More stories

  • in

    Optimized imaging methods for species-level identification of food-contaminating beetles

    The illumination system often is considered the key setting in most image acquisitions30. Thus, we first studied this system under three different settings, namely 2Pt_Rf, RRf_P and Trans due to their practical and scientific merits. The schematic ray diagrams showing the lighting conditions and their experimental set-ups have already been illustrated (Fig. 1). The 2Pt_Rf system is one of the most-used illumination systems in the field of entomology and food-filth detection, for it allows the operator to view a wide area of samples, even when they are dark and thick9. Beetle elytra (and other external surfaces of beetles) are coated with natural waxy substances and sometimes also with setae (hair-like features), which scatter reflected light, causing glare spots in their images31. Due to its reflective nature, this system, produced significant glare spots, often overshadowing the actual patterns of the elytra as seen on the top rows of Fig. 2a,b, and rendering it the least advantageous for our application.Figure 2Comparing three different illumination systems. Images of elytra under three different lighting conditions (top: 2Pt_Rf, middle: RRf_P and bottom: Trans), for two different families (a) Anobiidae, with species L. serricorne (1st column) and S. paniceum (2nd column) and (b) Tenebrionidae with species G. Cornutus (3rd column) and T. castaneum (4th column). All images were captured at 50x magnification, with the scale bars being 250 µm. The glare in images due to 2Pt_Rf illumination is evident. The RRf_P and Trans systems provide a much better alternative that significantly reduces glare, which obstruct elytral patterns. The extent of glare has been quantified as (c) percentage of elytra area obstructed due to glare, (d) number of glare spots (i.e. artifacts) due to setae when compared against three different illumination systems for two different families, which further highlights the advantages of RRf_P and Trans systems.Full size imageThe use of 2Pt_Rf light produced so much glare that it obstructed about 25% of the pattern area (Fig. 2c). Moreover, the dorsal setae produced a large number of tiny glare spots that could easily be confused for feature points (Fig. 2d), and led to misidentifications in previous studies21,22,23,24. Furthermore, we observed that the position of the glare spots did not remain constant, and varied with the angle of incident light and/or the ambient lighting conditions (Supplementary Figure S1). Such randomness in image illumination (i.e., brightness and contrast) makes this setting very inconsistent, (e.g., highly dependent on random, external factors) and rendering it ineffective for automated pattern analysis, particularly in developing computer models for pattern recognition27,28.The RRf_P system was a significant improvement over the 2Pt_Rf system, as it allowed us to remove many of the illumination inconsistencies (Fig. 2a,b, the middle row). The use of a ring light instead of two light bulbs provided a more uniform illumination, and the polarized filter helped minimize glare spots from the images by imaging in circular polarized light (also minimizing the incoherent scattering of light, responsible for glare)32. However, upon closer observation, we found that the illumination system could not completely remove all the glare spots, especially for the species with dorsal setae. The orientation of the polarizing filter can be adjusted to remove random scattering of light only from one particular plane and/or angle. Since dorsal setae lie at a slightly different angle to the elytra surface, it was not possible to simultaneously remove glare spots originating from both elytra and dorsal setae. However, this setting was found to be excellent in imaging whole insects and/or other thick, dark or shiny objects that may have been challenging when using the 2Pt_Rf setting33.Compared to RRf_P and 2Pt_Rf, the Trans system was a much simpler and more economical set-up that produced excellent glare-free images (Fig. 2a,b, the bottom row). The images of elytra revealed patterns clearly as they did not suffer from any reflective glares (Fig. 2c,d). Unlike the RRf_P system, images captured in Trans remained mostly unaffected by the polarizing filter or its orientation (Supplementary Figure S2). This makes Trans least susceptible to variations such as those in operating personnel and ambient lighting conditions; and it remained relatively unaffected by the change in intensity of the transmitted beam, (i.e., due to the camera’s automatic intensity balance setting). Methods that enable consistent acquisition of data are highly desirable for any automated processing as they help avoid any batch effect or unknown error34,35. In this regard, the Trans system provides an effective, yet simple solution for consistently capturing clear, high-quality images.We also captured images under the combined illumination of RRf_P and Trans systems. This combined lighting system, however, fell short by revealing both surface and internal features with equal precision, and its images more closely resembled the RRf_P-based images (Supplementary Figure S3). It was not possible to balance or equalize the illumination intensities of the two (i.e., reflected and transmitted) light beams. The ring light was higher in illumination intensity compared to the transmitted beam, which also underwent sample adsorption, possibly resulting from the camera’s greater expose to reflected light, producing images similar to those captured using RRf_P.The key to discerning between similar patterns lies in acquiring images that enable the visualization of fine pattern details. This would permit maximum information to be extracted from each image and could help identify a species with a much larger set of characteristic features. To ensure visualization of the most patterns, both sides (D and V) of elytra were imaged. We noted that both of these illumination systems were excellent in revealing the pattern details, as one can clearly observe differences in patterns for D and V sides of the same elytron. The lack of glare spots made distinguishing between beetles belonging to the same family relatively easy, as their pattern features such as color, design, and setae are quite different from each other when observed through either the RRf_P or Trans illumination systems (Supplementary Figure S4).Differences between species were subtler for beetles belonging to the same genus however. For instance, rectangular patterns are only slightly lighter with marginally thicker ridge lines between T. castaneum and T. confusum (both genus Tribolium), irrespective of the illumination system used (Fig. 3a,b). Differences also were found to be subtle between O. mercator and O. surinamensis (genus Oryzaephilus) (Supplementary Figure S4e). For the same species, the variation in elytra patterns due to two different illumination settings (RRf_P and Trans) could only be perceived during careful observation of the images (refer to first row for D & second row for V side in images Fig. 3a,b). This difference, though minute, originated from the variation in the imaging mechanism and deserves comprehensive interpretation. The RRf_P system uses a light beam that reflects back from the specimen surface to capture an image, which allows better visualization of surface features. On the contrary, the Trans system uses a transmitted light beam that traverses through the specimen allowing better visualization of internal structures, in our case this is the cytoskeletal pattern on each elytron. That may explain why the images captured through the Trans system did not appear significantly different between the D and V sides, as they did for RRf_P lighting (Fig. 3a,b).Figure 3Acquired patterns on either side of elytra dorsal (D) & ventral (V) sides for maximum visualization of the patterns and to compare the two different illumination systems, RRf_P and Trans, for (a) T. castenium, (b) T. confusum both belonging to the genus Tribolium; and are well known for their remarkably similar appearance; and (c) in visualizing surface features in O. surinamensis (OS), L. serricorne (LS), and T. confusum (TCo). Although, both systems seemed equally good for visualizing elytral patterns, the Trans system was found to be the least affected by minor surface features such as setae, thin surface coatings or occasional adherents, making it more advantageous for the imaging application.Full size imageIn an ideal scenario the RRf_P system should be used for imaging surface features such as setae, contours and the like, and the Trans system for such internal structures as ridges and bulges. In practice however we observed that the RRf_P system is more susceptible to dorsal setae or artifacts such as contaminants or adherents (Fig. 3c). In several of the elytron samples, especially in the case of deeply concave samples such as L. serricorne, we found thin adherent coatings (possibly from the medium in which the insect lived) on the V side of the elytra persisted even after thorough ultrasonic cleaning. We also observed occasional dust-like adherent on either side of the elytra, all of which masked the actual elytral patterns. Additionally, we foresee the loss of non-structural surface features such as setae in real-world samples that undergo aggressive sample preparation steps prior to analysis. The internal structures of elytra are made of well crosslinked chitin (or its modified version), which is known to have excellent mechanical and structural properties16,36. Thus, capturing images through the Trans system is advantageous in this regard, as it captures the internal structures which usually remain unaffected by minor surface adhesions, contamination or even vigorous sample preparation steps.Having studied the illumination systems, we focused on another important imaging parameter, namely, magnification. Figure 4b shows images of elytra from O. mercator and O. surinamensis at magnifications 20 x to 160 x under the Trans system. It is obvious that the patterns are visibly better and more prominent at higher magnifications. Moreover, the size and shape of an elytron varies from one species to another (Fig. 4a,c). For the seven beetle species examined in this study, their sizes varied from ~ 5 mm2 for genus Oryzaephilus to ~ 13 mm2 for genus Tribolium. At these sizes, 50 x to 100 x magnification seemed a good choice, as it enabled us to capture most of the elytra (Fig. 4b,d). Imaging at higher magnifications (such as 160 x) allowed significantly better visualization of individual patterns. On the other hand, it only revealed parts of the elytral patterns, with a large portion remaining out of the field of view, and thus unanalyzed.Figure 4Magnification considerations: (a) Elytra images captured at 50 ×  magnification, showing their overall appearance; (b) Elytra images of T. castaneum (TCa) and T. confusum (TCo) at various magnifications showing area of elytra captured in each frame/magnification, (c) variation in average elytra sizes (of 10 images per species) for the seven different species used in this study, (d) proportion (area imaged/total area) of elytra captured at various magnifications, (e) number of images required (elytra size/frame size) to visually represent the whole elytra and (f) change in frame area (area captured in an image) by magnification. Even though there is a variation in elytral sizes, collectively they can be represented effectively at a magnification of 100 x.Full size imageTo remedy this inconvenience, many images must be captured in order to visually represent the entire elytra (about five or so in some cases as shown in Fig. 4e). This would increase overlapping errors (i.e. same parts being imaged in multiple images) without significantly increasing the pattern information. It also makes the process more susceptible to vibrations, thus increasing the likelihood of introducing undesirable artifacts. Increasing the magnification also significantly reduces the frame area. The average size of pantry beetle elytra is approximately 10 mm2, which is similar in dimension to the area of the image frame at 100 x magnification (Fig. 4f). Therefore, images captured at this magnification (i.e. 100 x), would reveal all or most of the elytra structure for a majority of the pantry beetles (Fig. 5a). We thus concluded that this a good starting