More stories

  • in

    Spatial variation and mechanisms of leaf water content in grassland plants at the biome scale: evidence from three comparative transects

    1.Díaz, S., Hodgson, J. G., Thompson, K., Cabido, M. & Zak, M. R. The plant traits that drive ecosystems: evidence from three continents. J. Veg. Sci. 15, 295–304 (2010).Article 

    Google Scholar 
    2.He, N. et al. Ecosystem traits linking functional traits to macroecology. Trends Ecol Evol 34, 200–210. https://doi.org/10.1016/j.tree.2018.11.004 (2019).Article 
    PubMed 

    Google Scholar 
    3.Reich, P. B. & Lusk, W. C. H. Predicting leaf physiology from simple plant and climate attributes: a global GLOPNET analysis. Ecol. Appl. 17, 1982–1988 (2007).PubMed 
    Article 

    Google Scholar 
    4.Shi, P., Preisler, H. K., Quinn, B. K., Zhao, J. & Hlscher, D. Precipitation is the most crucial factor determining the distribution of moso bamboo in Mainland China. Global Ecol. Conserv. 22, e00924 (2020).Article 

    Google Scholar 
    5.Bassirirad, G. H. Extreme events as shaping physiology, ecology, and evolution of plants: toward a unified definition and evaluation of their consequences. New Phytol. 160, 21–42 (2003).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    6.Boyer, J. S. Water transport. Annu. Rev. Plant Physiol. 36, 473–516 (1985).Article 

    Google Scholar 
    7.Kromer, S. Respiration during photosynthesis. Annu. Rev. Plant Physiol. Plant Mol. Biol. 46, 45–70 (1995).Article 

    Google Scholar 
    8.Carl, V. J. & VanLoocke, A. Terrestrial ecosystems in a changing environment: a dominant role for water. Annu. Rev. Plant Biol. 66, 599–622 (2015).Article 
    CAS 

    Google Scholar 
    9.Heinen, R. B., Qing, Y. & François, C. Role of aquaporins in leaf physiology. J. Exp. Bot. 60, 2971–2985 (2009).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    10.Chapin, F. S., Matson, P. A. & Mooney, H. A. Principles of Terrestrial Ecosystem Ecology (Springer, 2011).Book 

    Google Scholar 
    11.Ma, Z. et al. Evolutionary history resolves global organization of root functional traits. Nature 555, 94–97 (2018).ADS 
    CAS 
    Article 

    Google Scholar 
    12.Zhang, J. et al. C:N: P stoichiometry in China’s forests: from organs to ecosystems. Funct. Ecol. 32, 50–60 (2017).Article 

    Google Scholar 
    13.Grime, J. P. Evidence for the existence of three primary strategies in plants and its relevance to ecological and evolutionary theory. Am. Nat. 111, 1221–1226 (1977).Article 

    Google Scholar 
    14.Bassirirad, H. & Caldwell, M. M. Root growth, osmotic adjustment and NO3-uptake during and after a period of drought in Artemisia tridentata. Aust. J. Plant Physiol. 19, 493–500 (1992).CAS 

    Google Scholar 
    15.Bassirirad, H. & Caldwell, M. M. Temporal changes in root growth and 15N uptake and water relations of two tussock grass species recovering from water stress. Physiol. Plant. 86, 525–531 (1992).Article 

    Google Scholar 
    16.Bassirirad, H. et al. Short-term patterns in water and nitrogen acquisition by two desert shrubs following a simulated summer rain. Plant Ecol. 145, 27–36 (1999).Article 

    Google Scholar 
    17.Gebauer, R. L. E. & Ehleringer, J. R. Water and nitrogen uptake patterns following moisture pulses in a cold desert community. Ecology 81, 1415 (2000).Article 

    Google Scholar 
    18.Liu, M., Niklas, K. J., Niinemets, L., Hlscher, D. & Shi, P. Comparison of the scaling relationships of leaf biomass versus surface area between spring and summer for two deciduous tree species. Forests 11, 1010 (2020).Article 

    Google Scholar 
    19.Shi, P., Li, Y., Hui, C., Ratkowsky, D. A. & Niinemets, L. Does the law of diminishing returns in leaf scaling apply to vines? Evidence from 12 species of climbing plants. Glob. Ecol. Conserv. 21, e00830 (2019).Article 

    Google Scholar 
    20.Yu, X., Hui, C., Sandhu, H. S., Lin, Z. & Shi, P. Scaling relationships between leaf shape and area of 12 Rosaceae species. Symmetry 11, 1255 (2019).Article 

    Google Scholar 
    21.Liu, C. et al. Variation of stomatal traits from cold temperate to tropical forests and association with water use efficiency. Funct. Ecol. 32, 20–28 (2017).Article 

    Google Scholar 
    22.Am, H. & Fi, W. The role of stomata in sensing and driving environmental change. Nature 424, 901–908 (2003).Article 
    CAS 

    Google Scholar 
    23.Huang, W., Ratkowsky, D. A., Hui, C., Wang, P. & Shi, P. Leaf fresh weight versus dry weight: which is better for describing the scaling relationship between leaf biomass and leaf area for broad-leaved plants?. Forests 10, 256 (2019).Article 

    Google Scholar 
    24.Huang, W., Reddy, G. V., Li, Y., Larsen, J. B. & Shi, P. Increase in absolute leaf water content tends to keep pace with that of leaf dry mass—evidence from bamboo plants. Symmetry 12, 1345 (2020).Article 

    Google Scholar 
    25.Yang, Y. et al. Quantifying leaf-trait covariation and its controls across climates and biomes. New Phytol. 221, 155–168 (2019).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    26.Huang, W., Fonti, P., Rbild, A., Larsen, J. B. & Hansen, J. K. Variability Among Sites and Climate Models Contribute to Uncertain Spruce Growth Projections in Denmark. Forests 12, 36 (2021).Article 

    Google Scholar 
    27.Aspinwall, M. J. et al. Range size and growth temperature influence Eucalyptus species responses to an experimental heatwave. Glob. Change Biol. 25, 1665–1684 (2019).ADS 
    Article 

    Google Scholar 
    28.Shao, J. et al. Plant evolutionary history mainly explains the variance in biomass responses to climate warming at a global scale. New Phytol. 222, 1338–1351 (2019).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    29.He, J., Reddy, G. V., Liu, M. & Shi, P. A general formula for calculating surface area of the similarly shaped leaves: evidence from six Magnoliaceae species. Glob. Ecol. Conserv. 23, e01129 (2020).Article 

    Google Scholar 
    30.Guo, X., Reddy, G. V., He, J., Li, J. & Shi, P. Mean-variance relationships of leaf bilateral asymmetry for 35 species of plants and their implications. Glob. Ecol. Conserv. 23, e01152 (2020).Article 

    Google Scholar 
    31.Shi, P.-J., Li, Y.-R., Niinemets, Ü., Olson, E. & Schrader, J. Influence of leaf shape on the scaling of leaf surface area and length in bamboo plants. Trees 35, 1–7 (2020).
    Google Scholar 
    32.Shi, P. et al. Leaf area–length allometry and its implications in leaf shape evolution. Trees 33, 1073–1085 (2019).Article 

    Google Scholar 
    33.Yu, X., Shi, P., Schrader, J. & Niklas, K. J. Nondestructive estimation of leaf area for 15 species of vines with different leaf shapes. Am. J. Bot. 107, 1481–1490. https://doi.org/10.1002/ajb2.1560 (2020).Article 
    PubMed 

    Google Scholar 
    34.Brown, J. H. On the relationship between abundance and distribution of species. Am. Nat. 124, 255–279 (1984).Article 

    Google Scholar 
    35.Slatyer, R. A., Hirst, M. & Sexton, J. P. Niche breadth predicts geographical range size: a general ecological pattern. Ecol. Lett. 16, 1104–1114 (2013).PubMed 
    Article 

    Google Scholar 
    36.Gonzalez-Orozco, C. E. et al. Phylogenetic approaches reveal biodiversity threats under climate change. Nat. Clim. Change 6, 1110–1114 (2016).ADS 
    Article 

    Google Scholar 
    37.Pacifici, M. et al. Assessing species vulnerability to climate change. Nat. Clim. Chang. 5, 215–224 (2015).ADS 
    Article 

    Google Scholar 
    38.Thuiller, W., Lavorel, S. & Araújo, M. B. Niche properties and geographical extent as predictors of species sensitivity to climate change. Glob. Ecol. Biogeogr. 14, 347–357 (2005).Article 

    Google Scholar 
    39.Wright, I. J. et al. Relationships among ecologically important dimensions of plant trait variation in seven Neotropical forests. Ann. Bot. 99, 1003–1015 (2007).PubMed 
    Article 

    Google Scholar 
    40.Reich, P. B. The world-wide ‘fast–slow’plant economics spectrum: a traits manifesto. J. Ecol. 102, 275–301 (2014).Article 

    Google Scholar 
    41.Kong, D. et al. Leading dimensions in absorptive root trait variation across 96 subtropical forest species. New Phytol. 203, 863–872 (2014).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    42.Koch, G. W., Scholes, R. J., Steffen, W. L., Vitousek, P. M. & Walker, B. H. The IGBP terrestrial transects: science plan. Global Change Report (1995).43.Liu, Z., Shao, M. A. & Wang, Y. Effect of environmental factors on regional soil organic carbon stocks across the Loess Plateau region China. Agric. Ecosyst. Environ. 142, 184–194 (2011).Article 

    Google Scholar 
    44.Bai, Y. et al. Primary production and rain use efficiency across a precipitation gradient on the Mongolia plateau. Ecology 89, 2140–2153 (2008).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    45.Chen, H. et al. The impacts of climate change and human activities on biogeochemical cycles on the Q inghai-T ibetan P lateau. Glob. Change Biol. 19, 2940–2955 (2013).ADS 
    Article 

    Google Scholar 
    46.Dee, L. E. et al. When do ecosystem services depend on rare species?. Trends Ecol. Evol. 34, 746–758 (2019).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    47.Cornelissen, J. et al. A handbook of protocols for standardised and easy measurement of plant functional traits worldwide. Aust. J. Bot. 51, 335–380 (2003).Article 

    Google Scholar 
    48.Lamont, B. B., Downes, S. & Fox, J. E. Importance–value curves and diversity indices applied to a species-rich heathland in Western Australia. Nature 265, 438–441 (1977).ADS 
    Article 

    Google Scholar 
    49.Zhang, T., Guo, R., Gao, S., Guo, J. & Sun, W. Responses of plant community composition and biomass production to warming and nitrogen deposition in a temperate meadow ecosystem. PLoS ONE 10, e0123160 (2015).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    50.Qian, H. & Jin, Y. An updated megaphylogeny of plants, a tool for generating plant phylogenies and an analysis of phylogenetic community structure. J. Plant Ecol. 9, 233–239 (2016).Article 

    Google Scholar 
    51.Blomberg, S. P., Garland, T. Jr. & Ives, A. R. Testing for phylogenetic signal in comparative data: behavioral traits are more labile. Evolution 57, 717–745 (2003).PubMed 
    Article 
    PubMed Central 

    Google Scholar  More

  • in

    Genetic association with boldness and maternal performance in a free-ranging population of grey seals (Halichoerus grypus)

    Baker JR (1984) Mortality and morbidity in grey seal pups (Halichoerus grypus). Studies on its causes, effects of environment, the nature and sources of infectious agents and the immunological status of pups. J Zool 203:23–48Article 

    Google Scholar 
    Bakermans-Kranenburg MJ, van IJzendoorn MH (2008) Oxytocin receptor (OXTR) and serotonin transporter (5-HTT) genes associated with observed parenting. Soc Cogn Affect Neur 3:128–134Article 

    Google Scholar 
    Bates D, Maechler M, Bolker B, Walker S (2015) Fitting linear mixed-effects models using lme4. J Stat Softw 67:1–48Article 

    Google Scholar 
    Battersby S, Ogilvie AD, Smith CA, Blackwood DH, Muir WJ, Quinn JP et al. (1996) Structure of a variable number tandem repeat of the serotonin transporter gene and association with affective disorder. Psychiat Genet 6:177–181CAS 
    Article 

    Google Scholar 
    Bengston SE, Dahan RA, Donaldson Z, Phelps SM, van Oers K, Sih A et al. (2018) Genomic tools for behavioural ecologists to understand repeatable individual differences in behaviour. Nat Ecol Evol 2:944–955PubMed 
    Article 

    Google Scholar 
    Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B Stat Methodol 57:289–300
    Google Scholar 
    Boake CRB, Arnold SJ, Breden F, Meffert LM, Ritchie MG, Taylor BJ et al. (2002) Genetic tools for studying adaptation and the evolution of behavior. Am Nat 160:S143–S159PubMed 
    Article 

    Google Scholar 
    Boness DJ, Anderson SS, Cox CR (1982) Function of female aggression during the pupping and mating season of grey seals, Halichoerus grypus (Fabricius). Can J Zool 60:2270–2278Article 

    Google Scholar 
    Bowen WD, den Heyer CE, McMillan JI, Iverson SJ (2015) Offspring size at weaning affects survival to recruitment and reproductive performance of primiparous grey seals. Ecol Evol 5:1412–1424PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Bowen WD, Iverson SJ, McMillan JI, Boness DJ (2006) Reproductive performance in grey seals: age-related improvement and senescence in a capital breeder. J Anim Ecol 75:1340–1351CAS 
    PubMed 
    Article 

    Google Scholar 
    Bowen WD, McMillan JI, Blanchard W (2007) Reduced population growth of grey seals at Sable Island: evidence from pup production and age of primiparity. Mar Mam Sci 23:48–64Article 

    Google Scholar 
    Bowen WD, McMillan J, Mohn R (2003) Sustained exponential population growth of grey seals at Sable Island, Nova Scotia. ICES J Mar Sci 60:1265–1274Article 

    Google Scholar 
    Bowen WD, Stobo WT, Smith SJ (1992) Mass changes of grey seal Halichoerus grypus pups on Sable Island: differential maternal investment reconsidered. J Zool 227:607–622Article 

    Google Scholar 
    Bubac CM, Coltman DW, Bowen WD, Lidgard DC, Lang SLC, den Heyer CE (2018) Repeatability and reproductive consequences of boldness in female gray seals. Behav Ecol Sociobiol 72:100–112Article 

    Google Scholar 
    Bubac CM, Miller JM, Coltman DW (2020) The genetic basis of animal behavioural diversity in natural populations. Mol Ecol https://doi.org/10.1111/mec.15461Cammen KM, Andrews KR, Carroll EL, Foote AD, Humble E, Khudyakov JI et al. (2016) Genomic methods take the plunge: recent advances in high-throughput sequencing of marine mammals. J Hered 107:481–495CAS 
    PubMed 
    Article 

    Google Scholar 
    Cammen KM, Schultz TF, Bowen WD, Hammill MO, Puryear WB, Runstadler J et al. (2018b) Genomic signatures of population bottleneck and recovery in Northwest Atlantic pinnipeds. Ecol Evol 8:6599–6614PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Cammen KM, Vincze S, Heller AS, McLeod BA, Wood SA, Bowen WD et al. (2018a) Genetic diversity from pre-bottleneck to recovery in two sympatric pinniped species in the Northwest Atlantic. Con Gen 19:555–569CAS 
    Article 

    Google Scholar 
    Carere C, Maestripieri D (2013) Animal personalities: Behavior, physiology, and evolution. The University of Chicago Press, ChicagoBook 

    Google Scholar 
    Chakraborty S, Chakraborty D, Mukherjee O, Jain S, Ramakrishnan U, Sinha A (2010) Genetic polymorphism in the serotonin transporter promoter region and ecological success in macaques. Behav Genet 40:672–679PubMed 
    Article 

    Google Scholar 
    Cohen J (1988) Statistical power analysis for the behavioral sciences, 2nd edn. Erlbaum, Hillsdale, NJ
    Google Scholar 
    Dochtermann NA, Schwab T, Anderson Berdal M, Dalos J, Royauté R (2019) The heritability of behavior: a meta-analysis. J Hered 110:403–410PubMed 
    Article 

    Google Scholar 
    Dohm MR (2002) Repeatability estimates do not always set an upper limit to heritability. Funct Ecol 16:273–280Article 

