Exposure to airborne bacteria depends upon vertical stratification and vegetation complexity
1.Rook, G. A., Martinelli, R. & Brunet, L. R. Innate immune responses to mycobacteria and the downregulation of atopic responses. Curr. Opin. Allergy Clin. Immunol. 3, 337–342 (2003).CAS
PubMed
Article
Google Scholar
2.Dannemiller, K. C. et al. Next-generation DNA sequencing reveals that low fungal diversity in house dust is associated with childhood asthma development. Indoor Air 24, 236–247 (2014).CAS
PubMed
PubMed Central
Article
Google Scholar
3.Stein, M. M. et al. Innate immunity and asthma risk in Amish and Hutterite farm children. N. Engl. J. Med. 375, 411–421 (2016).CAS
PubMed
PubMed Central
Article
Google Scholar
4.Arleevskaya, M. I., Aminov, R., Brooks, W. H., Manukyan, G. & Renaudineau, Y. Shaping of human immune system and metabolic processes by viruses and microorganisms. Front Microbiol. 10, 816 (2019).PubMed
PubMed Central
Article
Google Scholar
5.Liddicoat, C. et al. Naturally-diverse airborne environmental microbial exposures modulate the gut microbiome and may provide anxiolytic benefits in mice. Sci. Total Environ. 701, 134684 (2020).ADS
CAS
PubMed
Article
Google Scholar
6.Rook, G. A., Raison, C. L. & Lowry, C. A. Microbiota, immunoregulatory old friends and psychiatric disorders. In Microbial Endocrinology: The Microbiota-Gut-Brain Axis in Health and Disease 2014 319–356 (Springer, 2014).
Google Scholar
7.Rook, G. A. Regulation of the immune system by biodiversity from the natural environment: An ecosystem service essential to health. Proc. Natl. Acad. Sci. 110, 18360–18367 (2013).ADS
CAS
PubMed
Article
Google Scholar
8.Schwinge, D. & Schramm, C. Sex-related factors in autoimmune liver diseases. In Seminars in Immunopathology, Voxl 41, No 2 165–175 (Springer, 2019).
Google Scholar
9.Prescott, S. L. A butterfly flaps its wings: Extinction of biological experience and the origins of allergy. Ann. Allergy Asthma Immunol. 20, 20 (2020).
Google Scholar
10.Prescott, S. L. et al. The skin microbiome: Impact of modern environments on skin ecology, barrier integrity, and systemic immune programming. World Allergy Organ. J. 10, 29 (2017).PubMed
PubMed Central
Article
Google Scholar
11.Austvoll, C. T., Gallo, V. & Montag, D. Health impact of the Anthropocene: The complex relationship between gut microbiota, epigenetics, and human health, using obesity as an example. Glob. Health Epidemiol. Genom. 5, 20 (2020).
Google Scholar
12.Haahtela, T. A biodiversity hypothesis. Allergy 74, 1445–1456 (2019).PubMed
PubMed Central
Google Scholar
13.Haahtela, T. et al. The biodiversity hypothesis and allergic disease: World allergy organization position statement. World Allergy Organ. J. 6, 1–8 (2013).Article
Google Scholar
14.Donovan, G., Gatziolis, D., Mannetje, A. T., Weinkove, R., Fyfe, C., & Douwes, J. An empirical test of the biodiversity hypothesis: Exposure to plant diversity is associated with a reduced risk of childhood acute lymphoblastic leukemia. Available at SSRN 3559635 (2020).15.Chen, D. et al. Clostridium butyricum, a butyrate-producing probiotic, inhibits intestinal tumor development through modulating Wnt signalling and gut microbiota. Cancer Lett. 469, 456–467 (2020).CAS
PubMed
Article
PubMed Central
Google Scholar
16.Du, Y. et al. Butyrate protects against high-fat diet-induced atherosclerosis via up-regulating ABCA1 expression in apolipoprotein E-deficiency mice. Br. J. Pharmacol. 177, 1754–1772 (2020).CAS
PubMed
PubMed Central
Article
Google Scholar
17.Li, J. Y. et al. Microbiota dependent production of butyrate is required for the bone anabolic activity of PTH. J. Clin. Invest. 20, 20 (2020).CAS
Google Scholar
18.Geirnaert, A. et al. Butyrate-producing bacteria supplemented in vitro to Crohn’s disease patient microbiota increased butyrate production and enhanced intestinal epithelial barrier integrity. Sci. Rep. 7, 1–4 (2017).CAS
Article
Google Scholar