point for a more detailed investigation.Figure 5Elytra and their patterns at various magnifications; (a) elytral images of species O. mercator (OM) and O. surinamensis (OS) at magnifications 20x to 160x; (b) elytra patterns captured for six different species at 100x magnification under the Trans illumination system; and (c) various elytra patterns for the same six species at higher display resolution, which highlights that this setup (Trans at 100x) is capable of resolving the finest pattern details required to distinguish species belonging to the same genus or family from one another.Full size imageLike the sizes of elytra, morphology of the patterns also varied widely across family and genera, and even within the same genera, which could clearly be visible at 100 x magnification across all the species (Fig. 5b). For instance, the central bulges were more circular in shape and measured on average ~ 100 µm diameter for T. confusum compared to a less circular bulge shape that measured less than ~ 50 µm in diameter for T. castaneum. Interestingly, L. serricorne completely lacked any such bulges (a feature we observed on very few pantry beetles) and had distances of less than 20 µm between the seatal pits (hair roots). Such small feature size could not be resolved adequately at 50 x magnification (even at ~ 2400 × 1900 dpi image resolution). Imaging at 100 x magnification (and at ~ 2400 × 1900 dpi resolution) allowed us to visualize the patterns clearly enough to visibly distinguish one elytra pattern from another (Fig. 5c). We therefore, chose this magnification as optimal, as it struck a reasonable balance between appropriate field of view and adequate resolution of detailed elytral patterns. At this point we also began to concur that magnification of 100 x under Trans illumination yielded high quality elytra images that allowed one to visualize fine patterns in beetle elytra in a consistent manner. It could be the optimal imaging condition, as images captured this way enabled us to visually differentiate one species from another, at least for the set of beetle species under investigation.After optimizing the illumination and magnification settings (which were the hardware-based parameters), we focused our attention to digital parameters for improving the image quality. Amongst these parameters, sharpness, distortion and aberration were important for their significance in image processing. They also contribute to the visual clarity, by revealing the finest elytral patterns required for distinguishing one species from another. The corresponding FFT images of the images obtained using conventional (low resolution 2Pt_Rf), 2Pt-Rf and Trans settings (Supplementary Figure S5) highlights the difference in the pattern clarity. The central vertical line represents the horizonal groves in the pattern and the smaller spots on both sides possibly represent the rectangular box like features patterns. Their distinct nature for the FFT image, indicates that the pattern (obtained using the Trans setting) is clear due to the good image quality. On the contrary, the FFT patterns are increasingly diffused (due to glare and scattering, less sharpness and clarity) for 2Pt-Rf setting and lower resolution. The FFT patterns from species belong to different families shows variation. The FFTs from those belong to the same genus and family, shows some similarity (due to the similarity in their elytral patterns) but are not identical, further bolsters the superior image quality of Trans setting that allows distinction of one species from another.Image resolution, another of the image quality parameter, was kept at 2592 × 1944 dpi (~ 5-megapixel, image size: 14 MB per image). This was found to be adequate for our applications, as higher resolution (greater than 10 megapixel) increased the images size significantly without providing any additional information. This may also cause difficulty in handling and storage for a repository aimed to contain about 2000 images. Fortunately, most modern cameras, including the one we used, comes with well-documented, user-guided software interface that allows convenient optimization of the ‘soft’ parameters enabling easy capturing of good quality images. So, it was less arduous for us to obtain good quality elytral images of once the illumination and magnification settings were worked out. A step-wise details on how to capture a good quality image has been elaborated (Supplementary Information-Step-Wise Imaging Method) for consistency and reproducibility.Our ultimate objective is to obtain large number of high-quality elytral images for species identification through elytral pattern recognition using artificial intelligence (AI) based machine learning methods. However, developing such methods require both time and high-performing computational capability, which could be expensive. It may be prudent to run a ‘quick-check’ to observe if improving the image quality indeed showed any promise in improving species-level identification. Therefore, as a proof of concept, we used ImageJ to analyze the elytral patterns based on their difference in sizes and shapes. For this test, we analyzed elytra images of G. cornutus, T. castaneum and T. confusum, all three belonging to the same family Tenebrionidae, thus showing very similar elytral patterns (Fig. 6a). The processed images yield corresponding pattern outlines whose size and shape have been quantified by the area within the outlines and their circularity (area/perimeter2, 0 for line and 1 for circle) (Fig. 6b). It can be noted that their distributions created three different bell curves for the three species analyzed. The shape distributions did show three peaks having good overlap, probably indicating the similarity in pattern shapes for species belonging to the same family (Fig. 6c). The size distribution curves however are further apart for the species belonging to the same family but different genus and quite close for those of the same genus (Fig. 6d). This species wise classification using rudimentary size analysis of elytra patterns indicated that improving image quality may indeed help improve species-level identification.Figure 6Analysis of elytra patterns for 3 different species, namely G. cornutus (GC), T. confusum (TCo), & T. castaneum (TCa) belonging to the same family Tenebrionidae. (a) optical images captured in Trans illumination at 100x magnification showing elytra patterns, with the scale bars being 250 µm; (b) the corresponding binary image, that shows only the dominant patterns. The log-normal distribution of (c) ‘circularity’ (shape) and (d) ‘size’ of the patterns for the three different species. It can be noted that the shape of the patterns are similar (close ‘circularity’ distribution) for the species belonging to the same family. But the ‘size’ distribution varied for three species with TCo & TCa belonging to the same genus Tribolium, much closer compared to the other family member GC. The indexed numbers show the mean and SD of the distribution, with the size values bearing units of  10–3 mm2.Full size imageAny optimization technique must be tested for its robustness before being extended to a much wider range of samples. Thus, we wanted to observe whether the Trans setting at a 100x magnification could be used for other species of beetles. For this setting to work the transmitted light must pass through the elytra, which may seem difficult if the elytron is too dark and/or thick. Thus, we tested this system to image elytral patterns on rainbow scrap beetle (Phanaeus vindex), black dung beetle (Onitis aygulus) and click beetle (Orthostethus infuscatus), (none of which are pantry beetles), for they have some of the biggest, darkest and thickest elytral known to entomologists (Fig. 7a,b)36. It was indeed possible to capture elytra patterns for all three species using this setup. For comparison, images also were obtained using the RRf_P setting further highlighting the advantage of imaging in transmitted light, Trans remains least influenced by the presence of surface features such as pigmentation, excessive setae and the like as shown in the bottom row images in Fig. 7a–c. Since the setup worked well for some of the biggest and darkest elytra samples, presumably it could be used for imaging any species of pantry beetle (or other class of beetles) which are roughly 10 times smaller in size and have far thinner elytra.Figure 7Control study to evaluate imaging capability when using Trans at 100x magnification, which was employed to image (a) Rainbow Scrap Beetle (Phanaeus vindex); (b) Black Dung Beetle (Onitis aygulus) and (c) Click Beetle (Orthostethus infuscatus), which possess some of the thickest and darkest known elytra in beetles. For comparison, the bottom row imaged using the RRf_P system, shows colored pigmentation, waxy coating and excessive setae. The top row represents images captured using the Trans system showing only the cytoskeletal structure, and which remain mostly unaffected by nonuniform surface features.Full size imageHaving tested the Trans system at 100x magnification on thicker and darker elytral samples, we moved forward in capturing elytral images of other pantry beetles to further expand the robustness of this system. Figure 8 shows representative images of six more species, listed in Table 1, by their family and genus names. We observed that this system (100 x magnification with the Trans setting) yielded excellent images for most of the beetles. The only exception was Zabrotes subfasciatus (Z. subfasciatus- commonly known as Mexican bean weevil of family Chrysomelidae). Its dark dorsal setae with white stripes, combined with a deeply concave shape probably made auto-focusing difficult during image acquisition. This could have contributed to slightly imperfect stacking of multi-layer images resulting in a poorer 3D montage construction. Images of the same species obtained through the RRf_P system also were of poorer quality, leading us to conclude that elytra with surface setae of contrasting colors combined with deep concave shapes are more difficult to image compared to elytra with more uniform color, flatter shape and clear patterns. This, however, may not pose a significant challenge, as in a real-world scenario, elytra often lose both their dorsal setae and concave shape due to food processing steps and/or fragmentation.Figure 8Extending this imaging method to other species of food contaminating beetles. Elytra images of species belonging to (a) two completely different families; (b,c) of same genus. Sitophilus granarius and Sitophilus oryzae of genus Sitophilus; T. freemani and T. madens of genus Tribolium. The optimized imaging technique works well for imaging elytra of most species of pantry beetles. However, species with variegated dorsal setae and deep concave shapes are most difficult to image properly. The images are at 100x magnification, with the scale bars being 250 µm; the insets show the magnified patters with scale bar being 100 µm.Full size imageWe currently are extending this imaging method to a total of 40 different species and plan to create a publicly available database of these images. Such database is meant to serve the food safety and entomology communities by providing good quality images for referencing and taxonomical applications. The optimization of parameters required for machine learning methods for species identification through pattern recognition are quite different from those in image acquisition and is far beyond the scope of this manuscript. But this study is aimed to serve as a forerunner for such study as it provides the means to obtain a large set of good-quality, noise-free images for developing a good computational model, which has been one of the primary challenges in the field of AI and machine leaning. We hope that a publicly available database of images will encourage data scientists to develop state-of-the art species identification algorithms, thus eventually contribute to our long-term goal of efficient automated species identification of food contaminating beetles. We believe this work lays a solid foundation for such an exhaustive study, which would require more resources and would help predict the correct species of pantry pests with greater accuracy. We hope such efforts ultimately would expedite the entire process of taxonomical analysis and help better manage contamination scenarios or catalog ecological systems, in the foreseeable future. More

