (2016).Article 

    Google Scholar 
    27.Coomes, O. T., Barham, B. L., MacDonald, G. K., Ramankutty, N. & Chavas, J.-P. Leveraging total factor productivity growth for sustainable and resilient farming. Nat. Sustain. 2(1), 22–28 (2019).Article 

    Google Scholar 
    28.Fuglie, K. R&D capital, RD spillovers, and productivity growth in world agriculture. Appl. Econ. Perspect. Policy 40(3), 421–444 (2018).Article 

    Google Scholar 
    29.Mueller, N. D. et al. Closing yield gaps through nutrient and water management. Nature 490, 254 (2012).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    30.German, R. N., Thompson, C. E. & Benton, T. G. Relationships among multiple aspects of agriculture’s environmental impact and productivity: a meta-analysis to guide sustainable agriculture. Biol. Rev. 92(2), 716–738 (2017).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    31.Lee, H. & Lautenbach, S. A quantitative review of relationships between ecosystem services. Ecol. Indic. 66, 340–351 (2016).Article 

    Google Scholar 
    32.Lobell, D. B., Schlenker, W. & Costa-Roberts, J. Climate trends and global crop production since 1980. Science 333(6042), 616–620 (2011).ADS 
    CAS 
    Article 

    Google Scholar 
    33.Erb, K.-H. et al. A conceptual framework for analysing and measuring land-use intensity. Curr. Opin. Environ. Sustain. 5(5), 464–470 (2013).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    34.Loos, J. et al. Putting meaning back into “sustainable intensification”. Front. Ecol. Environ. 12(6), 356–361 (2014).Article 

    Google Scholar 
    35.Kleijn, D. et al. Ecological intensification: bridging the gap between science and practice. Trends Ecol. Evol. 34(2), 154–166 (2019).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    36.Stirzaker, R., Biggs, H., Roux, D. & Cilliers, P. Requisite simplicities to help negotiate complex problems. Ambio 39(8), 600–607 (2010).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    37.Kuemmerle, T. et al. Challenges and opportunities in mapping land use intensity globally. Curr. Opin. Environ. Sustain. 5(5), 484–493 (2013).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    38.Garibaldi, L. A., Aizen, M. A., Klein, A. M., Cunningham, S. A. & Harder, L. D. Global growth and stability of agricultural yield decrease with pollinator dependence. Proc. Natl. Acad. Sci. U. S. A. 108(14), 5909–5914 (2011).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    39.Bengtsson, J. Biological control as an ecosystem service: partitioning contributions of nature and human inputs to yield. Ecol. Entomol. 40(S1), 45–55 (2015).Article 

    Google Scholar 
    40.Seppelt, R., Arndt, C., Beckmann, M., Martin, E. A. & Hertel, T. Deciphering the biodiversity-production mutualism in the global food security debate. Trends Ecol. Evol. https://doi.org/10.1016/j.tree.2020.06.012 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    41.Poore, J. & Nemecek, T. Reducing food’s environmental impacts through producers and consumers. Science 360(6392), 987–992 (2018).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    42.Beckmann, M. et al. Conventional land-use intensification reduces species richness and increases production: a global meta-analysis. Glob. Chang. Biol. 25(6), 1941–1956 (2019).ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    43.Garibaldi, L. A. et al. Farming approaches for greater biodiversity, livelihoods, and food security. Trends Ecol. Evol. 32(1), 68–80 (2017).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    44.Monfreda, C., Ramankutty, N. & Foley, J. A. Farming the planet: 2. Geographic distribution of crop areas, yields, physiological types, and net primary production in the year 2000. Glob. Biogeochem. Cycles 22(1), 1–19 (2008).Article 
    CAS 

    Google Scholar 
    45.IFA, IFDC, IPI, PPI, FAO. Fertilizer Use by Crop (FAO, 2002).
    Google Scholar 
    46.IFA. Assessment of Fertilizer Use by Crop at the Global Level 2006/07–2007/08 (IFA, 2009).
    Google Scholar 
    47.IFA. Assessment of Fertilizer Use by Crop at the Global Level 2010–2010/11 (IFA, 2013).
    Google Scholar 
    48.IFA and IPNI. Assessment of Fertilizer Use by Crop at the Global Level (IFA and IPNI, 2017).
    Google Scholar 
    49.FAO. Crops. http://www.fao.org/faostat/en/#data/QC (2018).50.FAO. Capital Stock. http://www.fao.org/faostat/en/#data/CS (2018).51.U.S. Bureau of Labor Statistics. CPI Inflation Calculator. https://data.bls.gov/cgi-bin/cpicalc.pl?cost1=1.00&year1=200001&year2=201401 (2020).52.FAO. Livestock Manure. http://www.fao.org/faostat/en/#data/EMN (2018).53.FAO. Food Balance Sheets: A Handbook 95 (FAO, 2001).
    Google Scholar 
    54.World Bank. The World by Income and Region. https://datatopics.worldbank.org/world-development-indicators/the-world-by-income-and-region.html (2019).55.R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2019).
    Google Scholar 
    56.RStudio Team. RStudio: Integrated Development for R (RStudio, Inc., 2018).
    Google Scholar 
    57.Cook, R. D. Detection of influential observation in linear regression. Technometrics 19(1), 15–18 (1977).MathSciNet 
    MATH 

    Google Scholar 
    58.Natural Earth. Admin 0—Countries. Version 4.0.0 (accessed 22 October 2017); https://www.naturalearthdata.com/ (2017). More