19.Uetake, J. et al. Seasonal changes of airborne bacterial communities over Tokyo and influence of local meteorology. Front Microbiol. 10, 1572 (2019).PubMed
PubMed Central
Article
Google Scholar
20.Flies, E. J., Clarke, L. J., Brook, B. W. & Jones, P. Urban airborne microbial communities are less abundant and less diverse than rural counterparts-but what does that mean for our health? A systematic review. Sci. Total Environ. 20, 140337 (2020).Article
CAS
Google Scholar
21.Selway, C. A. et al. Transfer of environmental microbes to the skin and respiratory tract of humans after urban green space exposure. Environ. Int. 145, 106084 (2020).PubMed
Article
PubMed Central
Google Scholar
22.Mhuireach, G. et al. Urban greenness influences airborne bacterial community composition. Sci. Total Environ. 571, 680–687 (2016).ADS
CAS
PubMed
Article
PubMed Central
Google Scholar
23.Lymperopoulou, D. S., Adams, R. I. & Lindow, S. E. Contribution of vegetation to the microbial composition of nearby outdoor air. Appl. Environ. Microbiol. 82, 3822–3833 (2016).CAS
PubMed
PubMed Central
Article
Google Scholar
24.Abdelfattah, A. et al. Revealing cues for fungal interplay in the plant–air interface in vineyards. Front Plant Sci. 10, 922 (2019).PubMed
PubMed Central
Article
Google Scholar
25.Stewart, J. et al. Variation of near surface atmosphere microbial communities at an urban and a suburban site in Philadelphia, PA, USA. Sci. Total Environ. 1, 138353 (2020).ADS
Article
CAS
Google Scholar
26.Mhuireach, G. Á., Betancourt-Román, C. M., Green, J. L. & Johnson, B. R. Spatiotemporal controls on the urban aerobiome. Front Ecol. Evol. 7, 43 (2019).Article
Google Scholar
27.Robinson, J. M. et al. Vertical stratification in urban green space aerobiomes. Environ. Health Perspect. 128, 1–12 (2020).Article
Google Scholar
28.Robinson, J. M. & Breed, M. F. Green prescriptions and their co-benefits: Integrative strategies for public and environmental health. Challenges 10, 9 (2019).Article
Google Scholar
29.Callaghan, A. et al. The impact of green spaces on mental health in urban settings: A scoping review. J. Ment. Health 18, 1–5 (2020).Article
Google Scholar
30.Cameron, R. W. et al. Where the wild things are! Do urban green spaces with greater avian biodiversity promote more positive emotions in humans?. Urban Ecosyst. 23, 301–317 (2020).Article
Google Scholar
31.Robinson, J. M., Jorgensen, A., Cameron, R. & Brindley, P. Let nature be thy medicine: A socioecological exploration of green prescribing in the UK. Int. J. Environ. Res. Public Health 17, 3460 (2020).PubMed Central
Article
PubMed
Google Scholar
32.Yeh, C. T., Cheng, Y. Y. & Liu, T. Y. Spatial characteristics of urban green spaces and human health: An exploratory analysis of canonical correlation. Int. J. Environ. Res. Public Health 17, 3227 (2020).PubMed Central
Article
PubMed
Google Scholar
33.Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. Basic local alignment search tool. J. Mol. Biol 215, 403–410 (1990).CAS
PubMed
Article
Google Scholar
34.Franconieri, F. et al. Rothia spp. infective endocarditis: A systematic literature review. Méd. Maladies Infect. 35, 1–8 (2020).
Google Scholar
35.Iljazovic, A. et al. Perturbation of the gut microbiome by Prevotella spp. enhances host susceptibility to mucosal inflammation. Mucosal Immunol. 14, 1–12 (2020).
Google Scholar
36.Robinson, J. M. & Jorgensen, A. Rekindling old friendships in new landscapes: The environment–microbiome–health axis in the realms of landscape research. People Nat. 2, 339–349 (2020).Article
Google Scholar
37.Baruch, Z. et al. Characterising the soil fungal microbiome in metropolitan green spaces across a vegetation biodiversity gradient. Fungal Ecol. 47, 100939 (2020).Article
Google Scholar
38.Mills, J. G. et al. Revegetation of urban green space rewilds soil microbiotas with implications for human health and urban design. Restor. Ecol. 20, 20 (2020).