  • in

    Developing a non-destructive metabarcoding protocol for detection of pest insects in bulk trap catches

    1.Bik, H. M. et al. Sequencing our way towards understanding global eukaryotic biodiversity. Trends Ecol. Evol. 27(4), 233–243 (2012).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    2.Deiner, K. et al. Environmental DNA metabarcoding: Transforming how we survey animal and plant communities. Mol. Ecol. 26(21), 5872–5895 (2017).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    3.Porter, T. M. & Hajibabaei, M. Scaling up: A guide to high-throughput genomic approaches for biodiversity analysis. Mol. Ecol. 27(2), 313–338 (2018).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    4.Arulandhu, A. J. et al. Development and validation of a multi-locus DNA metabarcoding method to identify endangered species in complex samples. GigaScience 6(10), gix080 (2017).Article 

    Google Scholar 
    5.Raclariu, A. C., Heinrich, M., Ichim, M. C. & de Boer, H. Benefits and limitations of DNA barcoding and metabarcoding in herbal product authentication. Phytochem. Anal. 29(2), 123–128 (2018).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    6.Staats, M. et al. Advances in DNA metabarcoding for food and wildlife forensic species identification. Anal. Bioanal. Chem. 408(17), 4615–4630 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    7.Comtet, T., Sandionigi, A., Viard, F. & Casiraghi, M. DNA (meta)barcoding of biological invasions: A powerful tool to elucidate invasion processes and help managing aliens. Biol. Invasions 17(3), 905–922 (2015).Article 

    Google Scholar 
    8.Piper, A. M. et al. Prospects and challenges of implementing DNA metabarcoding for high-throughput insect surveillance. GigaScience 8(8), giz092 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    9.Tedersoo, L., Drenkhan, R., Anslan, S., Morales-Rodriguez, C. & Cleary, M. High-throughput identification and diagnostics of pathogens and pests: Overview and practical recommendations. Mol. Ecol. Resour. 19(1), 47–76 (2019).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    10.Andújar, C. et al. Metabarcoding of freshwater invertebrates to detect the effects of a pesticide spill. Mol. Ecol. 27(1), 146–166 (2018).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    11.Elbrecht, V., Vamos, E. E., Meissner, K., Aroviita, J. & Leese, F. Assessing strengths and weaknesses of DNA metabarcoding-based macroinvertebrate identification for routine stream monitoring. Methods Ecol. Evol. 8(10), 1265–1275 (2017).Article 

    Google Scholar 
    12.Brown, E. A., Chain, F. J. J., Zhan, A., MacIsaac, H. J. & Cristescu, M. E. Early detection of aquatic invaders using metabarcoding reveals a high number of non-indigenous species in Canadian ports. Divers. Distrib. 22(10), 1045–1059 (2016).Article 

    Google Scholar 
    13.Hebert, P. D. N., Ratnasingham, S. & deWaard, J. R. Barcoding animal life: Cytochrome c oxidase subunit 1 divergences among closely related species. Proc. R. Soc. B Biol. Sci. 270(Suppl 1), S96–S99 (2003).CAS 

    Google Scholar 
    14.Hebert, P. D. N., Cywinska, A., Ball, S. L. & deWaard, J. R. Biological identifications through DNA barcodes. Proc. R. Soc. Lond. B Biol. Sci. 270(15), 313–321 (2003).CAS 
    Article 

    Google Scholar 
    15.Clarke, L. J., Soubrier, J., Weyrich, L. S. & Cooper, A. Environmental metabarcodes for insects: In silico PCR reveals potential for taxonomic bias. Mol. Ecol. Resour. 14(6), 1160–1170 (2014).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    16.Yu, D. W. et al. Biodiversity soup: Metabarcoding of arthropods for rapid biodiversity assessment and biomonitoring. Methods Ecol. Evol. 3(4), 613–623 (2012).Article 

    Google Scholar 
    17.Brandon-Mong, G.-J. et al. DNA metabarcoding of insects and allies: An evaluation of primers and pipelines. Bull. Entomol. Res. 105(6), 717–727 (2015).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    18.Freeland, J. R. The importance of molecular markers and primer design when characterizing biodiversity from environmental DNA. Genome 60(4), 358–374 (2016).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    19.Marquina, D., Andersson, A. F. & Ronquist, F. New mitochondrial primers for metabarcoding of insects, designed and evaluated using in silico methods. Mol. Ecol. Resour. 19(1), 90–104 (2019).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    20.Epanchin-Niell, R. S., Haight, R. G., Berec, L., Kean, J. M. & Liebhold, A. M. Optimal surveillance and eradication of invasive species in heterogeneous landscapes. Ecol. Lett. 15(8), 803–812 (2012).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    21.Batovska, J. et al. Effective mosquito and arbovirus surveillance using metabarcoding. Mol. Ecol. Resour. 18, 32–40 (2017).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    22.Liebhold, A. M. et al. Eradication of invading insect populations: From concepts to applications. Annu. Rev. Entomol. 61, 335–352 (2016).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    23.Lamb, P. D. et al. How quantitative is metabarcoding: A meta-analytical approach. Mol. Ecol. 28(2), 420–430 (2019).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    24.Elbrecht, V. & Leese, F. Can DNA-based ecosystem assessments quantify species abundance? Testing primer bias and biomass—sequence relationships with an innovative metabarcoding protocol. PLoS ONE 10(7), e0130324 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    25.Krehenwinkel, H. et al. Estimating and mitigating amplification bias in qualitative and quantitative arthropod metabarcoding. Sci. Rep. 7(1), 17668 (2017).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    26.Piñol, J., Senar, M. A. & Symondson, W. O. C. The choice of universal primers and the characteristics of the species mixture determine when DNA metabarcoding can be quantitative. Mol. Ecol. 28(2), 407–419 (2019).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    27.Ashfaq, M. & Hebert, P. D. N. DNA barcodes for bio-surveillance: Regulated and economically important arthropod plant pests. Genome 59(11), 933–945 (2016).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    28.De Barba, M. et al. DNA metabarcoding multiplexing and validation of data accuracy for diet assessment: Application to omnivorous diet. Mol. Ecol. Resour. 14(2), 306–323 (2014).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    29.Hauck, L. L., Weitemier, K. A., Penaluna, B. E., Garcia, T. S. & Cronn, R. Casting a broader net: Using microfluidic metagenomics to capture aquatic biodiversity data from diverse taxonomic targets. Environ. DNA 1(3), 251–267 (2019).Article 

    Google Scholar 
    30.Zhang, G. K., Chain, F. J. J., Abbott, C. L. & Cristescu, M. E. Metabarcoding using multiplexed markers increases species detection in complex zooplankton communities. Evol. Appl. 11(10), 1901–1914 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    31.Costello, M. et al. Characterization and remediation of sample index swaps by non-redundant dual indexing on massively parallel sequencing platforms. BMC Genomics 19(1), 332 (2018).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    32.MacConaill, L. E. et al. Unique, dual-indexed sequencing adapters with UMIs effectively eliminate index cross-talk and significantly improve sensitivity of massively parallel sequencing. BMC Genomics 19(1), 30 (2018).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    33.Bengtsson-Palme, J. et al. Strategies to improve usability and preserve accuracy in biological sequence databases. Proteomics 16(18), 2454–2460 (2016).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    34.Shen, Y.-Y., Chen, X. & Murphy, R. W. Assessing DNA barcoding as a tool for species identification and data quality control. PLoS ONE 8(2), e57125 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    35.Kozlov, A. M., Zhang, J., Yilmaz, P., Glöckner, F. O. & Stamatakis, A. Phylogeny-aware identification and correction of taxonomically mislabeled sequences. Nucleic Acids Res. 44(11), 5022–5033 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    36.Simmons, M., Tucker, A., Chadderton, W. L., Jerde, C. L. & Mahon, A. R. Active and passive environmental DNA surveillance of aquatic invasive species. Can. J. Fish. Aquat. Sci. 73(1), 76–83 (2015).Article 
    CAS 

    Google Scholar 
    37.Olmos, A. et al. High-throughput sequencing technologies for plant pest diagnosis: Challenges and opportunities. EPPO Bull. 48(2), 219–224 (2018).Article 

    Google Scholar 
    38.Darling, J. A., Pochon, X., Abbott, C. L., Inglis, G. J. & Zaiko, A. The risks of using molecular biodiversity data for incidental detection of species of concern. Divers. Distrib. 26(9), 1116–1121 (2020).Article 