    Google Scholar 
    Edwards HA, Hajduk GK, Durieux G, Burke T, Dugdale HL (2015) No association between personality and candidate gene polymorphisms in a wild bird population. PLoS ONE 10:e0138439. https://doi.org/10.1371/journal.pone.0138439CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Emiliano ABF, Cruz T, Pannoni V, Fudge JL (2007) The interface of oxytocin-labeled cells and serotonin transporter-containing fibers in the primate hypothalamus: a substrate for SSRIs therapeutic effects? Neuropsychopharmacol 32:977–988CAS 
    Article 

    Google Scholar 
    Fairbanks LA, Way BM, Breidenthal, Bailey JN, Jorgensen MJ (2012) Maternal and offspring dopamine D4 receptor genotypes interact to influence juveniles impulsivity in vervet monkeys Psychol Sci 23:1099–1104. https://doi.org/10.1177/0956797612444905Article 
    PubMed 

    Google Scholar 
    Fidler A (2011) Personality-associated genetic variation in birds and its possible significance for avian evolution, conservation, and welfare. In: Inoue-Murayama M, Kawamura S, Weiss A (eds) From Genes to Animal Behavior. Primatology Monographs. Springer, Tokyo, p 275–294
    Google Scholar 
    Fitzpatrick MJ, Ben-Shahar Y, Smid HM, Vet LEM, Robinson GE, Sokolowski MB (2005) Candidate genes for behavioural ecology. Trends in Ecology & Evolution 20:96–104Article 

    Google Scholar 
    Fulton TL, Strobeck C (2010) Multiple fossil calibrations, nuclear loci and mitochondrial genomes provide new insight into biogeography and divergence timing for true seals (Phocidae, Pinnipedia). J Biogeogr 37:814–829Article 

    Google Scholar 
    Garvin MR, Saitoh K, Gharrett AJ (2010) Application of single nucleotide polymorphisms to non-model species: a technical review. Mol Ecol Resour 10:915–934. https://doi.org/10.1111/j.1755-0998.02891.xCAS 
    Article 
    PubMed 

    Google Scholar 
    Göring HHH, Terwilliger JD, Blangero J (2001) Large upward bias in estimation of locus-specific effects from genomewide scans. Am J Hum Genet 69:1357–2001PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Gosling SD (2001) From mice to men: what can we learn about personality from animal research? Psychol Bull 127:45–86CAS 
    PubMed 
    Article 

    Google Scholar 
    Hadfield JD (2010) MCMC methods for multi-response generalized linear mixed models: the MCMCglmm R package. J Stat Softw 33:1–22Article 

    Google Scholar 
    Hall AJ, McConnell BJ, Barker RJ (2001) Factors affecting first-year survival in grey seals and their implications for life-history strategy. J Anim Ecol 70:138–149
    Google Scholar 
    Hammill MO, den Heyer CE, Bowen WD, Lang SLC (2017) Grey seal population trends in Canadian waters, 1960–2016 and harvest advice. DFO Can Sci Advis Sec Res Doc 2017/052. v + 30pHelyar SJ, Hemmer-Hansen J, Bekkevold D, Taylor MI, Ogden R, Limborg MT et al. (2011) Applications of SNPs for population genetics of nonmodel organisms: new opportunities and challenges. Mol Ecol Resour 11:123–136. https://doi.org/10.1111/j.1755-0998.2010.02943.xArticle 
    PubMed 

    Google Scholar 
    Holtmann B, Grosser S, Lagisz M, Johnson SL, Santos ESA, Lara CE et al. (2016) Population differentiation and behavioural association of the two ‘personality’ genes DRD4 and SERT in dunnocks (Prunella modularis). Mol Ecol 25:706–722CAS 
    PubMed 
    Article 

    Google Scholar 
    Howell S, Westergaard G, Hoos B, Chavanne TJ, Shoaf SE, Snoy PJ et al. (2007) Serotonergic influences on life-history outcomes in free-ranging male rhesus macaques. Am J Primatol 69:851–865CAS 
    PubMed 
    Article 

    Google Scholar 
    Iverson SJ, Bowen WD, Boness DJ, Oftedal OT (1993) The effect of maternal size and milk output on pup growth in grey seals (Halichoerus grypus). Physiol Zool 66:61–88Article 

    Google Scholar 
    Jacobs LN, Staiger EA, Albright JD, Brooks SA (2016) The MC1R and ASIP coat color loci may impact behavior in the horse. J Hered 107:214–219CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Jaeger BC, Edwards LJ, Das K, Sen PK (2016) An R2 statistic for fixed effects in the generalized linear mixed model. J Appl Stat 44:1086–1106Article 

    Google Scholar 
    Jorgensen H, Riis M, Knigge U, Kjaer A, Warberg J (2003) Serotonin receptors involved in vasopressin and oxytocin secretion. J Neuroendocrinol 15:242–249CAS 
    PubMed 
    Article 

    Google Scholar 
    Kearse M, Moir R, Wilson A, Stones-Havas S, Cheung M, Sturrock S et al. (2012) Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28:1647–1649PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Kendrick KM (2000) Oxytocin, motherhood and bonding. Exp Physiol 85:111–124Article 

    Google Scholar 
    Kim SJ, Kim YS, Lee HS, Kim SY, Kim C-H (2006) An interaction between the serotonin transporter promoter region and dopamine transporter polymorphisms contributes to harm avoidance and reward dependence traits in normal healthy subjects. J Neural Transm 113:877–886CAS 
    PubMed 
    Article 

    Google Scholar 
    Kluger A, Siegfried Z, Ebstein R (2002) A meta-analysis of the association between DRD4 polymorphism and novelty seeking. Mol Psychiatry 7:712–717CAS 
    PubMed 
    Article 

    Google Scholar 
    Korsten P, Mueller JC, Hermannstädter C, van Overveld T, Patrick SC, Quinn JL et al. (2010) Association between DRD4 gene polymorphism and personality variation in great tits: a test across four populations. Mol Ecol 19:832–843CAS 
    PubMed 
    Article 

    Google Scholar 
    Laine VN, van Oers K (2017) The quantitative and molecular genetics of individual differences in animal personality. In: Vonk J, Weiss A, Kuczaj SA(eds) Personality in Nonhuman Animals. Springer, Cham, p 55–72
    Google Scholar 
    Laird NM, Lange C (2011) The fundamentals of modern statistical genetics. Springer, New York, NYBook 

    Google Scholar 
    Lang SLC, Iverson SJ, Bowen WD (2009) Repeatability in lactation performance and the consequences for maternal reproductive success in gray seals. Ecology 90:2513–2523CAS 
    PubMed 
    Article 

    Google Scholar 
    Lesch K-P, Bengel D, Heils A, Sabol SZ, Greenberg BD (1996) Association of anxiety-related traits with a polymorphism in the serotonin transporter gene regulatory region. Science 274:1527–1531CAS 
    PubMed 
    Article 

    Google Scholar 
    Lidgard DC, Bowen WD, Boness DJ (2012) Longitudinal changes and consistency in male physical and behavioural traits have implications for mating success in the grey seal (Halichoerus grypus). Can J Zool 90:849–860Article 

    Google Scholar 
    Lim MM, Young LJ (2006) Neuropeptidergic regulation of affiliative behavior and social bonding in animals. Horm Behav 50:506–517CAS 
    PubMed 
    Article 

    Google Scholar 
    MacKenzie A, Quinn J (1999) A serotonin transporter gene intron 2 polymorphic region, correlated with affective disorders, has allele-dependent differential enhancer-like properties in the mouse embryo. PNAS 96:15251–15255CAS 
    PubMed 
    Article 

    Google Scholar 
    Mansfield AW, Beck B (1977) The grey seal in eastern Canada. Tech Rep. Fish Mar Serv Can 706:1–81
    Google Scholar 
    Maruyama T, Fuerst PA (1985) Population bottlenecks and nonequilibrium models in population genetics. II. Number alleles a small Popul that was Form a recent bottleneck Genet 111:675–689CAS 

    Google Scholar 
    McCann TS (1982) Aggressive and maternal activities of female southern elephant seals (Mirounga leonina). Anim Behav 30:268–276Article 

    Google Scholar 
    McDougall PT, Réale D, Sol D, Reader SM (2006) Wildlife conservation and animal temperament: causes and consequences of evolutionary change for captive, reintroduced, and wild populations. Anim Conserv 9:39–48Article 

    Google Scholar 
    Mellish JAE, Iverson SJ, Bowen WD (1999) Variation in milk production and lactation performance in grey seals and consequences for pup growth and weaning characteristics. Physiol Biochem Zool 72:677–690CAS 
    PubMed 
    Article 

    Google Scholar 
    Mitsuyasu H, Hirata N, Sakai Y, Shibata H, Takeda Y (2001) Association analysis of polymorphisms in the upstream region of the human dopamine D4 receptor gene (DRD4) with schizophrenia and personality traits. J Hum Genet 46:26–31CAS 
    PubMed 
    Article 

    Google Scholar 
    Møller AP, Jennions MD (2002) How much variance can be explained by ecologists and evolutionary biologists. Oecologia 132:492–500PubMed 
    Article 

    Google Scholar 
    Mousseau TA, Roff DA (1987) Natural selection and the heritability of fitness components. Heredity 59:181–197PubMed 
    Article 

    Google Scholar 
    Mueller JC, Partecke J, Hatchwell BJ, Gaston KJ, Evans KL (2013) Candidate gene polymorphisms for behavioural adaptations during urbanization in blackbirds. Mol Ecol 22:3629–3637CAS 
    PubMed 
    Article 

    Google Scholar 
    Nakagawa S, Schielzeth H (2013) A general and simple method for obtaining R2 from generalized linear mixed-effects models. Methods Ecol Evol 4:133–142Article 

    Google Scholar 
    Nei M, Li WH (1976) The transient distribution of allele frequencies under mutation pressure. Genet Res 28:205–214CAS 
    PubMed 
    Article 

    Google Scholar 
    Noren SR, Boness DJ, Iverson SJ, McMillan J, Bowen WD (2008) Body condition at weaning affects the duration of the postweaning fast in grey seal pups (Halichoerus grypus). Physiol Biochem Zool 81:269–277PubMed 
    Article 

    Google Scholar 
    Oak JN, Oldenhof J, Van Tol HH (2000) The dopamine D4 receptor: one decade of research. Eur J Pharm 405:303–327CAS 
    Article 

    Google Scholar 
    Pati N, Schowinsky V, Kokanovic O, Magnuson V, Ghosh S (2004) A comparison between SNaPshot, pyrosequencing, and biplex invader SNP genotyping methods: accuracy, cost, and throughput. J Biochem Biophys Methods 60:1–12CAS 
    PubMed 
    Article 

    Google Scholar 
    Prasad P, Ogawa S, Parhar IS (2015) Role of serotonin in fish reproduction. Front Neurosci 9:1–9. https://doi.org/10.3389/fnins.2015.00195Article 

    Google Scholar 
    R Core Team (2019) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria, https://www.R-project.org/ URLRaymond M, Rousset F (1995) GENEPOP (version 1.2): population genetics software for exact tests and ecumenicism. J Hered 86:248–249Article 

    Google Scholar 
    Réale D, Gallant BY, Leblanc M, Festa-Bianchet M (2000) Consistency in bighorn ewes and correlates with behaviour and life history. Anim Behav 60:589–597PubMed 
    Article 

    Google Scholar 
    Réale D, Reader SM, Sol D, McDougall PT, Dingemanse NJ (2007) Integrating animal temperament within ecology and evolution. Biol Rev 82:291–318PubMed 
    Article 

    Google Scholar 
    Riyahi S, Björklund M, Mateos-Gonzalez F, Senar JC (2017) Personality and urbanization: behavioural traits and DRD4 SNP830 polymorphisms in Great Tits in Barcelona city. J Ethol 35:101–108Article 

    Google Scholar 
    Riyahi S, Sánchez-Delgado M, Calafell F, Monk D, Senar JC (2015) Combined epigenetic and intraspecific variation of the DRD4 and SERT genes influence novelty seeking behavior in great tit Parus major. Epigenetics 10:516–525PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Robinson KJ, Twiss SD, Hazon N, Pomeroy PP (2015) Maternal oxytocin is linked to close mother-infant proximity in grey seals (Halichoerus grypus). PLoS One 10:e0144577. https://doi.org/10.1371/journal.pone.0144577CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Robinson KJ, Twiss SD, Hazon N, Simon M, Pomeroy PP (2017) Positive social behaviours are induced and retained after oxytocin manipulations mimicking endogenous concentrations in a wild mammal. Proc R Soc B-Biol Sci https://doi.org/10.1098/rspb.2017.0554Rousset F (2008) Genepop’007: a complete reimplementation of the Genepop software for Windows and Linux. Mol Ecol Resour 8:103–106PubMed 
    Article 

    Google Scholar 
    Rozas J, Ferrer-Mata A, Sánchez-DelBarrio JC, Guirao-Rico S, Librado P, Ramos-Onsins SE et al. (2017) DnaSP 6: DNA sequence polymorphism analysis of large data sets. Mol Biol Evol 34:3299–3302CAS 
    PubMed 
    Article 

    Google Scholar 
    Sala M, Braida D, Donzelli A, Martucci R, Busnelli M, Bulgheroni E et al. (2013) Mice heterozygous for the oxytocin receptor gene (Oxtr+/−) show impaired social behaviour but not increased aggression or cognitive inflexibility: evidence of a selective haploinsufficiency gene effect. J Neuroendocrinol 25:107–118CAS 
    PubMed 
    Article 

    Google Scholar 
    Savitz JB, Ramesar RS (2004) Genetic variants implicated in personality: a review of the more promising candidates. Am J Med Genet B 131B:20–32Article 

    Google Scholar 
    Sih A, Bell AM, Johnson JC, Ziemba RE (2004) Behavioural syndromes: an integrative overview. Q Rev Biol 79:241–277PubMed 
    Article 

    Google Scholar 
    Singmann H, Bolker B, Westfall J, Aust F, Ben-Shachar MS (2019) afex: Analysis of Factorial Experiments. R package version 0.25-1. https://CRAN.R-project.org/package=afexSinn DL, Gosling SD, Moltschaniwskyj NA (2008) Development of shy/bold behaviour in squid: context-specific phenotypes associated with developmental plasticity. Anim Behav 75:433–442Article 

    Google Scholar 
    Sloan Wilson D, Clark AB, Coleman K, Dearstyne T (1994) Shyness and boldness in humans and other animals. TREE 9:442–446CAS 
    PubMed 

    Google Scholar 
    Tajima F (1989) Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123:585–595CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Timm K, van Oers K, Tilgar V (2018) SERT gene polymorphisms are associated with risk-taking behaviour and breeding parameters in wild great tits. J Exp Biol 221:jeb171595. https://doi.org/10.1242/jeb.171595Article 
    PubMed 

    Google Scholar 
    Twiss SD, Cairns C, Culloch RM, Richards SA, Pomeroy PP (2012) Variation in female grey seal (Halichoerus grypus) reproductive performance correlates to proactive-reactive behavioural types. PLoS ONE 7:e49598. https://doi.org/10.1371/journal.pone.0049598CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Twiss SD, Shuert CR, Brannan N, Bishop AM, Pomeroy PP (2020) Reactive stress-coping styles show more variable reproductive expenditure and fitness outcomes. Sci Rep. 10:9550PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    van Neer A, Gross S, Kesselring T, Wohlsein, Leitzen E, Siebert U (2019) Behavioural and pathological insights into a case of active cannibalism by a grey seal (Halichoerus grypus) on Helgoland, Germany. J Sea Res 148-149:12–16Article 

    Google Scholar 
    van Oers K (2008) Animal personality, behaviours or traits: what are we measuring? Eur J Pers 22:457–474Article 

    Google Scholar 
    van Oers K, Mueller JC (2010) Evolutionary genomics of animal personality. P R Soc B-Biol Sci 365:3991–4000
    Google Scholar 
    Wellenreuther M, Hansson B (2016) Detecting polygenic evolution: problems, pitfalls, and promises. Trends Genet 32:155–164. https://doi.org/10.1016/j.tig.2015.12.004CAS 
    Article 
    PubMed 

    Google Scholar 
    Wolf M, Weissing FJ (2010) An explanatory framework for adaptive personality differences. Proc R Soc B-Biol Sci 365:3959–3968. https://doi.org/10.1098/rstb.2010.0215Article 