Google Scholar
39.Honeker, L. K. et al. Gut microbiota from amish but not hutterite children protect germ-free mice from experimental asthma. In D92. The Microbiome and Lung Disease A7022–A7022 (American Thoracic Society, 2019).
Google Scholar
40.Roslund, M. I. et al. Biodiversity intervention enhances immune regulation and health-associated commensal microbiota among daycare children. Sci. Adv. 6, 2578 (2020).ADS
Article
CAS
Google Scholar
41.Laforest-Lapointe, I., Messier, C. & Kembel, S. W. Tree leaf bacterial community structure and diversity differ along a gradient of urban intensity. MSystems 2, 6 (2017).Article
Google Scholar
42.Chen, J., Jin, S. & Du, P. Roles of horizontal and vertical tree canopy structure in mitigating daytime and night-time urban heat island effects. Int. J. Appl. Earth Obs. Geoinf. 89, 102060 (2020).Article
Google Scholar
43.Straka, T. M., Wolf, M., Gras, P., Buchholz, S. & Voigt, C. C. Tree cover mediates the effect of artificial light on urban bats. Front Ecol. Evol. 7, 91 (2019).Article
Google Scholar
44.Wood, E. M. & Esaian, S. The importance of street trees to urban avifauna. Ecol. Appl. 20, 20 (2020).
Google Scholar
45.Astell-Burt, T. & Feng, X. Does sleep grow on trees? A longitudinal study to investigate potential prevention of insufficient sleep with different types of urban green space. SSM Popul. Health 10, 100497 (2020).PubMed
Article
PubMed Central
Google Scholar
46.Woo, J. & Lee, C. J. Sleep-enhancing effects of phytoncide via behavioral, electrophysiological, and molecular modeling approaches. Exp. Neurobiol. 29, 120 (2020).PubMed
PubMed Central
Article
Google Scholar
47.Ross, S. et al. i-Tree eco analysis of landscape vegetation on remediated areas of oak ridge national laboratory. Open J. Forest. 10, 412 (2020).Article
Google Scholar
48.Robinson, J. M., Mills, J. G. & Breed, M. F. Walking ecosystems in microbiome-inspired green infrastructure: An ecological perspective on enhancing personal and planetary health. Challenges 9, 40 (2018).Article
Google Scholar
49.Watkins, H., Robinson, J. M., Breed, M. F., Parker, B. & Weinstein, P. Microbiome-inspired green infrastructure: A toolkit for multidisciplinary landscape design. Trends Biotechnol. 20, 20 (2020).
Google Scholar
50.Parajuli, A. et al. Urbanization reduces transfer of diverse environmental microbiota indoors. Front Microbiol. 9, 84 (2018).PubMed
PubMed Central
Article
Google Scholar
51.Abrego, N. et al. Fungal communities decline with urbanization—more in air than in soil. ISME J. 20, 1–10 (2020).
Google Scholar
52.Socolar, J. B., Gilroy, J. J., Kunin, W. E. & Edwards, D. P. How should beta-diversity inform biodiversity conservation?. Trends Ecol. Evol. 31, 67–80 (2016).PubMed
Article
PubMed Central
Google Scholar
53.May, R. M. Will a large complex system be stable?. Nature 238, 413–414 (1972).ADS
CAS
PubMed
Article
PubMed Central
Google Scholar
54.JNCC. 2013. Handbook for Phase 1 Habitat Surveys. https://data.jncc.gov.uk/data/9578d07b-e018-4c66-9c1b-47110f14df2a/Handbook-Phase1-HabitatSurvey-Revised-2016.pdf. Accessed 28 Sep 2020.55.Zarraonaindia, I. et al. The soil microbiome influences grapevine-associated microbiota. MBio 6, 02527–02614 (2015).Article
CAS
Google Scholar
56.Mbareche, H., Veillette, M., Pilote, J., Létourneau, V. & Duchaine, C. Bioaerosols play a major role in the nasopharyngeal microbiota content in agricultural environment. Int. J. Environ. Res. Public Health 16, 1375 (2019).CAS
PubMed Central
Article
Google Scholar
57.Dettwyler, K. A. A time to wean: The hominid blueprint for the natural age of weaning in modern human populations. In Breastfeeding 39–74 (Routledge, 2017).