    Google Scholar 
    39.Carew, M. E., Coleman, R. A. & Hoffmann, A. A. Can non-destructive DNA extraction of bulk invertebrate samples be used for metabarcoding?. PeerJ 6, e4980 (2018).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    40.Ji, Y. et al. SPIKEPIPE: A metagenomic pipeline for the accurate quantification of eukaryotic species occurrences and intraspecific abundance change using DNA barcodes or mitogenomes. Mol. Ecol. Resour. 20(1), 256–267 (2020).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    41.Nielsen, M., Gilbert, M. T. P., Pape, T. & Bohmann, K. A simplified DNA extraction protocol for unsorted bulk arthropod samples that maintains exoskeletal integrity. Environ. DNA 1(2), 144–154 (2019).Article 

    Google Scholar 
    42.Martins, F. M. S. et al. Have the cake and eat it: Optimizing nondestructive DNA metabarcoding of macroinvertebrate samples for freshwater biomonitoring. Mol. Ecol. Resour. 19(4), 863–876 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    43.Zizka, V. M. A., Leese, F., Peinert, B. & Geiger, M. F. DNA metabarcoding from sample fixative as a quick and voucher-preserving biodiversity assessment method. Genome 62(3), 122–136 (2018).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    44.Martoni, F., Valenzuela, I. & Blacket, M. J. Non-destructive DNA extractions from fly larvae (Diptera: Muscidae) enable molecular identification of species and enhance morphological features. Austral. Entomol. 58(4), 848–856 (2019).Article 

    Google Scholar 
    45.Plant Health Australia. Tomato-potato psyllid (2019). Retrieved 10 April, 2019 from http://www.planthealthaustralia.com.au/pests/tomatopotato-psyllid/.46.Yazdani, M. et al. First detection of Russian wheat aphid Diuraphis noxia Kurdjumov (Hemiptera: Aphididae) in Australia: A major threat to cereal production. Austral. Entomol. 57(4), 410–417 (2018).Article 

    Google Scholar 
    47.Pirtle, E., Maino, J., Lye, J., Umina, P., Heddle, T. & van Helden, M. Managing Russian wheat aphid risk—early season considerations. Centre for Environmental Stress and Adaptation Research (CESAR) (2019). Retrieved February 7, 2020 from http://www.cesaraustralia.com/assets/Uploads/PDFs/RWA-portal/Russian-wheat-aphid-green-bridge-surveillence-update-May-2019.pdf.48.Wilson, C., Rowbottom, R., Walker, P., Allen, G., Tegg, R. & Quarrell, S. Surveillance of tomato potato psyllid in the Eastern States and South Australia. Horticulture Innovation Australia (2018). Retrieved February 7, 2020 from https://ausveg.com.au/app/uploads/technical-insights/MT16016.pdf.49.Blackman, R. L. & Eastop, V. F. Aphids on the world’s crops: an identification and information guide. Aphids Worlds Crops Identif. Inf. Guide 2nd edn (2000).50.Kent, D. & Taylor, G. Two new species of Acizzia Crawford (Hemiptera: Psyllidae) from the Solanaceae with a potential new economic pest of eggplant, Solanum melongena. Aust. J. Entomol. 49(1), 73–81 (2010).Article 

    Google Scholar 
    51.Subcommittee on Plant Health Diagnostic Standards (SPHDS). Diagnostic protocol for the detection of the Tomato Potato Psyllid, Bactericera cockerelli (Šulc). Department of Agriculture, Australia (2017). Retrieved December 8, 2019 from https://www.plantbiosecuritydiagnostics.net.au/app/uploads/2018/11/NDP-20-Tomato-potato-psyllid-Bactericera-cockerelli-V1.2.pdf.52.Farrow, R. & Greenslade, P. Description of a robust interception trap for collecting airborne arthropods in climatically challenging regions. Antarct. Sci. 25(5), 657–662 (2013).ADS 
    Article 

    Google Scholar 
    53.Ferro, M. L. & Park, J.-S. Effect of propylene glycol concentration on mid-term DNA preservation of Coleoptera. Coleopt. Bull. 67(4), 581–586 (2013).Article 

    Google Scholar 
    54.Folmer, O., Black, M., Hoeh, W., Lutz, R. & Vrijenhoek, R. DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol. Mar. Biol. Biotechnol. 3, 294–299 (1994).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    55.Martoni, F. Biodiversity, evolution and microbiome of the New Zealand Psylloidea (Hemiptera: Sternorrhyncha) (2017).56.Ouvrard, D., Campbell, B. C., Bourgoin, T. & Chan, K. L. 18S rRNA secondary structure and phylogenetic position of Peloridiidae (Insecta, hemiptera). Mol. Phylogenet. Evol. 16(3), 403–417 (2000).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    57.Kearse, M. et al. Geneious Basic: An integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28(12), 1647–1649 (2012).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    58.Wang, Q., Garrity, G. M., Tiedje, J. M. & Cole, J. R. Naïve Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl. Environ. Microbiol. 73(16), 5261–5267 (2007).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    59.Ratnasingham, S. & Hebert, P. D. N. BOLD: The barcode of life data system (http://www.barcodinglife.org). Mol. Ecol. Notes 7(3), 355–364 (2007).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    60.Benson, D. A., Karsch-Mizrachi, I., Lipman, D. J., Ostell, J. & Sayers, E. W. GenBank. Nucleic Acids Res. 37(Database issue), D26–D31 (2009).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    61.Chamberlain, S. bold: Interface to Bold Systems API. R package version 0.5.0 (2017). https://github.com/ropensci/bold.62.Winter, D. J. rentrez: An R package for the NCBI eUtils API. R J. 9(2), 520–526 (2017).Article 

    Google Scholar 
    63.R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna (2014). http://www.R-project.org/.64.Sherrill-Mix, S. taxonomizr: Functions to Work with NCBI Accessions and Taxonomy. R package version 0.5.2 (2018). https://rdrr.io/cran/taxonomizr/.65.Mercier, C., Boyer, F., Bonin, A. & Coissac, E. SUMATRA and SUMACLUST: fast and exact comparison and clustering of sequences (2013). http://metabarcoding.org.66.Callahan, B. J. et al. DADA2: High-resolution sample inference from Illumina amplicon data. Nat. Methods 13(7), 581–583 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    67.Bushnell, B. BBMap short read aligner, and other bioinformatic tools (2017). https://sourceforge.net/projects/bbmap/.68.Ranwez, V., Douzery, E. J. P., Cambon, C., Chantret, N. & Delsuc, F. MACSE v2: Toolkit for the alignment of coding sequences accounting for frameshifts and stop codons. Mol. Biol. Evol. 35(10), 2582–2584 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    69.Saitoh, S. et al. A quantitative protocol for DNA metabarcoding of springtails (Collembola). Genome 59(9), 705–723 (2016).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    70.Wilcox, T. M. et al. Capture enrichment of aquatic environmental DNA: A first proof of concept. Mol. Ecol. Resour. 18(6), 1392–1401 (2018).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    71.McMurdie, P. J. & Holmes, S. phyloseq: An R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE 8(4), e61217 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    72.Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer, 2009).
    Google Scholar 
    73.Walsh, P. S., Metzger, D. A. & Higuchi, R. Chelex 100 as a medium for simple extraction of DNA for PCR-based typing from forensic material. Biotechniques 10(4), 506–513 (1991).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    74.Kumar, S., Stecher, G., Li, M., Knyaz, C. & Tamura, K. MEGA X: Molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 35(6), 1547–1549 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    75.ABRS. Australian Faunal Directory. Australian Biological Resources Study, Canberra (2009). Retrieved October 30, 2019 from https://biodiversity.org.au/afd/mainchecklist.76.Bista, I. et al. Performance of amplicon and shotgun sequencing for accurate biomass estimation in invertebrate community samples. Mol. Ecol. Resour. 18, 1020–1103 (2018).CAS 
    Article 

    Google Scholar 
    77.Illumina. Effects of index misassignment on multiplexing and downstream analysis [White paper] (2017). Retrieved November 25, 2019 from https://www.illumina.com/content/dam/illumina-marketing/documents/products/whitepapers/index-hopping-white-paper-770-2017-004.pdf.78.Minich, J. J. et al. Quantifying and understanding well-to-well contamination in microbiome research. mSystems 4(4), e00186-19 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    79.Galan, M. et al. Metabarcoding for the parallel identification of several hundred predators and their prey: Application to bat species diet analysis. Mol. Ecol. Resour. 18(3), 474–489 (2018).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    80.Palmer, J. M., Jusino, M. A., Banik, M. T. & Lindner, D. L. Non-biological synthetic spike-in controls and the AMPtk software pipeline improve mycobiome data. PeerJ 6, e4925 (2018).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    81.Meusnier, I. et al. A universal DNA mini-barcode for biodiversity analysis. BMC Genomics 9, 214 (2008).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    82.Elbrecht, V. & Steinke, D. Scaling up DNA metabarcoding for freshwater macrozoobenthos monitoring. Freshw. Biol. 64(2), 380–387 (2019).CAS 

    Google Scholar 
    83.Larsson, A. J. M., Stanley, G., Sinha, R., Weissman, I. L. & Sandberg, R. Computational correction of index switching in multiplexed sequencing libraries. Nat. Methods 15(5), 305–307 (2018).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    84.Gibbons, S. M., Duvallet, C. & Alm, E. J. Correcting for batch effects in case–control microbiome studies. PLoS Comput. Biol. 14(4), 1006102 (2018).ADS 
    Article 
    CAS 