    Google Scholar 
    Wolf M, van Doorn GS, Leimar O, Weissing FJ (2007) Life-history trade-offs favour the evolution of animal personalities. Nature 447:581–584CAS 
    PubMed 
    Article 

    Google Scholar 
    Wood SA, Frasier TR, McLeod BA, Gilbert JR, White BN et al. (2011) The genetics of recolonization: an analysis of the stock structure of grey seals (Halichoerus grypus) in the Northwest Atlantic. Can J Zool 89:490–497Article 

    Google Scholar  More

  • in

    The role of chemotaxis and efflux pumps on nitrate reduction in the toxic regions of a ciprofloxacin concentration gradient

    1.DeVries SL, Zhang P. Antibiotics and the Terrestrial Nitrogen Cycle: a review. Curr Pollut Rep. 2016;2:51–67.CAS 
    Article 

    Google Scholar 
    2.Kümmerer K. Antibiotics in the aquatic environment – A review – Part I. Chemosphere. 2009;75:417–34.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    3.Franklin AM, Aga DS, Cytryn E, Durso LM, McLain JE, Pruden A, et al. Antibiotics in Agroecosystems: introduction to the Special Section. J Environ Qual. 2016;45:377–93.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    4.Roose-Amsaleg C, Laverman AM. Do antibiotics have environmental side-effects? Impact of synthetic antibiotics on biogeochemical processes. Environ Sci Pollut Res. 2016;23:4000–12.CAS 
    Article 

    Google Scholar 
    5.Grenni P, Ancona V, Barra, Caracciolo A. Ecological effects of antibiotics on natural ecosystems: a review. Microchemical J. 2018;136:25–39.CAS 
    Article 

    Google Scholar 
    6.Chee-Sanford JC, Mackie RI, Koike S, Krapac IG, Lin Y-F, Yannarell AC, et al. Fate and Transport of Antibiotic Residues and Antibiotic Resistance Genes following Land Application of Manure Waste. J Environ Qual. 2009;38:1086.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    7.Mehrtens A, Licha T, Broers HP, Burke V. Tracing veterinary antibiotics in the subsurface – A long-term field experiment with spiked manure. Environ Pollut. 2020;265:114930.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    8.Kivits T, Broers HP, Beeltje H, van Vliet M, Griffioen J. Presence and fate of veterinary antibiotics in age-dated groundwater in areas with intensive livestock farming. Environ Pollut. 2018;241:988–98.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    9.Gros M, Mas-Pla J, Boy-Roura M, Geli I, Domingo F, Petrović M. Veterinary pharmaceuticals and antibiotics in manure and slurry and their fate in amended agricultural soils: Findings from an experimental field site (Baix Empordà, NE Catalonia). Sci Total Environ. 2019;654:1337–49.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    10.Baquero F, Negri M-C. Challenges: selective compartments for resistant microorganisms in antibiotic gradients. BioEssays. 1997;19:731–6.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    11.Hermsen R, Deris JB, Hwa T. On the rapidity of antibiotic resistance evolution facilitated by a concentration gradient. Proc Natl Acad Sci. 2012;109:10775–80.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    12.Andersson DI, Hughes D. Microbiological effects of sublethal levels of antibiotics. Nat Rev Microbiol. 2014;12:465–78.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    13.Levin-Reisman I, Ronin I, Gefen O, Braniss I, Shoresh N, Balaban NQ. Antibiotic tolerance facilitates the evolution of resistance. Science. 2017;355:826–30.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    14.Cohen NR, Lobritz MA, Collins JJ. Microbial Persistence and the Road to Drug Resistance. Cell Host Microbe. 2013;13:632–42.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    15.Hughes D, Andersson DI. Environmental and genetic modulation of the phenotypic expression of antibiotic resistance. FEMS Microbiol Rev. 2017;41:374–91.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    16.Venter H, Arzanlou M, Chai WC, Venter H. Intrinsic, adaptive and acquired antimicrobial resistance in Gram-negative bacteria. Essays Biochem. 2017;61:49–59.PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    17.Alcalde RE, Michelson K, Zhou L, Schmitz EV, Deng J, Sanford RA, et al. Motility of Shewanella oneidensis MR-1 Allows for Nitrate Reduction in the Toxic Region of a Ciprofloxacin Concentration Gradient in a Microfluidic Reactor. Environ Sci Technol. 2019;53:2778–87.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    18.Hol FJH, Hubert B, Dekker C, Keymer JE. Density-dependent adaptive resistance allows swimming bacteria to colonize an antibiotic gradient. ISME J. 2016;10:30–38.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    19.Butler MT, Wang Q, Harshey RM. Cell density and mobility protect swarming bacteria against antibiotics. Proc Natl Acad Sci. 2010;107:3776–81.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    20.Steel H, Papachristodoulou A. The effect of spatiotemporal antibiotic inhomogeneities on the evolution of resistance. J Theor Biol. 2020;486:110077.PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    21.Lai S, Tremblay J, Déziel E. Swarming motility: a multicellular behaviour conferring antimicrobial resistance. Environ Microbiol. 2009;11:126–36.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    22.Zhang Q, Lambert G, Liao D, Kim H, Robin K, Tung C-k, et al. Acceleration of Emergence of Bacterial Antibiotic Resistance in Connected Microenvironments. Science. 2011;333:1764–7.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    23.Wu A, Loutherback K, Lambert G, Estevez-Salmeron L, Tlsty TD, Austin RH, et al. Cell motility and drug gradients in the emergence of resistance to chemotherapy. Proc Natl Acad Sci. 2013;110:16103–8.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    24.Baym M, Lieberman TD, Kelsic ED, Chait R, Gross R, Yelin I, et al. Spatiotemporal microbial evolution on antibiotic landscapes. Science. 2016;353:1147–51.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    25.Alexandre G, Greer-Phillips S, Zhulin IB. Ecological role of energy taxis in microorganisms. FEMS Microbiol Rev. 2004;28:113–26.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    26.Fenchel T. Microbial Behavior in a Heterogeneous World. Science. 2002;296:1068–71.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    27.Groh JL, Luo Q, Ballard JD, Krumholz LR. Genes That Enhance the Ecological Fitness of Shewanella oneidensis MR-1 in Sediments Reveal the Value of Antibiotic Resistance. Appl Environ Microbiol. 2007;73:492–8.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    28.Blair JM, Piddock LJ. Structure, function and inhibition of RND efflux pumps in Gram-negative bacteria: an update. Curr Opin Microbiol. 2009;12:512–9.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    29.Fernández L, Hancock REW. Adaptive and mutational resistance: role of porins and efflux pumps in drug resistance. Clin Microbiol Rev. 2012;25:661–81.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    30.Alvarez-Ortega C, Olivares J, Martinez JL. RND multidrug efflux pumps: what are they good for? Front Microbiol. 2013;4:7.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    31.Anes J, McCusker MP, Fanning S, Martins M. The ins and outs of RND efflux pumps in Escherichia coli. Front Microbiol. 2015;6:587.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    32.Ma D, Alberti M, Lynch C, Nikaido H, Hearst JE. The local repressor AcrR plays a modulating role in the regulation of acrAB genes of Escherichia coli by global stress signals. Mol Microbiol. 1996;19:101–12.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    33.Nies DH. Efflux-mediated heavy metal resistance in prokaryotes. FEMS Microbiol Rev. 2003;27:313–39.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    34.Fraud S, Poole K. Oxidative Stress Induction of the MexXY Multidrug Efflux Genes and Promotion of Aminoglycoside Resistance Development in Pseudomonas aeruginosa. Antimicrobial Agents Chemother. 2011;55:1068–74.CAS 
    Article 

    Google Scholar 
    35.El Garch F, Lismond A, Piddock LJV, Courvalin P, Tulkens PM, Van Bambeke F. Fluoroquinolones induce the expression of patA and patB, which encode ABC efflux pumps in Streptococcus pneumoniae. J Antimicrob Chemother. 2010;65:2076–82.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    36.Zhang L, Mah T-F. Involvement of a Novel Efflux System in Biofilm-Specific Resistance to Antibiotics. J Bacteriol. 2008;190:4447–52.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    37.El Meouche I, Siu Y, Dunlop MJ. Stochastic expression of a multiple antibiotic resistance activator confers transient resistance in single cells. Scientific Rep. 2016;6:1–9.Article 
    CAS 

    Google Scholar 
    38.Frade VMF, Dias M, Teixeira ACSC, Palma MSA, Frade VMF, Dias M. et al. Environmental contamination by fluoroquinolones. Braz J Pharm Sci. 2014;50:41–54.Article 

    Google Scholar 
    39.Riaz L, Mahmood T, Yang Q, Coyne MS, D’Angelo E. Bacteria-assisted removal of fluoroquinolones from wheat rhizospheres in an agricultural soil. Chemosphere. 2019;226:8–16.CAS 
    PubMed 
    Article 

    Google Scholar 
    40.Llanes C, Köhler T, Patry I, Dehecq B, Delden C, van, Plésiat P. Role of the MexEF-OprN Efflux System in Low-Level Resistance of Pseudomonas aeruginosa to Ciprofloxacin. Antimicrobial Agents Chemother. 2011;55:5676–84.CAS 
    Article 

    Google Scholar 
    41.Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30:2114–20.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    42.Deatherage DE, Barrick JE. Identification of mutations in laboratory evolved microbes from next-generation sequencing data using breseq. Methods Mol Biol. 2014;1151:165–88.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    43.Saltikov CW, Newman DK. Genetic identification of a respiratory arsenate reductase. PNAS. 2003;100:10983–8.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    44.Engler C, Kandzia R, Marillonnet S. A One Pot, One Step, Precision Cloning Method with High Throughput Capability. PLOS ONE. 2008;3:e3647.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    45.European Committee for Antimicrobial Susceptibility Testing (EUCAST) of the European Society of Clinical Microbiology and Infectious Diseases (ESCMID). Determination of minimum inhibitory concentrations (MICs) of antibacterial agents by broth dilution. Clin Microbiol Infect. 2003;9:ix–xv.Article 

    Google Scholar 
    46.Lambert RJ, Pearson J. Susceptibility testing: accurate and reproducible minimum inhibitory concentration (MIC) and non-inhibitory concentration (NIC) values. J Appl Microbiol. 2000;88:784–90.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    47.Sonnet P, Izard D, Mullié C. Prevalence of efflux-mediated ciprofloxacin and levofloxacin resistance in recent clinical isolates of Pseudomonas aeruginosa and its reversal by the efflux pump inhibitors 1-(1-naphthylmethyl)-piperazine and phenylalanine-arginine-β-naphthylamide. Int J Antimicrobial Agents. 2012;39:77–80.CAS 
    Article 

    Google Scholar 
    48.Lindgren PK, Karlsson Å, Hughes D. Mutation Rate and Evolution of Fluoroquinolone Resistance in Escherichia coli Isolates from Patients with Urinary Tract Infections. Antimicrobial Agents Chemother. 2003;47:3222–32.CAS 
    Article 

    Google Scholar 
    49.Klaus W, Ross A, Gsell B, Senn H. Backbone resonance assignment of the N-terminal 24 kDa fragment of the gyrase B subunit from S. aureus complexed with novobiocin. J Biomol NMR. 2000;16:357–8.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    50.Müller RT, Pos KM. The assembly and disassembly of the AcrAB-TolC three-component multidrug efflux pump. Biol Chem. 2015;396:1083–9.PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    51.Oethinger M, Podglajen I, Kern WV, Levy SB. Overexpression of the marA or soxS Regulatory Gene in Clinical Topoisomerase Mutants of Escherichia coli. Antimicrob Agents Chemother. 1998;42:2089–94.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    52.Praski Alzrigat L, Huseby DL, Brandis G, Hughes D. Fitness cost constrains the spectrum of marR mutations in ciprofloxacin-resistant Escherichia coli. J Antimicrob Chemother. 2017;72:3016–24.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    53.Srikumar R, Paul CJ, Poole K. Influence of Mutations in the mexR Repressor Gene on Expression of the MexA-MexB-OprM Multidrug Efflux System of Pseudomonas aeruginosa. J Bacteriol. 2000;182:1410–4.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    54.Sánchez P, Rojo F, Martı́nez JL. Transcriptional regulation of mexR, the repressor of Pseudomonas aeruginosa mexAB-oprM multidrug efflux pump. FEMS Microbiol Lett. 2002;207:63–68.PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    55.Fukuda H, Hosaka M, Hirai K, Iyobe S. New norfloxacin resistance gene in Pseudomonas aeruginosa PAO. Antimicrobial Agents Chemother. 1990;34:1757–61.CAS 
    Article 

    Google Scholar 
    56.Fukuda H, Hosaka M, Iyobe S, Gotoh N, Nishino T, Hirai K. nfxC-type quinolone resistance in a clinical isolate of Pseudomonas aeruginosa. Antimicrobial Agents Chemother. 1995;39:790–2.CAS 
    Article 

    Google Scholar 
    57.Fetar H, Gilmour C, Klinoski R, Daigle DM, Dean CR, Poole K. mexEF-oprN Multidrug Efflux Operon of Pseudomonas aeruginosa: Regulation by the MexT Activator in Response to Nitrosative Stress and Chloramphenicol. Antimicrobial Agents Chemother. 2011;55:508–14.CAS 
    Article 

    Google Scholar 
    58.Köhler T, Michea-Hamzehpour M, Plesiat P, Kahr AL, Pechere JC. Differential selection of multidrug efflux systems by quinolones in Pseudomonas aeruginosa. Antimicrob Agents Chemother. 1997;41:2540–3.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    59.Galajda P, Keymer J, Dalland J, Park S, Kou S, Austin R. Funnel ratchets in biology at low Reynolds number: choanotaxis. J Mod Opt. 2008;55:3413–22.CAS 
    Article 

    Google Scholar 
    60.Alcalde-Rico M, Hernando-Amado S, Blanco P, Martínez JL. Multidrug Efflux Pumps at the Crossroad between Antibiotic Resistance and Bacterial Virulence. Front Microbiol. 2016;7:1483.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    61.Lomovskaya O, Warren MS, Lee A, Galazzo J, Fronko R, Lee M, et al. Identification and Characterization of Inhibitors of Multidrug Resistance Efflux Pumps in Pseudomonas aeruginosa: novel Agents for Combination Therapy. Antimicrobial Agents Chemother. 2001;45:105–16.CAS 
    Article 

    Google Scholar 
    62.Pannek S, Higgins PG, Steinke P, Jonas D, Akova M, Bohnert JA, et al. Multidrug efflux inhibition in Acinetobacter baumannii: comparison between 1-(1-naphthylmethyl)-piperazine and phenyl-arginine-beta-naphthylamide. J Antimicrob Chemother. 2006;57:970–4.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    63.Deng J, Zhou L, Sanford RA, Shechtman LA, Dong Y, Alcalde RE, et al. Adaptive Evolution of Escherichia coli to Ciprofloxacin in Controlled Stress Environments: Contrasting Patterns of Resistance in Spatially Varying versus Uniformly Mixed Concentration Conditions. Environ Sci Technol. 2019;53:7996–8005.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    64.Olivares J, Álvarez-Ortega C, Martinez JL. Metabolic Compensation of Fitness Costs Associated with Overexpression of the Multidrug Efflux Pump MexEF-OprN in Pseudomonas aeruginosa. Antimicrob Agents Chemother. 2014;58:3904–13.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    65.Barbosa TM, Levy SB. The impact of antibiotic use on resistance development and persistence. Drug Resist Updates. 2000;3:303–11.Article 

    Google Scholar 
    66.Chia HE, Marsh ENG, Biteen JS. Extending fluorescence microscopy into anaerobic environments. Curr Opin Chem Biol. 2019;51:98–104.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    67.Laverman AM, Cazier T, Yan C, Roose-Amsaleg C, Petit F, Garnier J, et al. Exposure to vancomycin causes a shift in the microbial community structure without affecting nitrate reduction rates in river sediments. Environ Sci Pollut Res. 2015;22:13702–9.CAS 
    Article 

    Google Scholar 
    68.Li J, Romine MF, Ward MJ. Identification and analysis of a highly conserved chemotaxis gene cluster in Shewanella species. FEMS Microbiol Lett. 2007;273:180–6.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar  More

  • in

    Reductive evolution and unique predatory mode in the CPR bacterium Vampirococcus lugosii