Google Scholar
58.Jelenkovic, A. et al. Genetic and environmental influences on height from infancy to early adulthood: An individual-based pooled analysis of 45 twin cohorts. Sci. Rep. 6, 1–3 (2016).Article
Google Scholar
59.Milani, C. et al. The first microbial colonizers of the human gut: Composition, activities, and health implications of the infant gut microbiota. Microbiol. Mol. Biol. Rev. 81, 00036–00117 (2017).Article
Google Scholar
60.RCPCH. Growth Charts. 2020. https://www.rcpch.ac.uk/resources/uk-who-growth-charts-2-18-years. Accessed on 21 Jan 2020.61.Bae, S., Lyons, C. & Onstad, N. A culture-dependent and metagenomic approach of household drinking water from the source to point of use in a developing country. Water Res. X. 2, 100026 (2019).PubMed
PubMed Central
Article
CAS
Google Scholar
62.McMurdie, P. J. & Holmes, S. phyloseq: An R package for reproducible interactive analysis and graphics of microbiome census data. PLoS One 8, 61217 (2013).ADS
Article
CAS
Google Scholar
63.Quinn, T. P. et al. A field guide for the compositional analysis of any-omics data. GigaScience 9, 107 (2019).Article
CAS
Google Scholar
64.Gloor, G. B., Macklaim, J. M., Pawlowsky-Glahn, V. & Egozcue, J. J. Microbiome datasets are compositional: And this is not optional. Front Microbiol. 8, 2224 (2017).PubMed
PubMed Central
Article
Google Scholar
65.Wickham, H., & Wickham, MH. . The ggplot package. (2007).66.Oksanen, J., Blanchet, F., Friendly, M., Kindt, R., Legendre, P., McGlinn, D., Minchin, P. R., O’Hara, R. B., Simpson, G. L., Solymos, P., Stevens, H. H., Szoecs, E., & Wagner, E. The vegan package in R. Online. https://cran.r-project.org/web/packages/vegan/vegan.pdf. Accessed on 20 Sep 2020.67.Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).PubMed
PubMed Central
Article
CAS
Google Scholar
68.Revel, W. The Psych R Package. 2020. https://cran.r-project.org/web/pakages/psych/psych.pdf. Accessed on 20 Sep 2020.69.Canty, A, & Ripley, B. The Boot R Package. 2020. https://cran.r-project.org/web/packages/boot/boot.pdf. Accessed on 20 Sep 2020.70.Friedman, J. & Alm, E. J. Inferring correlation networks from genomic survey data. PLoS Comput. Biol. 9, 1002687 (2012).Article
CAS
Google Scholar
71.Csárdi, G. The igraph Package in R. Online. 2020. https://cran.r-project.org/web/packages/igraph/igraph.pdf. Accessed on 10 Aug 20.72.Cusack, L., Larkin, A., Carozza, S. E. & Hystad, P. Associations between multiple green space measures and birth weight across two US cities. Health Place 47, 36–43 (2017).PubMed
Article
Google Scholar
73.Klompmaker, J. O. et al. Green space definition affects associations of green space with overweight and physical activity. Environ Res. 160, 531–540 (2018).CAS
PubMed
Article
Google Scholar
74.Lee, J. Y. et al. Preventive effect of residential green space on infantile atopic dermatitis associated with prenatal air pollution exposure. Int. J. Environ. Res. Public Health 15, 102 (2018).PubMed Central
Article
CAS
PubMed
Google Scholar
75.i-Tree Canopy. i-Tree Canopy. 2020. https://canopy.itreetools.org/. Accessed on 15 May 2020.76.Richardson, J. J. & Moskal, L. M. Uncertainty in urban forest canopy assessment: Lessons from Seattle, WA, USA. Urban Forest. Urban Green. 13, 152–157 (2014).Article
Google Scholar
77.Soltani, A. & Sharifi, E. Daily variation of urban heat island effect and its correlations to urban greenery: A case study of Adelaide. Front Arch. Res. 6, 529–538 (2017).
Google Scholar More