First comprehensive quantification of annual land use/cover from 1990 to 2020 across mainland Vietnam
1.Gómez, C., White, J. C. & Wulder, M. A. Optical remotely sensed time series data for land cover classification: A review. ISPRS J. Photogramm. Remote. Sens. 116, 55–72 (2016).ADS
Article
Google Scholar
2.Dale, V. H. The relationship between land-use change and climate change. Ecol. Appl. 7, 753–769 (1997).Article
Google Scholar
3.Dai, A. Increasing drought under global warming in observations and models. Nat. Clim. Chang. 3, 52–58 (2013).ADS
Article
Google Scholar
4.Houghton, R. A. et al. Carbon emissions from land use and land-cover change. Biogeosciences 9, 5125–5142 (2012).ADS
CAS
Article
Google Scholar
5.Lambin, E. F. et al. The causes of land-use and land-cover change: Moving beyond the myths. Glob. Environ. Chang. 11, 261–269 (2001).Article
Google Scholar
6.Song, X. P. et al. Global land change from 1982 to 2016. Nature 560, 639–643 (2018).ADS
CAS
PubMed
PubMed Central
Article
Google Scholar
7.Grimm, N. B. et al. Global change and the ecology of cities. Science 319, 756–760 (2008).ADS
CAS
PubMed
Article
PubMed Central
Google Scholar
8.Utkin, L. V. et al. A weighted random survival forest. Knowl. Based Syst. 177, 136–144 (2019).Article
Google Scholar
9.Gašparović, M., Zrinjski, M. & Gudelj, M. Automatic cost-effective method for land cover classification (ALCC). Comput. Environ. Urban Syst. 76, 1–10 (2019).Article
Google Scholar
10.Hu, Y., Dong, Y. & Batunacun. ,. An automatic approach for land-change detection and land updates based on integrated NDVI timing analysis and the CVAPS method with GEE support. ISPRS J. Photogramm. Remote Sens. 146, 347–359 (2018).ADS
Article
Google Scholar
11.ESA. Sentinel-2 Mission Requirements Document. Earth (2007).12.Main-Knorn, M. et al. Sen2Cor for Sentinel-2. In 3 (2017). https://doi.org/10.1117/12.2278218.13.Gong, P. et al. Stable classification with limited sample: Transferring a 30-m resolution sample set collected in 2015 to mapping 10-m resolution global land cover in 2017. Sci. Bull. 64, 370–373 (2019).Article
Google Scholar
14.Homer, C., Huang, C., Yang, L., Wylie, B. & Coan, M. Development of a 2001 National Land-Cover Database for the United States. Photogramm. Eng. Remote. Sens. 70, 829–840 (2004).Article
Google Scholar
15.Fry, J. A. et al. Completion of the 2006 national land cover database for the conterminous united states. Photogramm. Eng. Remote Sens. 77, 858–864 (2011).
Google Scholar
16.Homer, C. et al. Completion of the 2011 national land cover database for the conterminous United States—Representing a decade of land cover change information. Photogramm. Eng. Remote Sens. 81, 345–354 (2015).