    Identification of ultra-small cells associated with blooms of anoxygenic phototrophic gammaproteobacteriaThe Salada de Chiprana (NE Spain) is the only permanent athalassic hypersaline lake in Western Europe. It harbors thick, conspicuous microbial mats covering its bottom (Fig. 1a, b) and exhibits periodic stratification during which the deepest part of the water column becomes anoxic and sulfide-rich, favoring the massive development of sulfide-dependent anoxygenic photosynthetic bacteria16. We collected microbial mat fragments that were maintained in culture in the laboratory. After several weeks, we observed a bloom of anoxygenic photosynthetic bacteria containing numerous intracellular sulfur granules (Fig. 1c). Many of these bacterial cells showed one or several much smaller and darker non-flagellated cells attached to their surface (Fig. 1d, e). The infected photosynthetic cells were highly mobile, swimming at high speed with frequent changes of direction (Supplementary Movie 1), in contrast with the non-infected cells that displayed slower (approximately half speed) and more straight swimming. Sometimes, two or more photosynthetic cells were connected through relatively short filaments formed by stacked epibiont cells (Fig. 1f). Although the photosynthetic cells carrying these epibionts were often actively swimming, in some cases the epibionts were associated to empty ghost cells where only the photosynthesis-derived sulfur granules persisted. Closer scrutiny of the epibionts revealed that they actually consisted of piles of up to 10 very flattened cells of 550 ± 50 nm diameter and 220 ± 20 nm height (n = 100). These characteristics (size, morphology, and specific attachment to sulfide-dependent anoxygenic photosynthetic bacteria) perfectly matched the morphological description of the genus Vampirococcus observed over forty years ago in sulfidic freshwater lakes15.Fig. 1: Sampling site and microscopy observation of Vampirococcus cells.a General view of the microbial mat covering the shore of the Salada de Chiprana lake. b Closer view of a microbial mat section. c Natural population of blooming sulfide-dependent anoxygenic photosynthetic bacteria in waters of microbial mat containers after several weeks of growth in the laboratory; note the conspicuous refringent intracellular sulfur inclusions. d–f Closer microscopy view of anoxygenic photosynthetic bacteria infected by epibiotic Vampirococcus cells and few-cell filaments (indicated by yellow arrows). g Scanning electron microscopy image of a host cell infected by two stacking Vampirococcus cells (yellow arrow). h Transmission electron microscopy (TEM) image of a thin section of a host cell infected by Vampirococcus (yellow arrow). i Closer TEM view of a thin section of Vampirococcus cells, notice the fibrous rugose cell surface and the large space separating contiguous cells. Scale bars: 5 cm (b), 5 µm (c), 1 µm (d–h), 0.5 µm (i).Full size imageSince the first Vampirococcus description included transmission electron microscopy (TEM) images, to further ascertain this identification we examined our Chiprana Lake samples under TEM and scanning electron microscopy (SEM). SEM images confirmed the peculiar structure of the epibionts, with multiple contiguous cells separated by deep grooves (Fig. 1g). Thin sections observed under TEM confirmed that the cells were actually separated by a space of ~20–50 nm filled by a fibrous material (Fig. 1h, i). The space between epibiont and host cells was larger (~100 nm) and also filled by dense fibrous material (Fig. 1h). The sections also showed that, in contrast with the typical Gram-negative double membrane structure of the host, the epibiont cells had a single membrane surrounded by a thick layer of fibrous material that conferred a rugose aspect to the cells (Fig. 1i). In sharp contrast with the often highly vacuolated cytoplasm of the host, the epibiont cells showed a dense, homogeneous content. These observations were also in agreement with those published for Vampirococcus, reinforcing our conclusion that the epibionts we observed belonged to this genus, although most likely to a different species, as the first described Vampirococcus occurred in a non-hypersaline lake15.Using a micromanipulator coupled to an inverted microscope, we collected cells of the anoxygenic photosynthetic bacterium carrying Vampirococcus attached to their surface (Supplementary Fig. 1) and proceeded to amplify, clone, and sequence their 16 S rRNA genes. We were able to obtain sequences for both the epibiont and the host for ten infected cells and, in all cases, we retrieved the same two sequences. The host was found to be a Halochromatium-like gammaproteobacterium (Supplementary Fig. 2). Phylogenetic analysis of the epibiont sequence showed that it branched within the CPR radiation close to the Absconditabacteria (Supplementary Fig. 3), previously known as candidate phylum SR12. Since all host and epibiont cells we analyzed had identical 16 S rRNA gene sequences, suggesting that they were the result of a clonal bloom, we collected three sets of ca. 10 infected cells and carried out whole genome amplification (WGA) before sequencing (Illumina HiSeq; see Methods). This strategy allowed us to assemble the nearly complete genome sequence of the Vampirococcus epibiont (see below). In contrast with the completeness of this genome, we only obtained a very partial assembly (~15%) of the host genome, probably because of the consumption of the host DNA by the epibiont. To make more robust phylogenetic analyses of Vampirococcus, we retrieved the protein sequence set used by Hug et al. to reconstruct a multi-marker large-scale phylogeny of bacteria2. The new multi-gene maximum likelihood (ML) phylogenetic tree confirmed the affiliation of our Vampirococcus species to the Absconditabacteria with maximum support, and further placed this clade within a larger well-supported group also containing the candidate phyla Gracilibacteria and Peregrinibacteria (Fig. 2a and Supplementary Fig. 4). Therefore, our epibiotic bacterium represents the first characterized member of this large CPR clade and provides a phylogenetic identity for the predatory bacterial genus Vampirococcus described several decades ago. We propose to call this new species Candidatus Vampirococcus lugosii (see Taxonomic appendix).Fig. 2: Phylogeny and global gene content of the Vampirococcus genome.a Maximum likelihood phylogenetic tree of bacteria based on a concatenated dataset of 16 ribosomal proteins showing the position of Vampirococcus lugosii close to the Absconditabacteria (for the complete tree, see Supplementary Fig. 4). Histograms on the right show the proportion of genes retained in each species from the ancestral pool inferred for the last common ancestor of Absconditabacteria, Gracilibacteria and Peregrinibacteria. b Percentage of Vampirococcus genes belonging to the different Clusters of Orthologous Groups (COG) categories. c Genes shared by Vampirococcus and the three Absconditabacteria genomes shown in the phylogenetic tree. COG categories are: Energy production and conversion [C]; Cell cycle control, cell division, chromosome partitioning [D]; Amino acid transport and metabolism [E]; Nucleotide transport and metabolism [F]; Carbohydrate transport and metabolism [G]; Coenzyme transport and metabolism [H]; Lipid transport and metabolism [I]; Translation, ribosomal structure and biogenesis [J]; Transcription [K]; Replication, recombination and repair [L]; Cell wall/membrane/envelope biogenesis [M]; Secretion, motility and chemotaxis [N]; Posttranslational modification, protein turnover, chaperones [O]; Inorganic ion transport and metabolism [P]; General function prediction only [R]; Function unknown [S]; Intracellular trafficking, secretion, and vesicular transport [U]; Defense mechanisms [V]; Mobilome: prophages, transposons [X]; Secondary metabolites biosynthesis, transport and catabolism [Q]. Source data are provided as a Source Data file.Full size imageGenomic evidence of adaptation to predatory lifestyleWe sequenced DNA from three WGA experiments corresponding each to ~10 Halochromatium-Vampirococcus consortia. Many of the resulting (57.2 Mb) raw sequences exhibited similarity to those of available Absconditabacteria/SR1 metagenome-assembled genomes (MAGs) and, as expected, some also to Gammaproteobacteria (host-derived sequences) as well as a small proportion of potential contaminants probably present in the original sample (Bacillus- and fungi-like sequences). To bin the Vampirococcus sequences out of this mini-metagenome, we applied tetranucleotide frequency analysis on the whole sequence dataset using emergent self-organizing maps (ESOM)6. One of the ESOM sequence bins was enriched in Absconditabacteria/SR1-like sequences and corresponded to the Vampirococcus sequences, which we extracted and assembled independently. This approach yielded an assembly of 1,310,663 bp. We evaluated its completeness by searching i) a dataset of 40 universally distributed single-copy genes17 and ii) a dataset of 43 single-copy genes widespread in CPR bacteria8. We found all them as single-copy genes in the Vampirococcus genome, with the exception of two signal recognition particle subunits from the first dataset which are absent in many other CPR bacteria18. These results supported that the Vampirococcus genome assembly was complete and did not contain multiple strains or other sources of contamination. Manually curated annotation predicted 1151 protein-coding genes, a single rRNA gene operon, and 38 tRNA coding genes. As already found in other Absconditabacteria/SR1 genomes19, the genetic code of Vampirococcus is modified, with the stop codon UGA reassigned as an additional glycine codon.A very large proportion of the predicted proteins (48.9%) had no similarity to any COG class and lacked any conserved domain allowing their functional annotation (Fig. 2b). Thus, as for other CPR bacteria, a significant part of their cellular functions remains inaccessible. A comparison with three other Absconditabacteria genomes revealed a very small set of only 390 genes conserved in all them (Fig. 2c), suggesting a highly dynamic evolution of gene content in these species. Comparison with more distantly related CPR groups (Gracilibacteria and Peregrinibacteria) showed that gene loss has been a dominant trend in all these organisms, which have lost 30–50% of the 1124 genes inferred to have existed in their last common ancestor (Fig. 2a). Nevertheless, this loss of ancestral genes was accompanied by the acquisition of new ones by different mechanisms, including horizontal gene transfer (HGT). In the case of Vampirococcus, we detected, by phylogenetic analysis of all individual genes that had homologs in other organisms, the acquisition of 126 genes by HGT from various donors (Supplementary Data 1).The set of genes that could be annotated provided interesting clues about the biology and lifestyle of Vampirococcus. The most striking feature was its oversimplified energy and carbon metabolism map (Fig. 3). ATP generation in this CPR species appeared to depend entirely on substrate-level phosphorylation carried out by the phosphoenolpyruvate kinase (EC 2.7.1.40). In fact, Vampirococcus only possesses incomplete glycolysis, which starts with 3-phosphoglycerate as first substrate. This molecule is the major product of the enzyme RuBisCO and, therefore, most likely highly available to Vampirococcus from its photosynthetic host. Comparison with nearly complete MAG sequences available for other Absconditabacteria/SR1 showed that Vampirococcus has the most specialized carbon metabolism, with 3-phosphoglycerate as the only exploitable substrate, whereas the other species have a few additional enzymes that allow them to use other substrates (such as ribulose-1,5 P and acetyl-CoA) as energy and reducing power (NADH) sources (Supplementary Fig. 5). This metabolic diversification probably reflects their adaptation to other types of hosts where these substrates are abundant. Vampirococcus also lacks all the enzymes involved in some Absconditabacteria/SR1 in the 3-phosphoglycerate-synthesizing AMP salvage pathway20, including the characteristic archaeal-like type II/III RuBisCO21.Fig. 3: Metabolic and cell features inferred from the genes encoded in the Vampirococcus genome.The diagram shows the host cell surface (bottom) with two stacking Vampirococcus cells attached to its surface (as in Fig. 1h).Full size imageThe genomes of Absconditabacteria/SR1 and Vampirococcus encode several electron carrier proteins (e.g., ferredoxin, cytochrome b5, several Fe-S cluster proteins) and a membrane F1FO-type ATP synthase. However, they apparently lack any standard electron transport chain and, therefore, they seem to be non-respiring19,20,22. The electron carrier proteins may be related with the oxidative stress response and/or the reoxidation of reduced ferredoxin or NADH20. In the absence of any obvious mechanism to generate proton motive force (PMF), the presence of the membrane ATP synthase is also intriguing. It has been speculated either that CPR bacteria might tightly adhere to their hosts and scavenge protons from them or that the membrane ATP synthase might work in the opposite direction as an ATPase, consuming ATP generated by substrate level phosphorylation to extrude protons and drive antiporters9. However, in the case of Vampirococcus the direct transport of protons from the host is unlikely since, as observed in the TEM sections (Fig. 1h), it seems that there is no direct contact with the host cell membrane. In fact, parasite and host cell membranes are separated by a relatively large space of ~100 nm, which would be largely conducive to proton diffusion and inefficient transfer between cells. Alternatively, since the Chiprana lake has high Na+ concentration (1.6 g l−1), it might be possible that the ATP synthase uses Na+ instead of protons. However, the Na+-binding domain of the subunit c of typical Na+-dependent ATP synthases exhibited several differences with that of Vampirococcus (Supplementary Fig. 6). Similar differences have been considered indicative of the use of protons instead of Na+ in other organisms23. Although the proton/cation antiporters (e.g., for Na+, K+, or Ca2+) encoded by Vampirococcus and the other Absconditabacteria/SR1 may serve to produce some PMF, it is improbable that this mechanism represents a major energy transducing system as cells would accumulate cations and disrupt their ionic balance; these antiporters are most likely involved in cation homeostasis.These observations prompted us to investigate other ways that these cells might use to generate PMF usable by their ATP synthase. We found a protein (Vamp_33_45) with an atypical tripartite domain structure. The N-terminal region, containing 8 transmembrane helices, showed similarity with several flavocytochromes capable of moving electrons and/or protons across the plasma membrane (e.g., 24). The central part of the protein was a rubredoxin-like nonheme iron-binding domain likely able to transport electrons. Finally, the C-terminal region, containing an NAD-binding motif, was similar to ferredoxin reductases involved in electron transfer25. This unusual Vampirococcus 3-domain protein is well conserved in the other Absconditabacteria/SR1 genomes sequenced so far, suggesting it plays an important function in this CPR phylum. Its architecture suggests that it can transport electrons and/or protons across the membrane using ferredoxin as electron donor and makes it a strong candidate to participate in a putative new PMF-generating system. Alternatively, this protein could play a similar role to that of some oxidoreductases in the strict anaerobic archaeon Thermococcus onnurineus, including a thioredoxin reductase, which couple reactive oxygen species detoxification with NAD(P) + regeneration from NAD(P)H to maintain the intracellular redox balance and enhance O2-mediated growth despite the absence of heme-based or cytochrome-type proteins26.Although our Vampirococcus genome sequence appears to be complete, genes encoding enzymes involved in the biosynthesis of essential cell building blocks such as amino acids, nucleotides and nucleosides, cofactors, vitamins, and lipids are almost completely absent (Fig. 2b). Therefore, the classical bacterial metabolic pathways for their synthesis27 do not operate in Vampirococcus. Such simplified metabolic potential, comparable to that of intracellular parasitic bacteria such as Mycoplasma28, implies that Vampirococcus must acquire these molecules from an external source and supports the predatory nature of the interaction with its photosynthetic host. An intriguing aspect of this interaction concerns the transfer of substrates from the host to Vampirococcus, especially considering that, despite examination of several serial ultrathin sections, the cell membranes of these two partners do not appear to be in direct contact (Fig. 1h). Vampirococcus encodes several virulence factors, including divergent forms of hemolysin and hemolysin translocator (Vamp_11_169 and Vamp_9_166, respectively), a phage holin (Vamp_5_129), and a membrane-bound lytic murein transglycosylase (Vamp_144_2). These proteins are likely involved in the host cell wall and membrane disruption leading to cell content release. Hemolysin has also been found in Saccharibacteria (formerly candidate phylum TM7), the only CPR phylum for which an epibiotic parasitic lifestyle has been demonstrated so far13,14. Recent coupled lipidomic-metagenomic analyses have shown that CPR bacteria that lack complete lipid biosynthesis are able to recycle membrane lipids from other bacteria29. In Vampirococcus, also devoid of phospholipid synthesis, a phospholipase gene (Vamp_34_196) predicted to be secreted and that has homologs involved in host phospholipid degradation in several parasitic bacteria30, may not only help disrupting the host membrane but also to generate a local source of host phospholipids that it can use to build its own cell membrane. Two Vampirococcus peptidoglycan hydrolases (Vamp_68-56_103 and Vamp_145_30), also predicted to be secreted, most probably contribute to degrade the host cell wall. The Vampirococcus genome also encodes two murein DD-endopeptidases (Vamp_311_38 and Vamp_41_33). As in other predatory bacteria, such as Bdellovibrio, one probably acts to degrade the prey cell wall whereas the other is involved in self-wall remodeling31. Despite their high sequence divergence, we could align both Vampirococcus sequences with those of Bdellovibrio and other bacteria (Supplementary Fig. 7). Both sequences conserved the characteristic active site serine residue of DD endopeptidases and, in contrast with the Bdellovibrio “predatory” enzymes, also the regulatory domain III. The deletion of this regulatory domain has been associated with the capacity of the Bdellovibrio “predatory” DD endopeptidases to act promiscuously on a wide variety of peptidoglycan substrates31. This difference most likely reflects that, whereas Bdellovibrio is able to prey on very diverse bacteria, Vampirococcus is a specialized predator of Chromatiaceae that has evolved specialized enzymes to degrade the wall of its particular prey. The Vampirococcus enzymes could also be aligned with the region where the ankyrin-repeat-containing self-protective regulatory inhibitor Bd3460 binds the Bdellovibrio “predatory” DD endopeptidases32, although only partially for the C-terminal part of Vamp_41_33, like in the self-wall Bdellovibrio enzyme Bd3244 (Supplementary Fig. 7). In that sense, the Vamp_311_38 enzyme seems more similar to the “predatory” Bdellovibrio ones. Interestingly, the “predatory” endopeptidase Bd3459 and the regulatory inhibitor Bd3460 are contiguous in the genomes of Bdellovibrio and other periplasmic predators but not in epibiotic predators32. Vampirococcus confirms this pattern since, although it possesses several ankyrin-repeat-containing proteins, none of them is encoded adjacent to the DD endopeptidase genes.Vampirococcus also possesses a number of genes encoding transporters, most of them involved in the transport of inorganic molecules (Fig. 3). One notable exception is the competence-related integral membrane protein ComEC (Vamp_67_106)33 which, together with ComEA (Vamp_21_186) and type IV pili (see below), probably plays a role in the uptake of host DNA that, once transported into the epibiont, can be degraded by various restriction endonucleases (five genes encoding them are present) and recycled to provide the nucleotides necessary for growth (Supplementary Fig. 8). These proteins are widespread in other CPR bacteria where they may have a similar function34. Vampirococcus also encodes an ABC-type oligopeptide transporter (Vamp_40_40) and a DctA-like C4-dicarboxylate transporter (Vamp_41_97), known to catalyze proton-coupled symport of several Krebs cycle dicarboxylates (succinate, fumarate, malate, and oxaloacetate)35. The first, coupled with the numerous peptidases present in Vampirococcus, most likely is a source of amino acids. By contrast, the role of DctA is unclear since Vampirococcus does not have a Krebs cycle.In sharp contrast with its simplified central metabolism, Vampirococcus possesses genes related to the construction of an elaborate cell surface, which seems to be a common theme in many CPR bacteria9,12. They include genes involved in peptidoglycan synthesis, several glycosyltransferases, a Sec secretion system, and a rich repertoire of type IV pilus proteins. The retractable type IV pili are presumably involved in the tight attachment of Vampirococcus to its host and in DNA uptake in cooperation with the ComEC protein. Other proteins probably play a role in the specific recognition and fixation to the host, including several very large proteins. In fact, the Vampirococcus membrane proteome is enriched in giant proteins. The ten longest predicted proteins (between 1392 and 4163 aa, see Supplementary Table 1) are inferred to have a membrane localization and are probably responsible of the conspicuous fibrous aspect of its cell surface (Fig. 1i). Most of these proteins possess domains known to be involved in the interaction with other molecules, including protein-protein (WD40, TRP, and PKD domains) and protein–lipid (saposin domain) interactions and cell adhesion (DUF11, integrin, and fibronectin domains). Two other large membrane proteins (Vamp_6_203, 2368 aa, and Vamp_19_245, 1895 aa) may play a defensive role as they contain alpha-2-macroglobulin protease-inhibiting domains that can protect against proteases released by the host. Several other smaller proteins complete the membrane proteome of Vampirococcus, some of them also likely involved in recognition and attachment to the host thanks to a variety of protein domains, such as VWA (Vamp_41_85) and flotillin (Vamp_11_100). We did not detect genes coding for flagellar components, confirming the absence of flagella observed under the microscope (Fig. 1).New CRISPR-Cas systems and other defense mechanisms in Vampirococcus
    Although most CPR phyla are devoid of CRISPR-Cas36, some have been found to contain new systems with original effector enzymes such as CasY37. In contrast with most available Absconditabacteria genomes, Vampirococcus possesses two CRISPR-Cas loci (Fig. 4a and Supplementary Fig. 9). The first is a class II type V system that contains genes coding for Cas1, Cas2, Cas4, and Cpf1 proteins associated to 34 spacer sequences of 26–32 bp. Proteins similar to those of this system are encoded not only in genomes of close relatives of the Absconditabacteria (Gracilibacteria and Peregrinibacteria) but in many other CPR phyla. These sequences form monophyletic groups in phylogenetic analyses (e.g., Cas1, see Fig. 4b), which suggests that this type V system is probably ancestral in these CPR. The second system found in Vampirococcus belongs to the class I type III and contains genes coding for Cas1, Cas2, Csm3, and Cas10/Csm1 proteins associated to a cluster of 20 longer (35–46 bp) spacers. In contrast with the previous CPR-like system, the proteins of this second system did not show strong similarity with any CPR homolog but with sequences from other bacterial phyla, suggesting that they have been acquired by HGT. Phylogenetic analysis confirmed this and supported that Vampirococcus gained this CRISPR-Cas system from different distant bacterial donors (Supplementary Fig. 10). Interestingly, these two CRISPR-Cas systems encode a number of proteins that may represent new effectors. A clear candidate is the large protein Vamp_48_93 (1158 aa), located between Cpf1 and Cas1 in the type V system (Fig. 4a), which contains a DNA polymerase III PolC motif. Very similar sequences can be found in a few other CPR (some Roizmanbacteria, Gracilibacteria, and Portnoybacteria) and in some unrelated bacteria (Supplementary Fig. 11). As in Vampirococcus, the gene coding for this protein is contiguous to genes encoding different Cas proteins in several of these bacteria, including Roizmanbacteria, Omnitrophica, and the deltaproteobacterium Smithella sp. (Supplementary Fig. 11). This gene association, as well as the very distant similarity between this protein and Cpf1 CRISPR-associated proteins of bacterial type V systems, supports that it is a new effector in type V CRISPR-Cas systems. Additional putative new CRISPR-associated proteins likely exist also in the Vampirococcus type III system (Fig. 4a). Three proteins encoded by contiguous genes (Vamp_21_116, Vamp_21_127, and Vamp_21_128) exhibit very distant similarity with type III-A CRISPR-associated Repeat Associated Mysterious Proteins (RAMP) Csm4, Csm5, and Csm6 sequences, respectively, and most probably represent new RAMP subfamilies. To date, Absconditabacteria38 and Saccharibacteria39 are the only CPR phyla for which phages have been identified. Because of its proximity to Absconditabacteria, Vampirococcus is probably infected by similar phages, so that the function of its CRISPR-Cas systems may be related to the protection against these genetic parasites. Nevertheless, we did not find any similarity between the Vampirococcus spacers and known phage sequences, suggesting that it is infected by unknown phages. Alternatively, considering that Vampirococcus -as most likely many other CPR bacteria- seems to obtain nucleotides required for growth by uptaking host DNA, an appealing possibility is that the CRISPR-Cas systems participate in the degradation of the imported host DNA.Fig. 4: CRISPR-Cas systems in Vampirococcus.a Genes in the two systems encoded in the Vampirococcus lugosii genome, elements common to the two systems are highlighted in blue. b Maximum likelihood phylogenetic tree of the Cas1 protein encoded in the class II type V system, numbers at branches indicate bootstrap support.Full size imageAlthough CPR bacteria have been hypothesized to be largely depleted of classical defense mechanisms40, we found that Vampirococcus, in addition to the two CRISP-Cas loci, is endowed with various other protection mechanisms. These include an AbiEii-AbiEi Type IV toxin-antitoxin system, also present in other CPR bacteria, which may offer additional protection against phage infection41 and several restriction-modification systems, with three type I, one type II and one type III restriction enzymes and eight DNA methylases. In addition to a defensive role, these enzymes may also participate in the degradation of the host DNA. As in its sister-groups Absconditabacteria and Gracilibacteria5,19,20,42,43, Vampirococcus has repurposed the UGA stop codon to code for glycine. The primary function of this recoding remains unknown but it has been speculated that it creates a genetic incompatibility, whereby these bacteria would be “evolutionarily isolated” from their environmental neighbors, preventing their potential competitors from acquiring their genomic innovations by HGT19. However, the opposite might be argued as well, since the UGA codon reassignment can protect Vampirococcus from foreign DNA expression upon uptake by leading to aberrant protein synthesis via read-through of the UGA stop with Gly insertion. This can be important for these CPR bacteria because they are not only impacted by phages38 but they most likely depend on host DNA import and degradation to fulfill their nucleotide requirements. In that sense, it is interesting to note that the Vampirococcus ComEA protein likely involved in DNA transport44 is encoded within the class I type III CRISPR-Cas system (Fig. 4a). More