    Google Scholar 
    85.Yeh, Y.-C., Needham, D. M., Sieradzki, E. T. & Fuhrman, J. A. Taxon disappearance from microbiome analysis reinforces the value of mock communities as a standard in every sequencing run. mSystems 3(3), e00023-18 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    86.McLaren, M. R., Willis, A. D. & Callahan, B. J. Consistent and correctable bias in metagenomic sequencing experiments. eLife 8, e46923 https://doi.org/10.7554/eLife.46923 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    87.Thomas, A. C., Deagle, B. E., Eveson, J. P., Harsch, C. H. & Trites, A. W. Quantitative DNA metabarcoding: Improved estimates of species proportional biomass using correction factors derived from control material. Mol. Ecol. Resour. 16(3), 714–726 (2016).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    88.Dowle, E. J., Pochon, X., Banks, C. & J., Shearer, K., and Wood, S.A. ,. Targeted gene enrichment and high-throughput sequencing for environmental biomonitoring: A case study using freshwater macroinvertebrates. Mol. Ecol. Resour. 16(5), 1240–1254 (2016).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    89.Peñalba, J. V. et al. Sequence capture using PCR-generated probes: A cost-effective method of targeted high-throughput sequencing for nonmodel organisms. Mol. Ecol. Resour. 14(5), 1000–1010 (2014).PubMed 
    PubMed Central 

    Google Scholar 
    90.Liu, S. et al. Mitochondrial capture enriches mito-DNA 100 fold, enabling PCR-free mitogenomics biodiversity analysis. Mol. Ecol. Resour. 16(2), 470–479 (2016).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    91.Blackman, R. L. & Eastop, V. F. Aphids on the World’s Herbaceous Plants and Shrubs, 2 Volume Set (Wiley, 2008).
    Google Scholar 
    92.Edgar, R. C. Taxonomy annotation and guide tree errors in 16S rRNA databases. PeerJ 6, e5030 (2018).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    93.Nilsson, R. H. et al. The UNITE database for molecular identification of fungi: Handling dark taxa and parallel taxonomic classifications. Nucleic Acids Res. 47(D1), D259–D264 (2019).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    94.Tang, C. Q. et al. The widely used small subunit 18S rDNA molecule greatly underestimates true diversity in biodiversity surveys of the meiofauna. Proc. Natl. Acad. Sci. U.S.A. 109(40), 16208–16212 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    95.Wangensteen, O. S., Palacín, C., Guardiola, M. & Turon, X. DNA metabarcoding of littoral hard-bottom communities: High diversity and database gaps revealed by two molecular markers. PeerJ 6, e4705 (2018).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    96.Porter, T. M. & Hajibabaei, M. Automated high throughput animal CO1 metabarcode classification. Sci. Rep. 8(1), 4226 (2018).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    97.Porter, T. M. et al. Rapid and accurate taxonomic classification of insect (class Insecta) cytochrome c oxidase subunit 1 (COI) DNA barcode sequences using a naïve Bayesian classifier. Mol. Ecol. Resour. 14(5), 929–942 (2014).CAS 
    PubMed Central 
    Article 

    Google Scholar 
    98.Edgar, R. C. SINTAX: a simple non-Bayesian taxonomy classifier for 16S and ITS sequences. bioRxiv https://doi.org/10.1101/2020.05.12.088096 (2016).Article 

    Google Scholar  More

  • in

    How the west was won: genetic reconstruction of rapid wolf recolonization into Germany’s anthropogenic landscapes

    Åkesson M, Liberg O, Sand H, Wabakken P, Bensch S, Flagstad Ø (2016) Genetic rescue in a severely inbred wolf population. Mol Ecol 25:4745–4756PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Andersen LW, Harms V, Caniglia R, Czarnomska SD, Fabbri E, Jędrzejewska B et al. (2015) Long-distance dispersal of a wolf, Canis lupus, in northwestern Europe. Mamm Res 60:163–168Article 

    Google Scholar 
    Ansorge H, Kluth G, Hahne S (2006) Feeding ecology of wolves Canis lupus returning to Germany. Acta Theriol 51:99–106Article 

    Google Scholar 
    Beugin M-P, Gayet T, Pontier D, Devillard S, Jombart T (2018) A fast likelihood solution to the genetic clustering problem. Methods Ecol Evol 9:1006–1016PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Caniglia R, Fabbri E, Galaverni M, Milanesi P, Randi E (2014) Noninvasive sampling and genetic variability, pack structure, and dynamics in an expanding wolf population. J Mammal 95:41–59Article 

    Google Scholar 
    Caniglia R, Fabbri E, Mastrogiuseppe L, Randi E (2013) Who is who? Identification of livestock predators using forensic genetic approaches. Forensic Sci Int Genet 7:397–404CAS 
    PubMed 
    Article 

    Google Scholar 
    Carter NH, Linnell JDC (2016) Co-adaptation is key to coexisting with large carnivores. Trends Ecol Evol 31:575–578PubMed 
    Article 

    Google Scholar 
    Chapron G, Kaczensky P, Linnell JDC, von Arx M, Huber D, Andrén H et al. (2014) Recovery of large carnivores in Europe’s modern human-dominated landscapes. Science 346:1517–1519CAS 
    PubMed 
    Article 

    Google Scholar 
    Ciucci P, Reggioni W, Maiorano L, Boitani L (2009) Long-distance dispersal of a rescued wolf from the northern Apennines to the Western Alps. J Wildl Manag 73:1300–1306Article 

    Google Scholar 
    Curran JM, Tvedebrink T (2013) DNAtools: tools for empirical testing of DNA match probabilities. R packageCzarnomska SD, Jędrzejewska B, Borowik T, Niedziałkowska M, Stronen AV, Nowak S et al. (2013) Concordant mitochondrial and microsatellite DNA structuring between Polish lowland and Carpathian Mountain wolves. Conserv Genet 14:573–588Article 

    Google Scholar 
    DBBW (2017) Dokumentations- und Beratungsstelle des Bundes zum Thema Wolf. Wölfe in Deutschland—Statusbericht 2015/2016. p 1–28Di Marco M, Boitani L, Mallon D, Hoffmann M, Iacucci A, Meijaard E et al. (2014) A retrospective evaluation of the global decline of carnivores and ungulates. Conserv Biol 28:1109–1118PubMed 
    Article 

    Google Scholar 
    Dufresnes C, Miquel C, Remollino N, Biollaz F, Salamin N, Taberlet P et al. (2018) Howling from the past: historical phylogeography and diversity losses in European grey wolves. Proc R Soc B 285:20181148PubMed 
    Article 
    CAS 

    Google Scholar 
    Excoffier L, Foll M, Petit RJ (2009) Genetic consequences of range expansions. Annu Rev Ecol Evol Syst 40:481–501Article 

    Google Scholar 
    Fabbri E, Miquel C, Lucchini V, Santini A, Caniglia R, Duchamp C et al. (2007) From the Apennines to the Alps: colonization genetics of the naturally expanding Italian wolf (Canis lupus) population. Mol Ecol 16:1661–1671CAS 
    PubMed 
    Article 

    Google Scholar 
    Francisco LV, Langston AA, Mellersh CS, Neal CL, Ostrander EA (1996) A class of highly polymorphic tetranucleotide repeats for canine genetic mapping. Mamm Genome 7:359–362CAS 
    PubMed 
    Article 

    Google Scholar 
    Fredholm M, Winterø AK (1995) Variation of short tandem repeats within and between species belonging to the Canidae family. Mamm Genome 6:11–18CAS 
    PubMed 
    Article 

    Google Scholar 
    Geffen E, Kam M, Hefner R, Hersteinsson P, Angerbjörn A, Dalèn L et al. (2011) Kin encounter rate and inbreeding avoidance in canids. Mol Ecol 20:5348–5358PubMed 
    Article 

    Google Scholar 
    Gese ME, Mech LD (1991) Dispersal of wolves (Canis lupus) in northeastern Minnesota, 1969–1989. Can J Zool 69:2946–2955Article 

    Google Scholar 
    Gorjanc G, Henderson DA (2007) GeneticsPed: pedigree and genetic relationship functions. R package version 1.40.0Goudet J (2005) hierfstat, a package for r to compute and test hierarchical F-statistics. Mol Ecol Notes 5:184–186Article 

    Google Scholar 
    Goudet J, Perrin N, Waser P (2002) Tests for sex-biased dispersal using bi-parentally inherited genetic markers. Mol Ecol 11:1103–1114CAS 
    PubMed 
    Article 

    Google Scholar 
    Granroth-Wilding H, Primmer C, Lindqvist M, Poutanen J, Thalmann O, Aspi J et al. (2017) Non-invasive genetic monitoring involving citizen science enables reconstruction of current pack dynamics in a re-establishing wolf population. BMC Ecol 17:44PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Harmoinen J, von Thaden A, Aspi J, Kvist L, Cocchiararo B, Jarausch A et al. (2020) Reliable wolf-dog hybrid detection in Europe using a reduced SNP panel developed for non-invasively collected samples, PREPRINT (Version 1). Research Square. https://doi.org/10.21203/rs.3.rs-113866/v1Hausknecht R, Gula R, Pirga B, Kuehn R (2007) Urine— a source for noninvasive genetic monitoring in wildlife. Mol Ecol Notes 7:208–212CAS 
    Article 

    Google Scholar 
    Hedrick PW, Peterson RO, Vucetich LM, Adams JR, Vucetich JA (2014) Genetic rescue in Isle Royale wolves: genetic analysis and the collapse of the population. Conserv Genet 15:1111–1121Article 