Google Scholar
17.Yang, L. et al. A new generation of the United States National Land Cover Database: Requirements, research priorities, design, and implementation strategies. ISPRS J. Photogramm. Remote Sens. 146, 108–123 (2018).ADS
Article
Google Scholar
18.Chen, J. et al. Global land cover mapping at 30 m resolution: A POK-based operational approach. ISPRS J. Photogramm. Remote Sens. 103, 7–27 (2015).ADS
Article
Google Scholar
19.Hoang, T. T., Truong, V. T., Hayashi, M., Tadono, T. & Nasahara, K. N. New JAXA high-resolution land use/land cover map for Vietnam aiming for natural forest and plantation forest monitoring. Remote Sens. 12, 2707 (2020).20.Phan, D. C., Trung, T. H., Nasahara, K. N. & Tadono, T. JAXA high-resolution land use/land cover map for Central Vietnam in 2007 and 2017. Remote Sens. 10, 1406 (2018).ADS
Article
Google Scholar
21.Nemani, R. Nasa earth exchange: Next generation earth science collaborative. ISPRS Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. XXXVIII-8/, 17–17 (2012).22.Mugiraneza, T., Nascetti, A. & Ban, Y. Continuous monitoring of urban land cover change trajectories with landsat time series and landtrendr-google earth engine cloud computing. Remote Sens. 12, 2883 (2020).23.Jin, Y., Liu, X., Yao, J., Zhang, X. & Zhang, H. Mapping the annual dynamics of cultivated land in typical area of the Middle-lower Yangtze plain using long time-series of Landsat images based on Google Earth Engine. Int. J. Remote Sens. 41, 1625–1644 (2020).ADS
Article
Google Scholar
24.Hu, Y. & Hu, Y. Detecting forest disturbance and recovery in Primorsky Krai, Russia, using annual landsat time series and multi-source land cover products. Remote Sens. 12, 129 (2020).Article
Google Scholar
25.Miettinen, J., Shi, C. & Liew, S. C. 2015 Land cover map of Southeast Asia at 250 m spatial resolution. Remote Sens. Lett. 7, 701–710 (2016).Article
Google Scholar
26.Ghorbanian, A. et al. Improved land cover map of Iran using Sentinel imagery within Google Earth Engine and a novel automatic workflow for land cover classification using migrated training samples. ISPRS J. Photogramm. Remote Sens. 167, 276–288 (2020).ADS
Article
Google Scholar
27.Huang, H. et al. The migration of training samples towards dynamic global land cover mapping. ISPRS J. Photogramm. Remote Sens. 161, 27–36 (2020).ADS
Article
Google Scholar
28.Bagan, H. & Yamagata, Y. Land-cover change analysis in 50 global cities by using a combination of Landsat data and analysis of grid cells. Environ. Res. Lett. 9, 064015 (2014).29.Radoux, J. et al. Automated training sample extraction for global land cover mapping. Remote Sens. 6, 3965–3987 (2014).ADS
Article
Google Scholar
30.Tran, H., Tran, T. & Kervyn, M. Dynamics of land cover/land use changes in the Mekong Delta, 1973–2011: A Remote sensing analysis of the Tran Van Thoi District, Ca Mau Province, Vietnam. Remote Sens. 7, 2899–2925 (2015).ADS
Article
Google Scholar
31.Chi, V. K. et al. Land transitions in Northwest Vietnam: An integrated analysis of biophysical and socio-cultural factors. Hum. Ecol. 41, 37–50 (2013).Article
Google Scholar
32.Villamor, G. B., Catacutan, D. C., Truong, V. A. T. & Thi, L. D. Tree-cover transition in Northern Vietnam from a gender-specific land-use preferences perspective. Land Use Policy 61, 53–62 (2017).Article
Google Scholar
33.Truong, V. T. et al. JAXA annual forest cover maps for Vietnam during 2015–2018 Using ALOS-2/PALSAR-2 and auxiliary data. Remote Sens. 11, 2412 (2019).ADS
Article
Google Scholar
34.And, R. D. of A. Vietnam’S Modified Submission on Refreence Levels for Redd+ Results Based Payments Under Unfccc. https://redd.unfccc.int/files/vietnam_frl_modified__submission_final_for_posting.pdf (2016).35.Xu, X., Jain, A. K. & Calvin, K. V. Quantifying the biophysical and socioeconomic drivers of changes in forest and agricultural land in South and Southeast Asia. Glob. Chang. Biol. 25, 2137–2151 (2019).ADS
PubMed
Article
PubMed Central
Google Scholar
36.Hansen, M. C. et al. High-resolution global maps of 21st-century forest cover change. Science (80- ) 342, 850–853 (2013).ADS
CAS
Article
Google Scholar
37.Di Gregorio, A., and Jansen, L. J. M. Land Cover Classification System (LCCS): Classification Concepts and User Manual. Fao http://www.fao.org/3/x0596e/x0596e00.htm (2000).38.Van Thinh, T., Phan, D. C., Nasahara, K. N. & Tadono, T. How does land use/land cover map’s accuracy depend on number of classification classes? Sci. Online Lett. Atmos. 15, 28–31 (2019).