  • in

    Mussels drive polychlorinated biphenyl (PCB) biomagnification in a coastal food web

    Invertebrate composition effects on primary productionTo evaluate the effects of fiddler crabs, marsh crabs, and mussels on benthic algae and cordgrass production, the dietary sources for fiddler and marsh crabs, respectively27,28, we measured benthic diatom biomass and cordgrass stem density every 4–6 weeks and quantified cordgrass biomass and grazing damage at the conclusion of the experiment in August 2017. Diatom biomass was enhanced in enclosures with mussels and/or marsh crabs relative to enclosures with only fiddler crabs or no invertebrates, and relative to all ambient plots (F36, 200 = 1.5; P = 0.04; Tukey’s HSD, all P  More

  • in

    Long term crop rotation effect on subsequent soybean yield explained by soil and root-associated microbiomes and soil health indicators

    1.Hartman, K. et al. Cropping practices manipulate abundance patterns of root and soil microbiome members paving the way to smart farming. Microbiome 6, 14 (2018).Article 

    Google Scholar 
    2.Berzsenyi, Z., Győrffy, B. & Lap, D. Effect of crop rotation and fertilisation on maize and wheat yields and yield stability in a long-term experiment. Eur. J. Agron. 13, 225–244. https://doi.org/10.1016/S1161-0301(00)00076-9 (2000).Article 

    Google Scholar 
    3.Körschens, M. The importance of long-term field experiments for soil science and environmental research: a review. Plant Soil Environ. 52, 1–8 (2006).
    Google Scholar 
    4.Zuber, S. M., Behnke, G., Nafziger, E. & Villamil, M. B. Crop rotation and tillage effects on soil physical and chemical properties in Illinois. Agron. J. 107, 971–978. https://doi.org/10.2134/agronj14.0465 (2015).CAS 
    Article 

    Google Scholar 
    5.Stott, D. E. Recommended Soil Health Indicators and Associated Laboratory Procedures. National Soil Health Specialist, Soil Health Division, U.S. Department of Agriculture (USDA), Natural Resources Conservation Service (NRCS), Washington, D.C. (2019).6.Barrios, E. Soil biota, ecosystem services and land productivity. Ecol. Econ. 64, 269–285. https://doi.org/10.1016/j.ecolecon.2007.03.004 (2007).Article 

    Google Scholar 
    7.Garbeva, P., van Veen, J. A. & van Elsas, J. D. Microbial diversity in soil: selection of microbial populations by plant and soil type and implications for disease suppressiveness. Annu. Rev. Phytopathol. 42, 243–270. https://doi.org/10.1146/annurev.phyto.42.012604.135455 (2004).CAS 
    Article 
    PubMed 

    Google Scholar 
    8.Hatfield, J., Prueger, J. & Kustas, W. Spatial and temporal variation of energy and carbon fluxes in central Iowa. Agron. J. 99, 285–296. https://doi.org/10.2134/agronj2005.0116S (2007).CAS 
    Article 

    Google Scholar 
    9.Lehman, R. M. et al. Understanding and enhancing soil biological health: the solution for reversing soil degradation. Sustainability 7, 988–1027. https://doi.org/10.3390/su7010988 (2015).Article 

    Google Scholar 
    10.Weil, R. R., Islam, K. R., Stine, M. A., Gruver, J. B. & Samson-Liebig, S. E. Estimating active carbon for soil quality assessment: a simplified method for laboratory and field use. Am. J. Alter. Agric. 18, 3–17. https://doi.org/10.1079/AJAA200228 (2003).Article 

    Google Scholar 
    11.Idowu, O. et al. Farmer-oriented assessment of soil quality using field, laboratory, and VNIR spectroscopy methods. Int. J. Plant-Soil Relatsh. 307, 243–253. https://doi.org/10.1007/s11104-007-9521-0 (2008).CAS 
    Article 

    Google Scholar 
    12.Gunapala, N. & Scow, K. M. Dynamics of soil microbial biomass and activity in conventional and organic farming systems. Soil Biol. Biochem. 30, 805–816. https://doi.org/10.1016/S0038-0717(97)00162-4 (1998).CAS 
    Article 

    Google Scholar 
    13.Plaza-Bonilla, D., Álvaro-Fuentes, J. & Cantero-Martínez, C. Identifying soil organic carbon fractions sensitive to agricultural management practices. Soil Tillage Res. 139, 19–22. https://doi.org/10.1016/j.still.2014.01.006 (2014).Article 

    Google Scholar 
    14.Mirsky, S., Lanyon, L. & Needelman, B. Evaluating soil management using particulate and chemically labile soil organic matter fractions. Soil Sci. Soc. Am. J. 72, 180–185. https://doi.org/10.2136/sssaj2005.0279 (2008).ADS 
    CAS 
    Article 

    Google Scholar 
    15.Wright, S. F. & Upadhyaya, A. Extraction of an abundant and unusual protein from soil and comparison with hyphal protein of arbuscular mycorrhizal fungi. Soil Sci. 161, 575–586 (1996).ADS 
    CAS 
    Article 

    Google Scholar 
    16.Jan, M. T., Roberts, P., Tonheim, S. K. & Jones, D. L. Protein breakdown represents a major bottleneck in nitrogen cycling in grassland soils. Soil Biol. Biochem. 41, 2272–2282. https://doi.org/10.1016/j.soilbio.2009.08.013 (2009).CAS 
    Article 

    Google Scholar 
    17.Nannipieri, P. & Eldor, P. The chemical and functional characterization of soil N and its biotic components. Soil Biol. Biochem. 41, 2357–2369. https://doi.org/10.1016/j.soilbio.2009.07.013 (2009).CAS 
    Article 

    Google Scholar 
    18.Weintraub, M. N. & Schimel, J. P. Seasonal protein dynamics in Alaskan arctic tundra soils. Soil Biol. Biochem. 37, 1469–1475. https://doi.org/10.1016/j.soilbio.2005.01.005 (2005).CAS 
    Article 

    Google Scholar 
    19.Ros, G. H., Temminghoff, E. J. M. & Hoffland, E. Nitrogen mineralization: a review and meta-analysis of the predictive value of soil tests. Eur. J. Soil Sci. 62, 162–173. https://doi.org/10.1111/j.1365-2389.2010.01318.x (2011).CAS 
    Article 

    Google Scholar 
    20.Ros, G. H., Hanegraaf, M. C., Hoffland, E. & van Riemsdijk, W. H. Predicting soil N mineralization: relevance of organic matter fractions and soil properties. Soil Biol. Biochem. 43, 1714–1722. https://doi.org/10.1016/j.soilbio.2011.04.017 (2011).CAS 
    Article 

    Google Scholar 
    21.Chang, E.-H., Chung, R.-S. & Tsai, Y.-H. Effect of different application rates of organic fertilizer on soil enzyme activity and microbial population. Soil Sci. Plant Nutr. 53, 132–140. https://doi.org/10.1111/j.1747-0765.2007.00122.x (2007).ADS 
    CAS 
    Article 

    Google Scholar 
    22.Liebig, M., Carpenter-Boggs, L., Johnson, J. M. F., Wright, S. & Barbour, N. Cropping system effects on soil biological characteristics in the Great Plains. Renew. Agric. Food Syst. 21, 36–48. https://doi.org/10.1079/RAF2005124 (2006).Article 

    Google Scholar 
    23.Wright, S. & Upadhyaya, A. Comparison of N-linked oligosaccharides of glomalin from arbuscular mycorrhizal fungi and soils by capillary electrophoresis. Soil Biol. Biochem. 30, 1853–1857 (1998).CAS 
    Article 