    Google Scholar 
    Hijmans RJ, Williams E, Vennes C (2017) geosphere: spherical trigonometry. R package version 1:5–7Hindrikson M, Remm J, Pilot M, Godinho R, Stronen AV, Baltrūnaité L et al. (2017) Wolf population genetics in Europe: a systematic review, meta-analysis and suggestions for conservation and management. Biol Rev Camb Philos Soc 92:1601–1629PubMed 
    Article 

    Google Scholar 
    Hulva P, Černá Bolfíková B, Woznicová V, Jindřichová M, Benešová M, Mysłajek RW et al. (2018) Wolves at the crossroad: Fission-fusion range biogeography in the Western Carpathians and Central Europe. Divers Distrib 24:179–192Article 

    Google Scholar 
    Jimenez MD, Bangs EE, Boyd DK, Smith DW, Becker SA, Ausband DE et al. (2017) Wolf dispersal in the Rocky Mountains, Western United States: 1993-2008. J Wildl Manag 81:581–592Article 

    Google Scholar 
    Jombart T (2008) adegenet: a R package for the multivariate analysis of genetic markers. Bioinformatics 24:1403–1405CAS 
    PubMed 
    Article 

    Google Scholar 
    Jones AG, Small CM, Paczolt KA, Ratterman NL (2010) A practical guide to methods of parentage analysis. Mol Ecol Resour 10:6–30PubMed 
    Article 

    Google Scholar 
    Jones OR, Wang J (2010) COLONY: a program for parentage and sibship inference from multilocus genotype data. Mol Ecol Resour 10:551–555PubMed 
    Article 

    Google Scholar 
    Kaczensky P, Kluth G, Knauer F, Rauer G, Reinhardt I, Wotschikowsky U (2009) Monitoring of large carnivores in Germany. BfN-Skripten 251:1–99
    Google Scholar 
    Kalinowski ST, Taper ML, Marshall TC (2007) Revising how the computer program CERVUS accommodates genotyping error increases success in paternity assignment. Mol Ecol 16:1099–1106Article 

    Google Scholar 
    Kardos M, Åkesson M, Fountain T, Flagstad Ø, Liberg O, Olason P et al. (2018) Genomic consequences of intensive inbreeding in an isolated wolf population. Nat Ecol Evol 2:124–131PubMed 
    Article 

    Google Scholar 
    Koch E, Schweizer RM, Schweizer TM, Stahler DR, Smith DW, Wayne RK et al. (2019) De novo mutation rate estimation in wolves of known pedigree. Mol Biol Evol 36:2536–2547CAS 
    PubMed Central 
    Article 
    PubMed 

    Google Scholar 
    Kojola I, Aspi J, Hakala A, Heikkinen S, Ilmoni C, Ronkainen S (2006) Dispersal in an expanding wolf population in Finland. J Mammal 87:281–286Article 

    Google Scholar 
    Kramer-Schadt S, Wenzler M, Gras P, Knauer F (2020) Habitatmodellierung und Abschätzung der potenziellen Anzahl von Wolfsterritorien in Deutschland. BfN-Skripten 556:1–30
    Google Scholar 
    Lesniak I, Heckmann I, Heitlinger E, Szentiks CA, Nowak C, Harms V et al. (2017) Population expansion and individual age affect endoparasite richness and diversity in a recolonising large carnivore population. Sci Rep 7:41730CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Liberg O, Andrén H, Pedersen H-C, Sand H, Sejberg D, Wabakken P et al. (2005) Severe inbreeding depression in a wild wolf (Canis lupus) population. Biol Lett 1:17–20CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Libiseller C, Grimvall A (2002) Performance of partial Mann–Kendall tests for trend detection in the presence of covariates. Environmetrics 13:71–84CAS 
    Article 

    Google Scholar 
    Mech LD, Boitani L (2003) Wolf social ecology. In: Mech LD, Boitani L (eds) Wolves: behavior, ecology, and conservation. University of Chicago Press, Chicago & London, p 1–34Meuwissen THE, Luo Z (1992) Computing inbreeding coefficients in large populations. Genet Sel Evol 24:305–313PubMed Central 
    Article 
    PubMed 

    Google Scholar 
    Neff MW, Broman KW, Mellersh CS, Ray K, Acland GM, Aguirre GD et al. (1999) A second-generation genetic linkage map of the domestic dog, Canis familiaris. Genetics 151:803–820CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Nowak S, Mysłajek RW (2016) Wolf recovery and population dynamics in Western Poland, 2001–2012. Mamm Res 61:83–98Article 

    Google Scholar 
    Parreira BR, Chikhi L (2015) On some genetic consequences of social structure, mating systems, dispersal, and sampling. Proc Natl Acad Sci U S A 112:E3318–E3326CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Peakall R, Smouse PE (2006) GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. Mol Ecol Resour 6:288–295Article 

    Google Scholar 
    Peakall R, Smouse PE (2012) GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research—an update. Bioinformatics 28:2537–2539CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Petit RJ (2011) Early insights into the genetic consequences of range expansions. Heredity 106:203–204CAS 
    PubMed 
    Article 

    Google Scholar 
    Pilot M, Branicki W, Jędrzejewski W, Goszczyński J, Jędrzejewska B, Dykyy I et al. (2010) Phylogeographic history of grey wolves in Europe. BMC Evol Biol 10:104PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Pohlert T (2018) trend: non-parametric trend tests and change-point detection. R package version 1.1.0R Core Team (2017) R: a language and environment for statistical computing. Vienna, AustriaRaymond M, Rousset F (1995) GENEPOP (version 1.2): population genetics software for exact tests and ecumenicism. J Hered 86:248–249Article 

    Google Scholar 
    Ražen N, Brugnoli A, Castagna C, Groff C, Kaczensky P, Kljun F et al. (2016) Long-distance dispersal connects Dinaric-Balkan and Alpine grey wolf (Canis lupus) populations. Eur J Wildl Res 62:137–142Article 

    Google Scholar 
    Reinhardt I, Kaczensky P, Knauer F, Rauer G, Kluth G, Wölfl S et al. (2015) Monitoring von Wolf, Luchs und Bär in Deutschland. BfN-Skripten 413:1–96
    Google Scholar 
    Reinhardt I, Kluth G (2007) Leben mit Wölfen. Leitfaden für den Umgang mit einer konfliktträchtigen Tierart in Deutschland. BfN-Skripten 201:1–180
    Google Scholar 
    Reinhardt I, Kluth G, Blum C, Möslinger H, Harms V (2014) Wölfe in der Lausitz. Statusbericht für das Monitoringjahr 2013/2014. https://www.wolf.sachsen.de/download/Statusbericht_Sachsen_2013_2014.pdf. (Mar 2, 2020)Reinhardt I, Kluth G, Nowak C, Szentiks CA, Krone O, Ansorge H et al. (2019) Military training areas facilitate the recolonization of wolves in Germany. Conserv Lett 10:e12635
    Google Scholar 
    Ripple WJ, Estes JA, Beschta RL, Wilmers CC, Ritchie EG, Hebblewhite M et al. (2014) Status and ecological effects of the world’s largest carnivores. Science 343:1241484PubMed 
    Article 
    CAS 

    Google Scholar 
    Robinson JA, Räikkönen J, Vucetich LM, Vucetich JA, Peterson RO, Lohmueller KE et al. (2019) Genomic signatures of extensive inbreeding in Isle Royale wolves, a population on the threshold of extinction. Sci Adv 5:eaau0757PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Robinson SP, Simmons LW, Kennington WJ (2013) Estimating relatedness and inbreeding using molecular markers and pedigrees: the effect of demographic history. Mol Ecol 22:5779–5792CAS 
    PubMed 
    Article 

    Google Scholar 
    Rousset F (2008) Genepop’007: a complete reimplementation of the Genepop software for Windows and Linux. Mol Ecol Resour 8:103–106PubMed 
    Article 

    Google Scholar 
    Schwarz G (1978) Estimating the dimension of a model. Ann Stat 6:461–464Article 

    Google Scholar 
    Seddon JM (2005) Canid-specific primers for molecular sexing using tissue or non-invasive samples. Conserv Genet 6:147–149Article 

    Google Scholar 
    Sen PK (1968) Estimates of the regression coefficient based on Kendall’s tau. J Am Stat Assoc 63:1379–1389Article 

    Google Scholar 
    Shibuya H, Collins BK, Huang TH-M, Johnson GS (1994) A polymorphic (AGGAAT), tandem repeat in an intron of the canine von Willebrand factor gene. Anim Genet 25:122CAS 
    PubMed 
    Article 

    Google Scholar 
    Smith D, Meier T, Geffen E, Mech LD, Burch JW, Adams LG et al. (1997) Is incest common in gray wolf packs? Behav Ecol 8:384–391Article 

    Google Scholar 
    Sugg DW, Chesser RK, Dobson FS, Hoogland JL (1996) Population genetics meets behavioural ecology. Trends Ecol Evol 11:338–342CAS 
    PubMed 
    Article 

    Google Scholar 
    Szewczyk M, Nowak S, Niedźwiecka N, Hulva P, Špinkytė-Bačkaitienė R, Demjanovičová K et al. (2019) Dynamic range expansion leads to establishment of a new, genetically distinct wolf population in Central Europe. Sci Rep 9:481Article 
    CAS 

    Google Scholar 
    Szpiech ZA, Jakobsson M, Rosenberg NA (2008) ADZE: a rarefaction approach for counting alleles private to combinations of populations. Bioinformatics 24:2498–2504CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Tvedebrink T, Eriksen PS, Curran JM, Mogensen HS, Morling N (2012) Analysis of matches and partial-matches in a Danish STR data set. Forensic Sci Int Genet 6:387–392CAS 
    PubMed 
    Article 