Google Scholar
39.Talukdar, S. et al. Land-use land-cover classification by machine learning classifiers for satellite observations—a review. Remote Sens. 12, 1135 (2020).ADS
Article
Google Scholar
40.Song, S., Gong, W., Zhu, B. & Huang, X. Wavelength selection and spectral discrimination for paddy rice, with laboratory measurements of hyperspectral leaf reflectance. ISPRS J. Photogramm. Remote Sens. 66, 672–682 (2011).ADS
Article
Google Scholar
41.Szantoi, Z., Smith, S. E., Strona, G., Koh, L. P. & Wich, S. A. Mapping orangutan habitat and agricultural areas using Landsat OLI imagery augmented with unmanned aircraft system aerial photography. Int. J. Remote Sens. 38, 2231–2245 (2017).ADS
Article
Google Scholar
42.Hill, R. A. & Thomson, A. G. Mapping woodland species composition and structure using airborne spectral and LiDAR data. Int. J. Remote Sens. 26, 3763–3779 (2005).ADS
Article
Google Scholar
43.Kontgis, C., Schneider, A. & Ozdogan, M. Mapping rice paddy extent and intensification in the Vietnamese Mekong River Delta with dense time stacks of Landsat data. Remote Sens. Environ. 169, 255–269 (2015).ADS
Article
Google Scholar
44.Kontgis, C. et al. Monitoring peri-urbanization in the greater Ho Chi Minh City metropolitan area. Appl. Geogr. 53, 377–388 (2014).Article
Google Scholar
45.D’Amour, C. B. et al. Future urban land expansion and implications for global croplands. Proc. Natl. Acad. Sci. USA 114, 8939–8944 (2017).Article
CAS
Google Scholar
46.Ha, T. V., Tuohy, M., Irwin, M. & Tuan, P. V. Monitoring and mapping rural urbanization and land use changes using Landsat data in the northeast subtropical region of Vietnam. Egypt. J. Remote Sens. Sp. Sci. 23, 11–19 (2020).
Google Scholar
47.Nhan, T. Q., Van Ly, L. T. & Tan, L. V. How much do rice farmers earn from their crops? Evidence from a rice-exporting country. J. Agric. Stud. 8, 302 (2020).
Google Scholar
48.Truong, T. D. & Do, L. H. Mangrove forests and aquaculture in the Mekong river delta. Land Use Policy 73, 20–28 (2018).Article
Google Scholar
49.Lam-Dao, N., Pham-Bach, V., Nguyen-Thanh, M., Pham-Thi, M.-T. & Hoang-Phi, P. Change detection of land use and riverbank in Mekong Delta, Vietnam using time series remotely sensed data. J. Resour. Ecol. 2, 370–374 (2011).