    Google Scholar 
    24.Wright, S. F. & Upadhyaya, A. A survey of soils for aggregate stability and glomalin, a glycoprotein produced by hyphae of arbuscular mycorrhizal fungi. Plant Soil 198, 97–107 (1998).CAS 
    Article 

    Google Scholar 
    25.Lovelock, C. E., Wright, S. F., Clark, D. A. & Ruess, R. W. Soil stocks of glomalin produced by arbuscular mycorrhizal fungi across a tropical rain forest landscape. J. Ecol. 92, 278–287. https://doi.org/10.1111/j.0022-0477.2004.00855.x (2004).CAS 
    Article 

    Google Scholar 
    26.Emran, M., Gispert, M. & Pardini, G. Patterns of soil organic carbon, glomalin and structural stability in abandoned Mediterranean terraced lands. Eur. J. Soil Sci. 63, 637–649. https://doi.org/10.1111/j.1365-2389.2012.01493.x (2012).CAS 
    Article 

    Google Scholar 
    27.Nichols, K. A. & Millar, J. Glomalin and soil aggregation under six management systems in the Northern Great Plains, USA. Open J. Soil Sci. 03(08), 5. https://doi.org/10.4236/ojss.2013.38043 (2013).CAS 
    Article 

    Google Scholar 
    28.Rillig, M., Ramsey, P., Morris, S. & Paul, E. Glomalin, an arbuscular-mycorrhizal fungal soil protein, responds to land-use change. Int. J. Plant-Soil Relatsh. 253, 293–299. https://doi.org/10.1023/A:1024807820579 (2003).CAS 
    Article 

    Google Scholar 
    29.Klose, S. & Tabatabai, M. A. Response of phosphomonoesterases in soils to chloroform fumigation. J. Plant Nutr. Soil Sci. 165, 429–434. https://doi.org/10.1002/1522-2624(200208)165:4%3c429::AID-JPLN429%3e3.0.CO;2-S (2002).CAS 
    Article 

    Google Scholar 
    30.Wang, X.-C. & Lu, Q. Beta-glucosidase activity in paddy soils of the Taihu Lake Region, China. Pedosphere 16, 118–124. https://doi.org/10.1016/S1002-0160(06)60033-7 (2006).CAS 
    Article 

    Google Scholar 
    31.Wilson, D. B. Microbial diversity of cellulose hydrolysis. Curr. Opin. Microbiol. 14, 259–263. https://doi.org/10.1016/j.mib.2011.04.004 (2011).CAS 
    Article 
    PubMed 

    Google Scholar 
    32.Shewale, J. G. β-Glucosidase: Its role in cellulase synthesis and hydrolysis of cellulose. Int. J. Biochem. 14, 435–443. https://doi.org/10.1016/0020-711X(82)90109-4 (1982).CAS 
    Article 
    PubMed 

    Google Scholar 
    33.Acosta-Martínez, V., Reicher, Z., Bischoff, M. & Turco, R. F. The role of tree leaf mulch and nitrogen fertilizer on turfgrass soil quality. Biol. Fertil. Soils 29, 55–61. https://doi.org/10.1007/s003740050524 (1999).Article 

    Google Scholar 
    34.Krogh, K. et al. Characterization and kinetic analysis of a thermostable GH3 β-glucosidase from Penicillium brasilianum. Appl. Microbiol. Biotechnol. 86, 143–154. https://doi.org/10.1007/s00253-009-2181-7 (2010).CAS 
    Article 
    PubMed 

    Google Scholar 
    35.Chen, M. et al. Isolation and characterization of a β-glucosidase from Penicillium decumbens and improving hydrolysis of corncob residue by using it as cellulase supplementation. Enzyme Microb. Technol. 46, 444–449. https://doi.org/10.1016/j.enzmictec.2010.01.008 (2010).CAS 
    Article 
    PubMed 

    Google Scholar 
    36.Günata, Z. & Vallier, M.-J. Production of a highly glucose-tolerant extracellular β-glucosidase by three Aspergillus strains. Biotechnol. Lett. 21, 219–223. https://doi.org/10.1023/A:1005407710806 (1999).Article 

    Google Scholar 
    37.Riou, C., Salmon, J.-M., Vallier, M.-J., Gunata, Z. & Barre, P. Purification, characterization, and substrate specificity of a novel highly glucose-tolerant beta -glucosidase from Aspergillus oryzae. Appl. Environ. Microbiol. 64, 3607 (1998).CAS 
    Article 

    Google Scholar 
    38.Tsukada, T., Igarashi, K., Yoshida, M. & Samejima, M. Molecular cloning and characterization of two intracellular β-glucosidases belonging to glycoside hydrolase family 1 from the basidiomycete Phanerochaete chrysosporium. Appl. Microbiol. Biotechnol. 73, 807–814. https://doi.org/10.1007/s00253-006-0526-z (2006).CAS 
    Article 
    PubMed 

    Google Scholar 
    39.Yang, S., Wang, L., Yan, Q., Jiang, Z. & Li, L. Hydrolysis of soybean isoflavone glycosides by a thermostable β-glucosidase from Paecilomyces thermophila. Food Chem. 115, 1247–1252. https://doi.org/10.1016/j.foodchem.2009.01.038 (2009).CAS 
    Article 

    Google Scholar 
    40.Arévalo Villena, M., Úbeda Iranzo, J. F., Gundllapalli, S. B., Cordero Otero, R. R. & Briones Pérez, A. I. Characterization of an exocellular β-glucosidase from Debaryomyces pseudopolymorphus. Enzyme Microb. Technol. 39, 229–234. https://doi.org/10.1016/j.enzmictec.2005.10.018 (2006).CAS 
    Article 

    Google Scholar 
    41.Amouri, B. & Gargouri, A. Characterization of a novel β-glucosidase from a Stachybotrys strain. Biochem. Eng. J. 32, 191–197. https://doi.org/10.1016/j.bej.2006.09.022 (2006).CAS 
    Article 

    Google Scholar 
    42.Okamoto, K., Sugita, Y., Nishikori, N., Nitta, Y. & Yanase, H. Characterization of two acidic β-glucosidases and ethanol fermentation in the brown rot fungus Fomitopsis palustris. Enzyme Microb. Technol. 48, 359–364. https://doi.org/10.1016/j.enzmictec.2010.12.012 (2011).CAS 
    Article 
    PubMed 

    Google Scholar 
    43.Singhania, R. R., Patel, A. K., Sukumaran, R. K., Larroche, C. & Pandey, A. Role and significance of beta-glucosidases in the hydrolysis of cellulose for bioethanol production. Biores. Technol. 127, 500–507. https://doi.org/10.1016/j.biortech.2012.09.012 (2013).CAS 
    Article 

    Google Scholar 
    44.Okamoto, K., Nakano, H., Yatake, T., Kiso, T. & Kitahata, S. Purification and some properties of a β-glucosidase from Flavobacterium johnsonae. Biosci. Biotechnol. Biochem. 64, 333–340. https://doi.org/10.1271/bbb.64.333 (2000).CAS 
    Article 
    PubMed 

    Google Scholar 
    45.Spano, G. et al. A β-glucosidase gene isolated from wine Lactobacillus plantarum is regulated by abiotic stresses. J. Appl. Microbiol. 98, 855–861. https://doi.org/10.1111/j.1365-2672.2004.02521.x (2005).CAS 
    Article 
    PubMed 

    Google Scholar 
    46.Mendes, R. et al. Deciphering the rhizosphere microbiome for disease-suppressive bacteria. Science 332, 1097–1100. https://doi.org/10.1126/science.1203980 (2011).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    47.Crookston, R., Kurle, J., Copeland, P. J., Ford, J. H. & Lueschen, W. E. Rotational cropping sequence affects yield of corn and soybean. Agron. J. 83, 108–113 (1991).Article 

    Google Scholar 
    48.Meese, B. G., Carter, P. R., Oplinger, E. S. & Pendleton, J. W. Corn/soybean rotation effect as influenced by tillage, nitrogen, and hybrid/cultivar. J. Prod. Agric. 4, 74–80 (1991).Article 

    Google Scholar 
    49.Kelley, K. W., Long, J. H. & Todd, T. C. Long-term crop rotations affect soybean yield, seed weight, and soil chemical properties. Field Crop Res. 83, 41–50. https://doi.org/10.1016/S0378-4290(03)00055-8 (2003).Article 

    Google Scholar 
    50.Mourtzinis, S. et al. Corn and soybean yield response to tillage, rotation, and nematicide seed treatment. Crop Sci. 57, 1704–1712. https://doi.org/10.2135/cropsci2016.09.0792 (2017).Article 

    Google Scholar 
    51.Farmaha, B. S. et al. Rotation impact on on-farm yield and input-use efficiency in high-yield irrigated maize-soybean systems. Agron. J. 108, 2313–2321. https://doi.org/10.2134/agronj2016.01.0046 (2016).Article 

    Google Scholar 
    52.Crookston, R. K. & Kurle, J. E. Corn residue effect on the yield of corn and soybean grown in rotation. Agron. J. 81, 229–232. https://doi.org/10.2134/agronj1989.00021962008100020018x (1989).Article 

    Google Scholar 
    53.Whiting, K. R. & Crookston, R. K. Host-specific pathogens do not account for the corn-soybean rotation effect. Crop Sci. 33, 539–543. https://doi.org/10.2135/cropsci1993.0011183X003300030024x (1993).Article 

    Google Scholar 
    54.Copeland, P. J., Allmaras, R. R., Crookston, R. K. & Nelson, W. W. Corn-soybean rotation effects on soil water depletion. Agron. J. 85, 203–210. https://doi.org/10.2134/agronj1993.00021962008500020008x (1993).Article 

    Google Scholar 
    55.Li, J. et al. Soil-plant indices help explain legume response to crop rotation in a semiarid environment. Front. Plant Sci. https://doi.org/10.3389/fpls.2018.01488 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    56.Nickel, S. E., Crookston, R. K. & Russelle, M. P. Root growth and distribution are affected by corn-soybean cropping sequence. Agron. J. 87, 895–902. https://doi.org/10.2134/agronj1995.00021962008700050020x (1995).Article 

    Google Scholar 
    57.Bennett, A. J., Bending, G. D., Chandler, D., Hilton, S. & Mills, P. Meeting the demand for crop production: the challenge of yield decline in crops grown in short rotations. Biol. Rev. 87, 52–71. https://doi.org/10.1111/j.1469-185X.2011.00184.x (2012).Article 
    PubMed 

    Google Scholar 
    58.Johnson, N., Copeland, P. J., Crookston, R. & Pfleger, F. L. Mycorrhizae: possible explanation for yield decline with continuous corn and soybean. Agron. J. 84, 387–390 (1992).Article 

    Google Scholar 
    59.Chen, S., Porter, P. M., Reese, C. D. & Stienstra, W. C. Crop sequence effects on soybean cyst nematode and soybean and corn yields this research was supported by Minnesota soybean producers check-off funding through Minnesota research and promotion council and Minnesota agric. exp. stn.. Crop Sci. 41, 1843–1849. https://doi.org/10.2135/cropsci2001.1843 (2001).Article 

    Google Scholar 
    60.Grabau, Z. J. & Chen, S. Determining the role of plant-parasitic nematodes in the corn-soybean crop rotation yield effect using nematicide application: II. Soybean. Agron. J. 108, 1168–1179. https://doi.org/10.2134/agronj2015.0432 (2016).CAS 
    Article 

    Google Scholar 
    61.Hoss, M., Behnke, G., Davis, A., Nafziger, E. & Villamil, M. B. Short corn rotations do not improve soil quality. Compared with corn monocultures. Agron. J. 110, 1274–1288. https://doi.org/10.2134/agronj2017.11.0633 (2018).CAS 
    Article 

    Google Scholar 
    62.Plaza, C., Courtier-Murias, D., Fernández, J. M., Polo, A. & Simpson, A. J. Physical, chemical, and biochemical mechanisms of soil organic matter stabilization under conservation tillage systems: a central role for microbes and microbial by-products in C sequestration. Soil Biol. Biochem. 57, 124–134. https://doi.org/10.1016/j.soilbio.2012.07.026 (2013).CAS 
    Article 

    Google Scholar 
    63.Tardy, V. et al. Shifts in microbial diversity through land use intensity as drivers of carbon mineralization in soil. Soil Biol. Biochem. 90, 204–213. https://doi.org/10.1016/j.soilbio.2015.08.010 (2015).CAS 
    Article 

    Google Scholar 
    64.Tiedje, J. M., Asuming-Brempong, S., Nüsslein, K., Marsh, T. L. & Flynn, S. J. Opening the black box of soil microbial diversity. Appl. Soil. Ecol. 13, 109–122. https://doi.org/10.1016/S0929-1393(99)00026-8 (1999).Article 

    Google Scholar 
    65.Hussain, S., Ghaffar, A. & Aslam, M. Biological-control of macrophomina-phaseolina charcoal rot of sunflower and mung bean. J. Phytopathol. 130, 157–160. https://doi.org/10.1111/j.1439-0434.1990.tb01163.x (1990).Article 

    Google Scholar 
    66.Khan, A. N. et al. Molecular identification and genetic characterization of Macrophomina phaseolina strains causing pathogenicity on sunflower and chickpea. Front. Microbiol. 8, 1309. https://doi.org/10.3389/fmicb.2017.01309 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    67.Ramezani, M. et al. Soybean charcoal rot disease fungus Macrophomina phaseolina in Mississippi produces the phytotoxin (-)-botryodiplodin but no detectable phaseolinone. J. Nat. Prod. 70, 128–129. https://doi.org/10.1021/np060480t (2007).CAS 
    Article 
    PubMed 

    Google Scholar 
    68.Smith, L.J., Datnoff, L.E., Pernezny, K. & Schlub, R.L. Phylogenetic and pathogenic characterization of Corynespora cassiicola isolates. In II International Symposium on Tomato Diseases 808, 51–56 (2007)69.Deon, M. et al. Characterization of a cassiicolin-encoding gene from Corynespora cassiicola, pathogen of rubber tree (Hevea brasiliensis). Plant Sci. 185–186, 227–237. https://doi.org/10.1016/j.plantsci.2011.10.017 (2012).CAS 
    Article 
    PubMed 

    Google Scholar 
    70.Videira, S. I. R. et al. Mycosphaerellaceae: chaos or clarity?. Stud. Mycol. 87, 257–421 (2017).CAS 
    Article 

    Google Scholar 
    71.Wijayawardene, N. N. et al. Outline of ascomycota: 2017. Fungal Divers. 88, 167–263. https://doi.org/10.1007/s13225-018-0394-8 (2018).Article 

    Google Scholar 
    72.Olofsson, J., Ericson, L., Torp, M., Stark, S. & Baxter, R. Carbon balance of Arctic tundra under increased snow cover mediated by a plant pathogen. Nat. Clim. Change 1, 220–223. https://doi.org/10.1038/Nclimate1142 (2011).ADS 
    CAS 
    Article 

    Google Scholar 
    73.Wells, L. D. & McManus, P. S. A photographic diagnostic guide for identification of the principal cranberry fruit rot pathogens. Plant Health Prog. https://doi.org/10.1094/php-2013-0729-01-dg (2013).Article 

    Google Scholar 
    74.Yeager, C. M. et al. Polysaccharide degradation capability of actinomycetales soil isolates from a semiarid grassland of the Colorado Plateau. Appl. Environ. Microbiol. https://doi.org/10.1128/aem.03020-16 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    75.Loria, R., Bukhalid, R. A., Fry, B. A. & King, R. R. Plant pathogenicity in the genus Streptomyces. Plant Dis. 81, 836–846. https://doi.org/10.1094/Pdis.1997.81.8.836 (1997).Article 
    PubMed 

    Google Scholar 
    76.Li, Y., Liu, J., Diaz-Cruz, G., Cheng, Z. & Bignell, D. R. D. Virulence mechanisms of plant-pathogenic Streptomyces species: an updated review. Microbiology 165, 1025–1040. https://doi.org/10.1099/mic.0.000818 (2019).CAS 
    Article 
    PubMed 

    Google Scholar 
    77.Abdalla, M. H. Solubilization of rock phosphates by rhizobium and bradyrhizobium. Folia Microbiol. 39, 53–56. https://doi.org/10.1007/Bf02814530 (1994).CAS 
    Article 