    Google Scholar 
    van Eeden LM, Crowther MS, Dickman CR, Macdonald DW, Ripple WJ, Ritchie EG et al. (2018) Managing conflict between large carnivores and livestock. Conserv Biol 32:26–34PubMed 
    Article 

    Google Scholar 
    van Oosterhout C, Hutchinson WF, Wills DPM, Shipley P (2004) MICRO-CHECKER: software for identifying and correcting genotyping errors in microsatellite data. Mol Ecol Notes 4:535–538Article 
    CAS 

    Google Scholar 
    vonHoldt BM, Stahler DR, Smith DW, Earl DA, Pollinger JP, Wayne RK (2008) The genealogy and genetic viability of reintroduced Yellowstone grey wolves. Mol Ecol 17:252–274PubMed 
    Article 

    Google Scholar 
    Wabakken P, Sand H, Kojola I, Zimmermann B, Arnemo JMON, Pedersen HC et al. (2007) Multistage, long-range natal dispersal by a Global Positioning System-Collared Scandinavian Wolf. J Wildl Manag 71:1631–1634Article 

    Google Scholar 
    Wabakken P, Sand H, Liberg O, Bjärvall A (2001) The recovery, distribution, and population dynamics of wolves on the Scandinavian peninsula, 1978-1998. Can J Zool 79:710–725Article 

    Google Scholar 
    Waits LP, Luikart G, Taberlet P (2001) Estimating the probability of identity among genotypes in natural populations: cautions and guidelines. Mol Ecol 10:249–256CAS 
    PubMed 
    Article 

    Google Scholar 
    Walling CA, Pemberton JM, Hadfield JD, Kruuk LEB (2010) Comparing parentage inference software: reanalysis of a red deer pedigree. Mol Ecol 19:1914–1928PubMed 
    Article 

    Google Scholar 
    Watson JEM, Shanahan DF, Di Marco M, Allan J, Laurance WF, Sanderson EW et al. (2016) Catastrophic declines in wilderness areas undermine global environment targets. Curr Biol 26:2929–2934CAS 
    PubMed 
    Article 

    Google Scholar  More

  • in

    Population genomics and antimicrobial resistance dynamics of Escherichia coli in wastewater and river environments

    Escherichia coli is amongst the dominant pan-aminoglycoside-resistant bacteria from wastewater and river waterA total of 168 bacteria highly resistant to aminoglycosides were obtained by growing collected samples in MacConkey media supplemented with high aminoglycoside concentrations, from both WWTPs (66 isolates) and rivers (102 isolates) sampled at the same period of time and located in the Barcelona region. Most of the isolates were identified as Escherichia coli, being the predominant Enterobacteriaceae species in WWTPs (50 isolates, 75.76%) and the second most prevalent in rivers (20 isolates, 19.61%). Klebsiella pneumoniae was the predominant bacterium identified in river environments (50 isolates, 49.02%), although its presence in WWTP samples was scarce (7 isolates, 10.61%). The remaining aminoglycoside-resistant species, members of genus Enterobacter, Citrobacter and Aeromonas among others, represented a low fraction in WWTPs (9 isolates, 13.64%) comparing to river environments (32 isolates, 31.37%), showing a higher bacterial diversity of natural over WWTP niches (Fig. 1, Supplementary Data 1).Fig. 1: Geographical distribution of sampled points in the region of Barcelona (Spain).The location of Barcelona city is indicated by black circled city icon. The Llobregat river is presented in light blue and the Cardener river in dark blue. The three river sampled locations are indicated by black circled river icon. The two sampled WWTPs are indicated by black circled droplet icon. The collection area of the El Prat WWTP is highlighted in dark green, whereas the area of the Gavà WWTP is highlighted in pale green, collecting the wastewater of 2,000,000 and 370,000 inhabitants, respectively. Total number of pan-aminoglycoside-resistant bacteria collected from each sampling location is indicated in the center of the sunburn diagrams. Inner rings represent the proportion of different pan-aminoglycoside-resistant bacterial species identified in each sampling location, indicating the total number of E. coli, K. pneumoniae and other species, and the number of E. coli isolates selected for later Illumina (I) and Nanopore sequencing (N). Outer rings show the 16S-RMTase gene harbored by these bacteria.Full size imageAntimicrobial resistance in E. coli varies between wastewater and river water environmentsResistance to diverse antibiotic compounds was related to the sampling origin and the species of the isolates. All isolates were highly resistant to 4,6-DOS aminoglycosides, since they were selected according to their resistance to this family of antibiotics. The 16S-RMTase gene identified in most wastewater isolates was rmtB (55 isolates, 83.33%), whereas armA was the responsible in the remainder (11 isolates, 16.67%). On the contrary, 100% of isolates from river environments harbored the armA gene (Fig. 1, Supplementary Data 1). No other 16S-RMTase gene was detected neither in wastewater nor river isolates. Bacteria from wastewater samples showed higher MIC values to all tested antibiotics (e.g., 77.3% isolates resistant to cefotaxime) than bacteria from freshwater environments (e.g., 0% isolates resistant to cefotaxime), even when comparing isolates belonging to the same species. This was also the case for E. coli, where isolates from WWTPs were among the most resistant (e.g., 90% isolates resistant to cefotaxime) while those from rivers were among the most susceptible ones (e.g., 0% isolates resistant to cefotaxime), highlighting key differences between bacteria from these different ecological niches (Supplementary Data 1).Distinct E. coli populations exist in wastewater and river water environmentsPulsed-field gel electrophoresis (PFGE) of E. coli isolates revealed the existence of two highly prevalent pulsotypes present in the two WWTPs (31 isolates, 62%), and a total of 5 characterized pulsotypes (≥90% similarity in the PFGE pattern) from wastewater samples. Interestingly, 15 isolates (30%) from both WWTPs could not be typed by PFGE. In contrast, river environments showed higher clonal diversity, with up to 10 different pulsotypes characterized, despite the lower number of E. coli isolates recovered from these samples (Supplementary Fig. 1). Of the 70 E. coli isolates, 43 were selected for further analyses and sequencing by Illumina technology (25 from WWTPs and 18 from river environments), ensuring wide representation in relation to the origins, clonal relatedness, and antibiogram resistance profiles.Multi-locus sequence typing (MLST) results were highly correlated with PFGE profiles. Almost all E. coli isolates from wastewater samples (23 isolates, 92%) belonged to two predominant sequence types (STs) (Fig. 2). The most prevalent one, ST1196/ST632 (Warwick/Pasteur MLST scheme), encompassed the two main pulsotypes identified by PFGE. ST1196 is an increasingly prevalent ST related to OXA-48-carbapenemase production and associated with the mcr-1 colistin-resistance gene expansion in clinical settings9, hospital wastewater10 and companion animals11. Minimal inhibitory concentration (MIC) values of the isolates belonging to this ST showed resistance to numerous antibiotic classes, including clinically critical antibiotics such as 3rd generation cephalosporins and colistin6. The other predominant ST in WWTPs, ST224/ST479, comprised all the isolates which were non-typeable by PFGE. ST224 is a pandemic multi-drug resistant ST previously associated with NDM-, CTX-M- and KPC-carbapenemase production, found in both clinical human12 and animal13 samples, but also in natural environments14. ST224 E. coli isolates identified exhibited a common resistance profile, including resistance to 3rd generation cephalosporins. However, two isolates from river samples belonging to this same ST showed a different resistance pattern, revealing the influence of the niche in the bacterial resistance phenotype, even within the same ST. One of the E. coli isolates from El Prat WWTP was also identified as ST131, a clonal group present in multiple environments with a plethora of resistance mechanisms and virulence factors, representing a major public health concern15. River-related E. coli showed a higher number of E. coli STs compared to wastewater isolates, comprising up to 6 different E. coli STs (Fig. 2). All river E. coli STs presented similar MIC values for most of the tested antibiotics, which were lower than those exhibited by wastewater E. coli. ST607 (Warwick MLST scheme) was the most prevalent ST found in rivers. This ST has been scarcely reported, although it has been already detected in river sediments16. MICs of plazomicin for all isolates, both from wastewater and river environments, were ≥512 mg/L, demonstrating the high-level resistance to aminoglycosides conferred by 16S-RMTases, even to an aminoglycoside that has not yet been approved for clinical use in the EU (Fig. 2).Fig. 2: Sequenced E. coli data.The source of the isolates is specified by different colors in the genomic SNP-tree branches, as well as the related sequence type. Level of resistance to all tested antibiotics is shown in a gradient of colors: PLZ (plazomicin), GEN (gentamicin), AMP (ampicillin), FOT (cefotaxime), TAZ (ceftazidime), MERO (meropenem), CHL (chloramphenicol), TMP (trimethoprim), AZI (azithromycin), COL (colistin), CIP (ciprofloxacin), NAL (nalidixic acid), TET (tetracycline), TGC (tigecycline), and SMX (sulfamethoxazole). The presence and absence of antibiotic resistance genes and plasmid incompatibility groups are indicated by circle and triangle symbols, respectively. The presence and absence of specific 16S-RMTase genes are indicated by star symbols.Full size imageResistome analysis results were highly correlated with resistance phenotypic profiles. Thus, isolates from WWTPs harbored an heterogenous antibiotic resistance gene content depending on the E. coli ST, such as the strong association between the mcr-1 gene and isolates belonging to ST119617. This heterogenicity was even present between isolates belonging to ST1196, which exhibited different resistance levels to chloramphenicol and tetracycline depending on the presence of cmlA1/floR and tet(A), respectively. However, all wastewater isolates showed a common high-level resistance to β-lactam compounds, including third generation cephalosporins, which could be attributed to the presence of blaCTX-M-55 (ST1196) and blaCMY-2 (ST224) (Fig. 2). On the contrary, all isolates from river environments possessed a uniform antibiotic resistance gene content, despite comprising different STs (Fig. 2). Almost all of them (17 isolates, 94.4%) were susceptible to β-lactams, including the isolates belonging to ST224, contrasting with wastewater isolates, which have been under anthropogenic pressure, such as clinical treatments with a combination of aminoglycosides and β-lactams18, that led to this resistance associations. Likewise, plasmidome analysis revealed that the total plasmid content, based on the plasmid incompatibility groups, was heterogeneously distributed among isolates from WWTPs according to E. coli STs and closely correlated with the resistance gene content (an average of 6.36 different plasmid replicons per isolate). ST1196 isolates carried a higher plasmid content, exhibiting different plasmid profiles among them. The only plasmid incompatibility group carried by all wastewater isolates was IncFII type, specifically a pC15-1a-like plasmid (Fig. 2). Considering river E. coli STs, the total plasmid content was generally lower (an average of 3.72 different plasmid replicons per isolate) and more uniform compared to wastewater STs, similar to the pattern of the resistome (these differences are addressed in the E. coli pan-genome structure and genome, plasmid and antibiotic resistance gene diversities section). The most prevalent plasmid incompatibility group found among them was IncHI2A, present in all river isolates except ST224, which harbored a completely different plasmid content (Fig. 2).
    E. coli STs have a similar genomic complexity in wastewater and river water, but the diversity of plasmids and resistance genes is higher in wastewater STsThe pan-genome of all 43 E. coli isolates, with the independence of the origin, was constituted by a total of 13,819 different genes. The pan-genome was distributed in a common core-genome of 3109 genes (22.5%) and a variable accessory-genome of 10,710 genes (77.5%), covering a considerable E. coli diversity, considering that the estimation of the global E. coli core-genome comprises around 1500 genes19 (Supplementary Fig. 2). Attending to the pan-genome configuration depending on the water source, 3340 out of a total of 9099 genes (36.71%) were included in the core-genome of wastewater isolates, and the core-genome of river isolates was formed by 3410 out of 9927 genes (34.35%), showing that river isolates presented a larger total gene pool and a smaller relative core-genome comparing to WWTP isolates. The genes conforming the pan-genomes of wastewater and river water E. coli were statistically different, considering the genes that were present and absent in each niche from the total pan-genome (Jaccard, P-value = 0.001) (Fig. 3a), indicating that the different environments, and/or upstream environments from which they have seeded, led to the selection of specific genomic populations, even between members of E. coli ST224 originating from the two different environments (Jaccard, P-value = 0.049). The genomic diversity of the whole E. coli population from river water was significantly higher than the one found in wastewater (Jaccard, P-value = 3.599 × 10−8) (Supplementary Fig. 3a). However, considering the number of different STs constituting the genomic pool of each environment, the genetic diversity of an E. coli ST from wastewater was statistically similar to the diversity of an E. coli ST from freshwater (Jaccard, P-value = 0.3123) (Fig. 3b). This model, which took into account the number of STs from each source in the diversity analysis, was previously checked by random sampling analysis, obtaining similar results. Essentially, the diversity of the total E. coli population was dependent on the number of different STs that defined the population, but the diversity of a specific ST was independent of this factor and more suitable to estimate the variability of specific bacterial clones according to the origin. Likewise, the diversity of plasmid content, taking into account the different plasmid incompatibility groups identified, was distinctive for each water type (Jaccard, P-value = 0.001) (Fig. 3c). Thus, the ecological niche also influenced the presence of specific plasmid types. The level of complexity of the E. coli plasmid pool circulating in each aquatic environment was statistically similar (Jaccard, P-value = 0.2447) (Supplementary Figure 3b). However, the number of different plasmid types carried by each E. coli ST was significantly higher in WWTPs than in rivers (Jaccard, P-value = 1.037 × 10−14) (Fig. 3d). Both wastewater and river E. coli populations also showed a great divergence in the antibiotic resistance gene content (Jaccard, P-value = 0.001) (Fig. 3e), showing different resistance mechanisms to particular antimicrobial classes. Furthermore, this diversity was significantly higher in the total E. coli population from wastewater comparing to the E. coli population from river water (Jaccard, P-value = 5.093 × 10−14) (Supplementary Fig. 3c), even when the latter possessed a higher total genomic diversity. Thus, the sum of genetic resistance determinants carried by each E. coli ST from wastewater environments was much higher than for each E. coli ST from natural effluents (Jaccard, P-value  More