Google Scholar
50.Ha, T. T. P., van Dijk, H. & Visser, L. Impacts of changes in mangrove forest management practices on forest accessibility and livelihood: A case study in mangrove-shrimp farming system in Ca Mau Province, Mekong Delta, Vietnam. Land Use Policy 36, 89–101 (2014).Article
Google Scholar
51.Le, T. N., Bregt, A. K., van Halsema, G. E., Hellegers, P. J. G. J. & Nguyen, L. D. Interplay between land-use dynamics and changes in hydrological regime in the Vietnamese Mekong Delta. Land Use Policy 73, 269–280 (2018).Article
Google Scholar
52.Khuc, Q. V., Tran, B. Q., Meyfroidt, P. & Paschke, M. W. Drivers of deforestation and forest degradation in Vietnam: An exploratory analysis at the national level. For. Policy Econ. 90, 128–141 (2018).Article
Google Scholar
53.Meyfroidt, P., Vu, T. P. & Hoang, V. A. Trajectories of deforestation, coffee expansion and displacement of shifting cultivation in the Central Highlands of Vietnam. Glob. Environ. Chang. 23, 1187–1198 (2013).Article
Google Scholar
54.Ngo-Duc, T., Kieu, C., Thatcher, M., Nguyen-Le, D. & Phan-Van, T. Climate projections for Vietnam based on regional climate models. Clim. Res. 60, 199–213 (2014).Article
Google Scholar
55.Lindesay, J. A. et al. International geosphere-biosphere programme/international global atmospheric chemistry SAFARI-92 field experiment: Background and overview. J. Geophys. Res. Atmos. 101, 23521–23530 (1996).ADS
CAS
Article
Google Scholar
56.Klemas, V. V., Dobson, J. E., Ferguson, R. L. & Haddad, K. D. A coastal land cover classification system for the NOAA Coastwatch Change Analysis Project. J. Coast. Res. 9, 862–872 (1993).
Google Scholar
57.Saah, D. et al. Primitives as building blocks for constructing land cover maps. Int. J. Appl. Earth Obs. Geoinf. 85, 101979 (2020).Article
Google Scholar
58.Keys, R. G. Cubic convolution interpolation for digital image processing. IEEE Trans. Acoust. 29, 1153–1160 (1981).MathSciNet
MATH
Article
Google Scholar
59.Farr, T. G. et al. The shuttle radar topography mission. Rev. Geophys. 45, RG2004 (2007).60.Filipponi, F. Sentinel-1 GRD preprocessing workflow. Proceedings 18, 11 (2019).Article
Google Scholar
61.Soenen, S. A., Peddle, D. R. & Coburn, C. A. SCS+C: A modified sun-canopy-sensor topographic correction in forested terrain. IEEE Trans. Geosci. Remote Sens. 43, 2148–2159 (2005).ADS
Article
Google Scholar
62.Saleous, N. & Kutler, J. LEDAPS Calibration, Reflectance, Atmospheric Correction Preprocessing Code, Version 2 Summary: Data Citation: Model Product Description: Oak Ridge National Laboratory Distributed Active Archive Center http://daac.ornl.gov/cgi-bin/dsviewer.pl?ds_id=1146 (2012) 10.3334/ORNLDAAC/1146.63.Vermote, E., Justice, C., Claverie, M. & Franch, B. Preliminary analysis of the performance of the Landsat 8/OLI land surface reflectance product. Remote Sens. Environ. 185, 46–56 (2016).ADS
PubMed
Article
PubMed Central
Google Scholar
64.Foga, S. et al. Cloud detection algorithm comparison and validation for operational Landsat data products. Remote Sens. Environ. 194, 379–390 (2017).ADS
Article
Google Scholar
65.Louis, J. et al. Sentinel-2 Global Surface Reflectance Level-2a Product Generated with Sen2Cor. In International Geoscience and Remote Sensing Symposium (IGARSS) 8522–8525 (2019). https://doi.org/10.1109/IGARSS.2019.8898540.66.Roy, D. P. et al. A general method to normalize Landsat reflectance data to nadir BRDF adjusted reflectance. Remote Sens. Environ. 176, 255–271 (2016).ADS