    Google Scholar 
    78.Bargaz, A., Lyamlouli, K., Chtouki, M., Zeroual, Y. & Dhiba, D. Soil microbial resources for improving fertilizers efficiency in an integrated plant nutrient management system. Front Microbiol. https://doi.org/10.3389/fmicb.2018.01606 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    79.Moebius-Clune, B. N. Comprehensive Assessment of Soil Health: The Cornell Framework Manual (Cornell University, 2016).
    Google Scholar 
    80.Deng, S. P. & Tabatabai, M. A. Cellulase activity of soils. Soil Biol. Biochem. 26, 1347–1354. https://doi.org/10.1016/0038-0717(94)90216-X (1994).CAS 
    Article 

    Google Scholar 
    81.Riesenfeld, C. S., Goodman, R. M. & Handelsman, J. Uncultured soil bacteria are a reservoir of new antibiotic resistance genes. Environ. Microbiol. 6, 981–989 (2004).CAS 
    Article 

    Google Scholar 
    82.Gohl, D. et al. Systematic improvement of amplicon marker gene methods for increased accuracy in microbiome studies. Nat. Biotechnol. 34, 942–949. https://doi.org/10.1038/nbt.3601 (2016).CAS 
    Article 
    PubMed 

    Google Scholar 
    83.R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing (Vienna, Austria, 2020).84.Bates, D., Machler, M., Bolker, B. M. & Walker, S. C. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).Article 

    Google Scholar 
    85.Bolyen, E. et al. Qiime 2: reproducible, interactive, scalable, and extensible microbiome data science. Report No. 2167–9843, (PeerJ Preprints, 2018).86.Callahan, B. J. et al. DADA2: high-resolution sample inference from Illumina amplicon data. Nat. Methods 13, 581–583. https://doi.org/10.1038/nmeth.3869 (2016).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    87.Mandal, S. et al. Analysis of composition of microbiomes: a novel method for studying microbial composition. Microb. Ecol. Health Dis. https://doi.org/10.3402/mehd.v26.27663 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    88.Morton, J. T. et al. Balance trees reveal microbial niche differentiation. mSystems https://doi.org/10.1128/mSystems.00162-16 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    89.Nilsson, R. H. et al. The UNITE database for molecular identification of fungi: handling dark taxa and parallel taxonomic classifications. Nucleic Acids Res. 47, D259–D264. https://doi.org/10.1093/nar/gky1022 (2019).CAS 
    Article 
    PubMed 

    Google Scholar 
    90.Quast, C. et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 41, D590-596. https://doi.org/10.1093/nar/gks1219 (2013).CAS 
    Article 
    PubMed 

    Google Scholar 
    91.Pedregosa, F. et al. Scikit-learn: machine learning in python. J. Mach. Learn. Res. 12, 2825–2830 (2011).MathSciNet 
    MATH 

    Google Scholar 
    92.Kruskal, W. H. & Wallis, W. A. Use of ranks in one-criterion variance analysis. J. Am. Stat. Assoc. 47, 583–621. https://doi.org/10.1080/01621459.1952.10483441 (1952).Article 
    MATH 

    Google Scholar  More

  • in

    The Asian plethodontid salamander preserves historical genetic imprints of recent northern expansion

    1.Hewitt, G. M. Quaternary phylogeography: the roots of hybrid zones. Genetica 139, 617–638 (2011).PubMed 
    Article 

    Google Scholar 
    2.Gillespie, R. G. & Roderick, G. K. Evolution: geology and climate drive diversification. Nature 509, 297–298 (2014).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    3.Hewitt, G. M. The genetic legacy of the quaternary ice ages. Nature 405, 907–913 (2000).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    4.Gómez, A. & Lunt, D. H. Refugia within refugia: patterns of phylogeographic concordance in the Iberian Peninsula. In Phylogeography of Southern European Refugia (eds Weiss, S. & Ferrand, N.) 155–188 (Springer, 2007).
    Google Scholar 
    5.Abellán, P. & Svenning, J. C. Refugia within refugia—patterns in endemism and genetic divergence are linked to Late Quaternary climate stability in the Iberian Peninsula. Biol. J. Linn. Soc. 113, 13–28 (2014).Article 

    Google Scholar 
    6.Avise, J. C. Phylogeography: The History and Formation of Species (Harvard University Press, 2000).
    Google Scholar 
    7.Juan, C., Emerson, B. C., Oromí, P. & Hewitt, G. M. Colonization and diversification: towards a phylogeographic synthesis for the Canary Islands. Trends Ecol. Evol. 15, 104–109 (2000).CAS 
    PubMed 
    Article 

    Google Scholar 
    8.Chung, M. Y., López-Pujol, J. & Chung, M. G. The role of the Baekdudaegan (Korean Peninsula) as a major glacial refugium for plant species: a priority for conservation. Biol. Conserv. 206, 236–248 (2017).Article 

    Google Scholar 
    9.Chung, M. Y. et al. The Korean baekdudaegan mountains: a glacial refugium and a biodiversity hotspot that needs to be conserved. Front. Genet. 9, 489 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    10.AmphibiaWeb. https://amphibiaweb.org/. (Accessed: 15th July 2020).11.Borzée, A. & Min, M.-S. Disentangling the impacts of speciation, sympatry and the island effect on the morphology of seven Hynobius sp. salamanders. Animals 11, 187 (2021).PubMed 
    Article 

    Google Scholar 
    12.Baek, H.-J., Lee, M.-Y., Lee, H. & Min, M.-S. Mitochondrial DNA data unveil highly divergent populations within the Genus Hynobius (Caudata: Hynobiidae) in South Korea. Mol. Cells 31, 105–112 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    13.Suk, H. Y. et al. Phylogenetic structure and ancestry of Korean clawed salamander, Onychodactylus koreanus (Caudata: Hynobiidae). Mitochondrial DNA Part A DNA Mapp. Seq. Anal. 29, 650–658 (2018).CAS 
    Article 

    Google Scholar 
    14.Min, M.-S. et al. Discovery of the first Asian plethodontid salamander. Nature 435, 87–90 (2005).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    15.Wiens, J. J., Engstrom, T. N. & Chippindale, P. T. Rapid diversification, incomplete isolation, and the “speciation clock” in North American salamanders (genus Plethodon): testing the hybrid swarm hypothesis of rapid radiation. Evolution 60, 2585–2603 (2006).CAS 
    PubMed 

    Google Scholar 
    16.Kozak, K. H., Mendyk, R. W. & Wiens, J. J. Can parallel diversification occur in sympatry? Repeated patterns of body-size evolution in coexisting clades of North American salamanders. Evolution 63, 1769–1784 (2009).PubMed 
    Article 

    Google Scholar 
    17.Zhang, P. & Wake, D. B. Higher-level salamander relationships and divergence dates inferred from complete mitochondrial genomes. Mol. Phylogenet. Evol. 53, 492–508 (2009).CAS 
    PubMed 
    Article 

    Google Scholar 
    18.Vieites, D. R., Román, S. N., Wake, M. H. & Wake, D. B. A multigenic perspective on phylogenetic relationships in the largest family of salamanders, the Plethodontidae. Mol. Phylogenet. Evol. 59, 623–635 (2011).PubMed 
    Article 

    Google Scholar 
    19.Shen, X. X. et al. Enlarged multilocus data set provides surprisingly younger time of origin for the Plethodontidae, the largest family of salamanders. Syst. Biol. 65, 66–81 (2016).PubMed 
    Article 

    Google Scholar 
    20.Wake, D. B. Persistent plethodontid themes: species, phylogenies, and biogeography. Herpetologica 73, 242–251 (2017).Article 

    Google Scholar 
    21.Wake, D. B. The enigmatic history of the European, Asian and American plethodontid salamanders. Amphib-reptil 34, 323–336 (2013).Article 

    Google Scholar 
    22.Vieites, D. R., Min, M.-S. & Wake, D. B. Rapid diversification and dispersal during periods of global warming by plethodontid salamanders. Proc. Natl. Acad. Sci. U.S.A. 104, 19903–19907 (2007).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    23.IUCN SSC Amphibian Specialist Group. Karsenia koreana. The IUCN Red List of Threatened Species 2019. (2019). https://www.iucnredlist.org/species/61903/110101886. (Accessed: 15th July 2020).24.Borzée, A. et al. Climate change-based models predict range shifts in the distribution of the only Asian plethodontid salamander: Karsenia koreana. Sci. Rep. 9, 1–9 (2019).Article 
    CAS 

    Google Scholar 
    25.Sessions, S. K. et al. Cytogenetic analysis of the Asian Plethodontid salamander, Karsenia koreana: evidence for karyotypic conservation, chromosome repatterning, and genome size evolution. Chromosom. Res. 16, 563–574 (2008).CAS 
    Article 

    Google Scholar 
    26.Buckley, D., Wake, M. H. & Wake, D. B. Comparative skull osteology of Karsenia koreana (Amphibia, Caudata, Plethodontidae). J. Morphol. 271, 533–558 (2010).PubMed 
    Article 

    Google Scholar 
    27.Sever, D. M., Pinsoneault, A. D., Mackenzie, B. W., Siegel, D. S. & Staub, N. L. A description of the skin glands and cloacal morphology of the plethodontid salamander Karsenia koreana. Copeia 104, 816–823 (2016).Article 

    Google Scholar 
    28.Moon, K. Y. & Park, D. Report of Karsenia koreana eggs oviposited within a semi-natural terrarium constructed at natural habitat. Korean J. Herpetol. 7, 1–5 (2016).
    Google Scholar 
    29.Song, J.-Y. et al. Life history of a unique Asian plethodontid salamander, Karsenia koreana. Zool. Sci. 34, 122–128 (2017).Article 

    Google Scholar 
    30.Jung, J.-H., Lee, E.-J., Lee, W.-S. & Park, C.-D. Habitat suitability models of Korean crevice salamander (Karsenia koreana) at forested area in Daejeon metropolitan city, Republic of Korea. J. For. Res. 24, 349–355 (2019).CAS 
    Article 

    Google Scholar 
    31.Rozen, S. & Skaletsky, H. Primer3 on the WWW for general users and for biologist programmers. In Bioinformatics Methods and Protocols: Methods in Molecular Biology Vol. 132 (eds Misener, S. & Krawetz, S. A.) 365–386 (Humana Press, 2000).
    Google Scholar 
    32.Su, X. Z., Wu, Y., Sifri, C. D. & Wellems, T. E. Reduced extension temperatures required for PCR amplification of extremely A+T-rich DNA. Nucleic Acids Res. 24, 1574–1575 (1996).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    33.Smit, A. F. A., Hubley, R. & Green, P. RepeatModeler Open-1.0. 2008–2015. (2014). http://www.repeatmasker.org.34.Stieneke, D. L. & Eujayl, I. L. Imperfect SSR Finder Version 1.0. United States Department of Agriculture. (2019). https://data.nal.usda.gov/dataset/imperfect-ssr-finder.35.Thompson, J. D., Higgins, D. G. & Gibson, T. J. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22, 4673–4680 (1994).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    36.Kumar, S., Stecher, G., Li, M., Knyaz, C. & Tamura, K. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 35, 1547–1549 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    37.Librado, P. & Rozas, J. DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25, 1451–1452 (2009).CAS 
    Article 

    Google Scholar 
    38.Nei, M. Molecular Evolutionary Genetics (Columbia University Press, 1987).Book 

    Google Scholar 
    39.Tajima, F. Evolutionary relationship of DNA sequences in finite populations. Genetics 105, 437–460 (1983).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    40.Excoffier, L., Smouse, P. & Quattro, J. Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics 131, 479–491 (1992).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    41.Excoffier, L. & Lischer, H. E. L. Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol. Ecol. Resour. 10, 564–567 (2010).PubMed 
    Article 

    Google Scholar 
    42.Bandelt, H.-J., Forster, P. & Röhl, A. Median-joining networks for inferring intraspecific phylogenies. Mol. Biol. Evol. 16, 37–48 (1999).CAS 
    PubMed 
    Article 

    Google Scholar 
    43.Wake, D. B. Taxonomy of salamanders of the family Plethodontidae (Amphibia: Caudata). Zootaxa 3484, 75–82 (2012).Article 

    Google Scholar 
    44.Lanfear, R., Calcott, B., Ho, S. Y. & Guidon, S. PartitionFinder: combined selection of partitioning schemes and substitution models for phylogenetic analyses. Mol. Biol. Evol. 29, 1695–1701 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    45.Lanfear, R., Frandsen, P. B., Wright, A. M., Senfeld, T. & Calcott, B. PartitionFinder 2: new methods for selecting partitioned models of evolution for molecular and morphological phylogenetic analyses. Mol. Biol. Evol. 34, 772–773 (2017).CAS 
    PubMed 

    Google Scholar 
    46.Stamatakis, A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30, 1312–1313 (2014).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    47.Miller, M. A., Pfeiffer, W. & Schwartz, T. Creating the CIPRES Science Gateway for inference of large phylogenetic trees. In Proceedings of the Gateway Computing Environment Workshop (GCE) 1–8 (2010).48.Ronquist, F. & Huelsenbeck, J. P. Bayesian phylogenetic inference under mixed models. Bioinformatics 19, 1572–1574 (2003).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    49.Tavaré, S. Some probabilistic and statistical problems in the analysis of DNA sequences. In Some Mathematical Questions in Biology: DNA Sequence Analysis (ed. Miura, R. M.) 57–86 (American Mathematical Society, 1986).
    Google Scholar 
    50.Rambaut, A., Drummond, A. J., Xie, D., Baele, G. & Suchard, M. A. Posterior summarization in Bayesian phylogenetics using Tracer 1.7. Syst. Biol. 67, 901–904 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    51.Bouckaert, R. et al. BEAST 2.5: an advanced software platform for Bayesian evolutionary analysis. PLoS Comput. Biol. 15, e1006650 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    52.Brown, R. P. & Yang, Z. Rate variation and estimation of divergence times using strict and relaxed clocks. BMC Evol. Biol. 11, 271 (2011).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    53.Skilling, J. Nested sampling for general Bayesian computation. Bayesian Anal. 1, 833–860 (2006).MathSciNet 
    MATH 
    Article 

    Google Scholar 
    54.Russel, P. M., Brewer, B. J., Klaere, S. & Bouckaert, R. Model selection and parameter inference in phylogenetics using nested sampling. Syst. Biol. 68, 219–233 (2018).Article 

    Google Scholar 
    55.Heled, J. & Drummond, A. J. Bayesian inference of population size history from multiple loci. BMC Evol. Biol. 8, 289 (2008).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    56.Hasegawa, M., Kishino, H. & Yano, T. Dating of the human-ape splitting by a molecular clock of mitochondrial DNA. J. Mol. Evol. 22, 160–174 (1985).CAS 
    PubMed 
    Article 

    Google Scholar 
    57.R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. (2013). http://www.r-project.org/.58.Tajima, F. The effect of change in population size on DNA polymorphism. Genetics 123, 597–601 (1989).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    59.Fu, Y.-X. Statistical tests of neutrality of mutations against population growth, hitchhiking and background selection. Genetics 147, 915–9125 (1997).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    60.van Oosterhout, C., Hutchinson, B., Wills, D. & Shipley, P. MICRO-CHECKER: software for identifying and correcting genotyping errors in microsatellite data. Mol. Ecol. Notes 4, 535–538 (2004).Article 
    CAS 

    Google Scholar 
    61.Rousset, F. Genepop’007: a complete reimplementation of the Genepop software for Windows and Linux. Mol. Ecol. Resour. 8, 103–106 (2008).PubMed 
    Article 

    Google Scholar 
    62.Peakall, R. O. D. & Smouse, P. E. GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. Mol. Ecol. Notes 6, 288–295 (2006).Article 

    Google Scholar 
    63.Cornuet, J. M. & Luikart, G. Description and power analysis of two tests for detecting recent population bottlenecks from allele frequency data. Genetics 144, 2001–2014 (1997).Article 

    Google Scholar 
    64.Garza, J. C. & Williamson, E. G. Detection of reduction in population size using data from microsatellite loci. Mol. Ecol. 10, 305–318 (2001).CAS 
    PubMed 
    Article 

    Google Scholar 
    65.Harley, E. H. AGARst: a programme for calculating allele frequencies, Gst and Rst from microsatellite data, version 2. University of Cape Town, Cape Town, South Africa. (2001).66.Wright, S. The interpretation of population structure by F-statistics with special regard to systems of mating. Evolution 19, 395–420 (1965).Article 