Article
Google Scholar
67.Roy, D. P. et al. Examination of Sentinel-2A multi-spectral instrument (MSI) reflectance anisotropy and the suitability of a general method to normalize MSI reflectance to nadir BRDF adjusted reflectance. Remote Sens. Environ. 199, 25–38 (2017).ADS
Article
Google Scholar
68.Lee, J. S., Ainsworth, T. L., Wang, Y. & Chen, K. S. Polarimetric SAR speckle filtering and the extended sigma filter. IEEE Trans. Geosci. Remote Sens. 53, 1150–1160 (2015).ADS
Article
Google Scholar
69.Roy, D. P. et al. Characterization of Landsat-7 to Landsat-8 reflective wavelength and normalized difference vegetation index continuity. Remote Sens. Environ. 185, 57–70 (2016).ADS
PubMed
Article
PubMed Central
Google Scholar
70.Claverie, M. et al. The Harmonized Landsat and Sentinel-2 surface reflectance data set. Remote Sens. Environ. 219, 145–161 (2018).ADS
Article
Google Scholar
71.Flood, N. Seasonal composite landsat TM/ETM+ Images using the medoid (a multi-dimensional median). Remote Sens. 5, 6481–6500 (2013).ADS
Article
Google Scholar
72.Kaufman, Y. J. & Tanré, D. Atmospherically Resistant Vegetation Index (ARVI) for EOS-MODIS. IEEE Trans. Geosci. Remote Sens. 30, 261–270 (1992).ADS
Article
Google Scholar
73.Saah, D. et al. Land cover mapping in data scarce environments: Challenges and opportunities. Front. Environ. Sci. 7, 150 (2019).Article
Google Scholar
74.Li, C., Wang, J., Wang, L., Hu, L. & Gong, P. Comparison of classification algorithms and training sample sizes in urban land classification with landsat thematic mapper imagery. Remote Sens. 6, 964–983 (2014).ADS
Article
Google Scholar
75.Richards, J. A. Remote sensing digital image analysis: An introduction. Remote Sensing Digital Image Analysis: An Introduction vol. 9783642300 (2013).76.Kruse, F. A. et al. The spectral image processing system (SIPS)-interactive visualization and analysis of imaging spectrometer data. Remote Sens. Environ. 44, 145–163 (1993).ADS
Article
Google Scholar
77.Breiman, L. Random forests. Mach. Learn. 45, 5–32 (2001).MATH
Article
Google Scholar
78.He, Y., Lee, E. & Warner, T. A. A time series of annual land use and land cover maps of China from 1982 to 2013 generated using AVHRR GIMMS NDVI3g data. Remote Sens. Environ. 199, 201–217 (2017).ADS
Article
Google Scholar
79.Zhao, H. & Chen, X. Use of normalized difference bareness index in quickly mapping bare areas from TM/ETM+. In International Geoscience and Remote Sensing Symposium (IGARSS) vol. 3 1666–1668 (IEEE, 2005).80.Baloloy, A. B., Blanco, A. C., Raymund Rhommel, R. R. C. & Nadaoka, K. Development and application of a new mangrove vegetation index (MVI) for rapid and accurate mangrove mapping. ISPRS J. Photogramm. Remote Sens. 166, 95–117 (2020).ADS
Article
Google Scholar
81.García, M. J. L. & Caselles, V. Mapping burns and natural reforestation using thematic mapper data. Geocarto Int. 6, 31–37 (1991).Article
Google Scholar
82.Wright, C. & Gallant, A. Improved wetland remote sensing in Yellowstone National Park using classification trees to combine TM imagery and ancillary environmental data. Remote Sens. Environ. 107, 582–605 (2007).ADS
Article
Google Scholar
83.Hutchinson, C. F. Techniques for combining Landsat and ancillary data for digital classification improvement. Photogramm. Eng. Remote Sens. 48, 123–130 (1982).
Google Scholar
84.Tadono, T. et al. Precise global DEM generation by ALOS PRISM. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. II–4, 71–76 (2014).Article
Google Scholar
85.Jokar Arsanjani, J., Zipf, A., Mooney, P. & Helbich, M. OpenStreetMap in GIScience. OpenStreetMap in GIScience: Experiences, Research, Applications (2015). https://doi.org/10.1007/978-3-319-14280-7.86.Open Development Mekong. OpenDevelopmentMekong. East-West Management Institute https://data.opendevelopmentmekong.net/organization/6f37a27d-2790-4b9a-8570-a36cb1d8108f?res_format=KML (2015).87.Truong, V. T. et al. JAXA annual forest cover maps for Vietnam during 2015–2018 Using ALOS-2/PALSAR-2 and auxiliary data. Remote Sens. 11 (2019).88.Olofsson, P. et al. Good practices for estimating area and assessing accuracy of land change. Remote Sens. Environ. 148, 42–57 (2014).ADS
Article
Google Scholar
89.Congalton, R. G. A review of assessing the accuracy of classifications of remotely sensed data. Remote Sens. Environ. 37, 35–46 (1991).ADS
Article
Google Scholar
90.Schmidt, M. The Sankey diagram in energy and material flow management—part II: Methodology and current applications. J. Ind. Ecol. 12, 173–185 (2008).Article
Google Scholar
91.Zha, Y., Gao, J. & Ni, S. Use of normalized difference built-up index in automatically mapping urban areas from TM imagery. Int. J. Remote Sens. 24, 583–594 (2003).ADS
Article
Google Scholar
92.Lacaux, J. P., Tourre, Y. M., Vignolles, C., Ndione, J. A. & Lafaye, M. Classification of ponds from high-spatial resolution remote sensing: Application to Rift Valley Fever epidemics in Senegal. Remote Sens. Environ. 106, 66–74 (2007).ADS
Article
Google Scholar
93.Tucker, C. J. Red and photographic infrared linear combinations for monitoring vegetation. Remote Sens. Environ. 8, 127–150 (1979).ADS
Article
Google Scholar
94.McFeeters, S. K. The use of the Normalized Difference Water Index (NDWI) in the delineation of open water features. Int. J. Remote Sens. 17, 1425–1432 (1996).ADS
Article
Google Scholar
95.Huete, A. R. A soil-adjusted vegetation index (SAVI). Remote Sens. Environ. 25, 295–309 (1988).ADS
Article
Google Scholar
96.Penuelas, J., Baret, F. & Filella, I. Semi-empirical indices to assess carotenoids/chlorophyll a ratio from leaf spectral reflectance. Photosynthetica 31, 221–230 (1995).CAS
Google Scholar
97.Jayamanna, S., Kawamura, M. & Tsujiko, Y. Relation between social and environmental conditions in colombo, sri lanka and the urban index estimated by satellite remote sensing data. Int. Arch. Photogram. Remote Sens. 31, 321–326 (1996).
Google Scholar
98.Shen, L. & Li, C. Water body extraction from Landsat ETM+ imagery using adaboost algorithm. In 2010 18th International Conference on Geoinformatics, Geoinformatics 2010 (2010). https://doi.org/10.1109/GEOINFORMATICS.2010.5567762.99.Perry, C. R. & Lautenschlager, L. F. Functional equivalence of spectral vegetation indices. Remote Sens. Environ. 14, 169–182 (1984).ADS
Article
Google Scholar
100.As-syakur, A. R., Adnyana, I. W. S., Arthana, I. W. & Nuarsa, I. W. Enhanced built-UP and bareness index (EBBI) for mapping built-UP and bare land in an urban area. Remote Sens. 4, 2957–2970 (2012).ADS
Article
Google Scholar
101.Liu, H. Q. & Huete, A. Feedback based modification of the NDVI to minimize canopy background and atmospheric noise. IEEE Trans. Geosci. Remote Sens. 33, 457–465 (1995).ADS
Article
Google Scholar
102.Gitelson, A. A., Viña, A., Ciganda, V., Rundquist, D. C. & Arkebauer, T. J. Remote estimation of canopy chlorophyll content in crops. Geophys. Res. Lett. 32, 1–4 (2005).Article
CAS
Google Scholar More