    Google Scholar 
    67.Slatkin, M. A measure of population subdivision based on microsatellite allele frequencies. Genetics 139, 457–462 (1995).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    68.Goudet, J. Fstat (ver. 2.9.4), a program to estimate and test population genetics parameters. (2003). https://www2.unil.ch/popgen/softwares/fstat.htm69.Rousset, F. Genetic differentiation and estimation of gene flow from F-statistics under isolation by distance. Genetics 145, 1219–1228 (1997).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    70.Manni, F., Guérard, E. & Heyer, E. Geographic patterns of (genetic, morphologic, linguistic) variation: how barriers can be detected by “Monmonier’s algorithm”. Hum. Biol. 76, 173–190 (2004).71.Monmonier, M. Maximum-difference barriers: an alternative numerical regionalization method. Geogr. Anal. 3, 245–261 (1973).
    Google Scholar 
    72.Nei, M., Tajima, F. & Tateno, Y. Accuracy of estimated phylogenetic trees from molecular data. J. Mol. Evol. 19, 153–170 (1983).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    73.Dieringer, D. & Schlötterer, C. Microsatellite analyser (MSA): a platform independent analysis tool for large microsatellite data sets. Mol. Ecol. Notes 3, 167–169 (2003).CAS 
    Article 

    Google Scholar 
    74.Kitada, S., Nakamichi, R. & Kishino, H. The empirical Bayes estimators of fine-scale population structure in high gene flow species. Mol. Ecol. Resour. 17, 1210–1222 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    75.Pritchard, J. K., Stephens, M. & Donnelly, P. Inference of population structure using multilocus genotype data. Genetics 155, 945–959 (2000).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    76.Earl, D. A. & Vonholdt, B. M. STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv. Genet. Resour. 4, 359–361 (2012).Article 

    Google Scholar 
    77.Evanno, G., Regnaut, S. & Goudet, J. Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol. Ecol. 14, 2611–2620 (2005).CAS 
    PubMed 
    Article 

    Google Scholar 
    78.Cornuet, J.-M. et al. DIYABC v2.0: a software to make approximate Bayesian computation inferences about population history using single nucleotide polymorphism, DNA sequence and microsatellite data. Bioinformatics 30, 1187–1189 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    79.Penny, D. Relativity for molecular clocks. Nature 436, 183–184 (2005).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    80.Dakin, E. E. & Avise, J. C. Microsatellite null alleles in parentage analysis. Heredity 93, 504–509 (2004).CAS 
    PubMed 
    Article 

    Google Scholar 
    81.Oromi, N. et al. Genetic structure of lake and stream populations in a Pyrenean amphibian (Calotriton asper) reveals evolutionary significant units associated with paedomorphosis. J. Zool. Syst. Evol. Res. 57, 418–430 (2019).Article 

    Google Scholar 
    82.Janes, J. K. et al. The K = 2 conundrum. Mol. Ecol. 26, 3594–3602 (2017).PubMed 
    Article 

    Google Scholar 
    83.Chiari, Y. et al. Phylogeography of Sardinian cave salamanders (genus Hydromantes) is mainly determined by geomorphology. PLoS ONE 7, e32332 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    84.Cimmaruta, R., Lucente, D. & Nascetti, G. Persistence, isolation and diversification of a naturally fragmented species in local refugia: the case of Hydromantes strinatii. PLoS ONE 10, e0131298 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    85.Kuchta, S. R., Haughey, M., Wynn, A. H., Jacobs, J. F. & Highton, R. Ancient river systems and phylogeographical structure in the spring salamander, Gyrinophilus porphyriticus. J. Biogeogr. 43, 639–652 (2016).Article 

    Google Scholar 
    86.Pan, T. et al. Long-term sky islands generate highly divergent lineages of a narrowly distributed stream salamander (Pachyhynobius shangchengensis) in mid-latitude mountains of East Asia. BMC Evol. Biol. 19, 1–15 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    87.Suk, H. Y. et al. Genetic and phylogenetic structure of Hynobius quelpaertensis, an endangered endemic salamander species on the Korean Peninsula. Genes Genom. 42, 165–178 (2020).CAS 
    Article 

    Google Scholar 
    88.Cameron, A. C., Anderson, J. J. & Page, R. B. Assessment of intra and interregional genetic variation in the Eastern Red-backed Salamander, Plethodon cinereus, via analysis of novel microsatellite markers. PLoS ONE 12, e0186866 (2017).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    89.Yoshikawa, N. & Nagata, N. Eighteen SSR Markers for the Japanese clawed salamander, Onychodactylus japonicus, and cross-amplification in its congeners. Curr. Herpetol. 36, 153–158 (2017).90.Moritz, C. Applications of mitochondrial DNA analysis in conservation: a critical review. Mol. Ecol. 3, 401–411 (1994).CAS 
    Article 

    Google Scholar 
    91.Estoup, A., Jarne, P. & Cornuet, J. M. Homoplasy and mutation model at microsatellite loci and their consequences for population genetics analysis. Mol. Ecol. 11, 1591–1604 (2002).CAS 
    PubMed 
    Article 

    Google Scholar 
    92.Toews, D. P. L. & Brelsford, A. The biogeography of mitochondrial and nuclear discordance in animals. Mol. Ecol. 21, 3907–3930 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    93.Karl, S. A., Toonen, R. J., Grant, W. S. & Bowen, B. W. Common misconceptions in molecular ecology: echoes of the modern synthesis. Mol. Ecol. 21, 4171–4189 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    94.Cook, B. D., Bunn, S. E. & Hughes, J. M. Molecular genetic and stable isotope signatures reveal complementary patterns of population connectivity in the regionally vulnerable southern pygmy perch (Nannoperca australis). Biol. Conserv. 138, 60–72 (2007).Article 

    Google Scholar 
    95.Hewitt, G. M. Some genetic consequences of ice ages, and their role in divergence and speciation. Biol. J. Linn. Soc. 58, 247–276 (1996).Article 

    Google Scholar 
    96.Avise, J. C., Walker, D. & Johns, G. C. Speciation durations and Pleistocene effects on vertebrate phylogeography. Proc. R. Soc. Lond. Ser. B Biol. Sci. 265, 1707–1712 (1998).CAS 
    Article 

    Google Scholar 
    97.Alexandrino, J., Froufe, E., Arntzen, J. W. & Ferrand, N. Genetic subdivision, glacial refugia and postglacial recolonization in the golden-striped salamander, Chioglossa lusitanica (Amphibia: Urodela). Mol. Ecol. 9, 771–781 (2000).CAS 
    PubMed 
    Article 

    Google Scholar 
    98.Alexandrino, J., Arntzen, J. W. & Ferrand, N. Nested clade analysis and the genetic evidence for population expansion in the phylogeography of the golden-striped salamander, Chioglossa lusitanica (Amphibia: Urodela). Heredity 88, 66–74 (2002).CAS 
    PubMed 
    Article 

    Google Scholar 
    99.Rovito, S. M. Lineage divergence and speciation in the Web-toed Salamanders (Plethodontidae: Hydromantes) of the Sierra Nevada, California . Mol. Ecol. 19, 4554–4571 (2010).PubMed 
    Article 

    Google Scholar 
    100.Shafer, A. B. A., Cullingham, C. I., Côté, S. D. & Coltman, D. W. Of glaciers and refugia: a decade of study sheds new light on the phylogeography of northwestern North America. Mol. Ecol. 19, 4589–4621 (2010).PubMed 
    Article 

    Google Scholar 
    101.Zhang, R.-Z. Geological events and mammalian distribution in China. Acta Zool. Sin. 48, 141–153 (2002).
    Google Scholar 
    102.Matsui, M., Tominaga, A., Liu, W. Z. & Tanaka-Ueno, T. Reduced genetic variation in the Japanese giant salamander, Andrias japonicus (Amphibia: Caudata). Mol. Phylogenet. Evol. 49, 318–326 (2008).CAS 
    PubMed 
    Article 

    Google Scholar 
    103.Matsui, M. et al. Phylogenetic relationships of two Salamandrella species as revealed by mitochondrial DNA and allozyme variation (Amphibia: Caudata: Hynobiidae). Mol. Phylogenet. Evol. 48, 84–93 (2008).CAS 
    PubMed 
    Article 

    Google Scholar 
    104.Malyarchuk, B., Derenko, M. & Denisova, G. Phylogeny and genetic history of the Siberian salamander (Salamandrella keyserlingii, Dybowski, 1870) inferred from complete mitochondrial genomes. Mol. Phylogenet. Evol. 67, 348–357 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    105.Honda, A. et al. Late Pleistocene climate change and population dynamics of Japanese Myodes voles inferred from mitochondrial cytochrome b sequences. J. Mammal. 100, 1156–1168 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    106.Moritz, C. Defining “evolutionarily significant units” for conservation. Trends Ecol. Evol. 9, 373–375 (1994).CAS 
    PubMed 
    Article 

    Google Scholar  More

  • in

    Reproductive success of the parasitic mite (Varroa destructor) is lower in honeybee colonies that target infested cells with recapping

    1.Cremer, S., Armitage, S. A. O. & Schmid-Hempel, P. Social immunity. Curr. Biol. 17, R693–R702 (2007).CAS 
    Article 

    Google Scholar 
    2.Page, P. et al. Social apoptosis in honey bee superorganisms. Sci. Rep. 6, 1–6 (2016).Article 

    Google Scholar 
    3.Winston, M. L. The Biology of the Honey Bee. (Harvard University Press, 1991).4.Beye, M. et al. Exceptionally high levels of recombination across the honey bee genome. Genome Res. 16, 1339–1344 (2006).CAS 
    Article 

    Google Scholar 
    5.Kent, C. F., Minaei, S., Harpur, B. A. & Zayed, A. Recombination is associated with the evolution of genome structure and worker behavior in honey bees. Proc. Natl. Acad. Sci. 109, 18012–18017 (2012).ADS 
    CAS 
    Article 

    Google Scholar 
    6.Rosenkranz, P., Aumeier, P. & Ziegelmann, B. Biology and control of Varroa destructor. J. Invertebr. Pathol. 103, S96–S119 (2010).Article 

    Google Scholar 
    7.Traynor, K. S. et al. Varroa destructor: a complex Parasite, Crippling Honey Bees Worldwide. Trends Parasitol. 36, 592–606 (2020).CAS 
    Article 

    Google Scholar 
    8.Neumann, P. & Carreck, N. L. Honey bee colony losses. J. Apic. Res. 49, 1–6 (2010).Article 

    Google Scholar 
    9.Thompson, C. E., Biesmeijer, J. C., Allnutt, T. R., Pietravalle, S. & Budge, G. E. Parasite Pressures on Feral Honey Bees (Apis mellifera sp.). PLoS ONE 9, (2014).10.Camazine, S. Differential Reproduction of the Mite, Varroa jacobsoni (Mesostigmata: Varroidae), on Africanized and European Honey Bees (Hymenoptera: Apidae). Ann. Entomol. Soc. Am. 79, 801–803 (1986).Article 

    Google Scholar 
    11.Corrêa-Marques, M.-H. & De Jong, D. Uncapping of worker bee brood, a component of the hygienic behavior of Africanized honey bees against the mite Varroa jacobsoni Oudemans. Apidologie 29, 283–289 (1998).Article 

    Google Scholar 
    12.Allsopp, M. H. Analysis of Varroa destructor infestation of southern African honeybee populations. (University of Pretoria, 2007).13.Locke, B., Le Conte, Y., Crauser, D. & Fries, I. Host adaptations reduce the reproductive success of Varroa destructor in two distinct European honey bee populations. Ecol. Evol. 2, 1144–1150 (2012).Article 

    Google Scholar 
    14.Oddie, M. A. Y., Dahle, B. & Neumann, P. Norwegian honey bees surviving Varroa destructor mite infestations by means of natural selection. PeerJ 5, e3956 (2017).Article 

    Google Scholar 
    15.Locke, B. Natural Varroa mite-surviving Apis mellifera honeybee populations. Apidologie 47, 467–482 (2016).Article 

    Google Scholar 
    16.Villegas, A. J. & Villa, J. D. Uncapping of pupal cells by European bees in the United States as responses to Varroa destructor and Galleria mellonella. J. Apic. Res. 45, 203–206 (2006).Article 

    Google Scholar 
    17.Spivak, M. & Gilliam, M. Facultative expression of hygienic behaviour of honey bees in relation to disease resistance. J. Apic. Res. 32, 147–157 (1993).Article 

    Google Scholar 
    18.Le Conte, Y., Arnold, G. & Desenfant, P. Influence of brood temperature and hygrometry variations on the development of the honey bee Ectoparasite Varroa jacobsoni (Mesostigmata: Varroidae). Environ. Entomol. 19, 1780–1785 (1990).Article 

    Google Scholar 
    19.Kraus, B. & Velthuis, H. H. W. High humidity in the honey bee (Apis mellifera L.) Brood nest limits reproduction of the parasitic mite varroa jacobsoni oud. Naturwissenschaften 84, 217–218 (1997).ADS 
    CAS 
    Article 

    Google Scholar 
    20.Harris, J. W., Danka, R. G. & Villa, J. D. Changes in infestation, cell cap condition, and reproductive status of varroa destructor (Mesostigmata: Varroidae) in brood exposed to honey bees with varroa sensitive hygiene. Ann. Entomol. Soc. Am. 105, 512–518 (2012).Article 

    Google Scholar 
    21.Oddie, M. A. Y. et al. Rapid parallel evolution overcomes global honey bee parasite. Sci. Rep. 8, 1–9 (2018).ADS 
    CAS 
    Article 

    Google Scholar 
    22.Martin, S. J. et al. Varroa destructor reproduction and cell re-capping in mite-resistant Apis mellifera populations. Apidologie 51, 369–381 (2020).CAS 
    Article 

    Google Scholar 
    23.Martin, S. J. Ontogenesis of the mite Varroa jacobsoni Oud. in worker brood of the honeybee Apis mellifera L under natural conditions. Exp. Appl. Acarol. 18, 87–100 (1994).Article 

    Google Scholar 
    24.Donzé, G., Herrmann, M., Bachofen, B. & Guerin, P. R. M. Effect of mating frequency and brood cell infestation rate on the reproductive success of the honeybee parasite Varroa jacobsoni. Ecol. Entomol. 21, 17–26 (1996).Article 

    Google Scholar 
    25.Harris, J. W., Danka, R. G. & Villa, J. D. Honey bees (Hymenoptera: Apidae) with the Trait of varroa sensitive hygiene remove brood with all reproductive stages of varroa mites (Mesostigmata: Varroidae). Ann. Entomol. Soc. Am. 103, 146–152 (2010).Article 

    Google Scholar 
    26.Harris, J. W. & Harbo, J. R. Low sperm counts and reduced fecundity of mites in colonies of honey bees (Hymenoptera: Apidae) resistant to varroa jacobsoni (mesostigmata: Varroidae). J. Econ. Entomol. 92, 83–90 (1999).Article 

    Google Scholar 
    27.Peck, D. T. & Seeley, T. D. Mite bombs or robber lures? The roles of drifting and robbing in Varroa destructor transmission from collapsing honey bee colonies to their neighbors. PLoS ONE 14, (2019).28.Arathi, H. S., Ho, G. & Spivak, M. Inefficient task partitioning among nonhygienic honeybees, Apis mellifera L, and implications for disease transmission. Anim. Behav. 72, 431–438 (2006).Article 

    Google Scholar 
    29.Kirrane, M. J. et al. Asynchronous Development of Honey Bee Host and Varroa destructor (Mesostigmata: Varroidae) Influences Reproductive Potential of Mites. J. Econ. Entomol. 104, 1146–1152 (2011).Article 

    Google Scholar 
    30.Locke, B. & Fries, I. Characteristics of honey bee colonies (Apis mellifera) in Sweden surviving Varroa destructor infestation. Apidologie 42, 533–542 (2011).Article 

    Google Scholar 
    31.Chantawannakul, P., Ramsey, S., vanEngelsdorp, D., Khongphinitbunjong, K. & Phokasem, P. Tropilaelaps mite: an emerging threat to European honey bee. Curr. Opin. Insect Sci. 26, 69–75 (2018).Article 

    Google Scholar 
    32.Bates, D., Maechler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).Article 

    Google Scholar 
    33.R Core team. R: A language and environment for statistical computing. (R Foundation for Statistical Computing, 2019), https://www.R-project.org. More