  • in

    Respiratory adaptation to climate in modern humans and Upper Palaeolithic individuals from Sungir and Mladeč

    1.Hiernaux, J. & Froment, A. The correlations between anthropobiological and climatic variables in sub-Saharan Africa: revised estimates. Hum. Biol. 48, 757–767 (1976).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    2.Roseman, C. C. & Weaver, T. D. Multivariate apportionment of global human craniometric diversity. Am. J. Phys. Anthropol. 125, 257–263 (2004).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    3.Harvati, K. & Weaver, T. D. Human cranial anatomy and the differential preservation of population history and climate signatures. Anat. Rec. A Discov. Mol. Cell. Evol. Biol. 288, 1225–1233 (2006).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    4.Hubbe, M., Hanihara, T. & Harvati, K. Climate signatures in the morphological differentiation of worldwide modern human populations. Anat. Rec. 292, 1720–1733 (2009).Article 

    Google Scholar 
    5.Betti, L., Balloux, F., Hanihara, T. & Manica, A. The relative role of drift and selection in shaping the human skull. Am. J. Phys. Anthropol. 141, 76–82 (2010).PubMed 
    PubMed Central 

    Google Scholar 
    6.Noback, M. L., Harvati, K. & Spoor, F. Climate-related variation of the human nasal cavity. Am. J. Phys. Anthropol. 145, 599–614 (2011).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    7.Evteev, A. A., Movsesian, A. A. & Grosheva, A. N. The association between mid-facial morphology and climate in northeast Europe differs from that in north Asia: implications for understanding the morphology of Late Pleistocene Homo sapiens. J. Hum. Evol. 107, 36–48 (2017).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    8.Maddux, S. D., Butaric, L. N., Yokley, T. R. & Franciscus, R. G. Ecogeographic variation across morphofunctional units of the human nose. Am. J. Phys. Anthropol. 162, 103–119 (2017).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    9.Menéndez, L. P. Moderate climate signature in cranial anatomy of late holocene human populations from Southern South America. Am. J. Phys. Anthropol. 165, 309–326 (2018).Article 

    Google Scholar 
    10.van Andel, T. H. & Davies, W. Neanderthals and modern humans in the European landscape during the last glaciation: archaeological results of the Stage 3 Project. 265 (McDonald Institute for Archaeological Research Monographs, 2003).11.Smith, H. F. Which cranial regions reflect molecular distances reliably in humans? Evidence from three-dimensional morphology. Am. J. Hum. Biol. 21, 36–47 (2009).PubMed 
    Article 

    Google Scholar 
    12.Reyes-Centeno, H., Ghirotto, S. & Harvati, K. Genomic validation of the differential preservation of population history in modern human cranial anatomy. Am. J. Phys. Anthropol. 162, 170–179 (2017).PubMed 
    Article 

    Google Scholar 
    13.Stansfield Bulygina, E., Rasskasova, A., Berezina, N. & Soficaru, A. D. Resolving relationships between several Neolithic and Mesolithic populations in Northern Eurasia using geometric morphometrics. Am. J. Phys. Anthropol. 164, 163–183 (2017).PubMed 
    Article 

    Google Scholar 
    14.von Cramon-Taubadel, N. The relative efficacy of functional and developmental cranial modules for reconstructing global human population history. Am. J. Phys. Anthropol. 146, 83–93 (2011).Article 

    Google Scholar 
    15.Evteev, A., Cardini, A. L., Morozova, I. & O’Higgins, P. Extreme climate, rather than population history, explains mid-facial morphology of Northern Asians. Am. J. Phys. Anthropol. 153, 449–462 (2014).PubMed 
    Article 

    Google Scholar 
    16.Butaric, L. N. & Maddux, S. D. Morphological Covariation between the Maxillary Sinus and Midfacial Skeleton among Sub-Saharan and Circumpolar Modern Humans. Am. J. Phys. Anthropol. 160, 483–497 (2016).PubMed 
    Article 

    Google Scholar 
    17.Maddux, S. D. & Butaric, L. N. Zygomaticomaxillary morphology and maxillary sinus form and function: how spatial constraints influence pneumatization patterns among modern humans. Anat. Rec. 300, 209–225 (2017).Article 

    Google Scholar 
    18.Holton, N., Yokley, T. & Butaric, L. The morphological interaction between the nasal cavity and maxillary sinuses in living humans. Anat. Rec. 296, 414–426 (2013).Article 

    Google Scholar 
    19.Ito, T., Kawamoto, Y., Hamada, Y. & Nishimura, T. D. Maxillary sinus variation in hybrid macaques: implications for the genetic basis of craniofacial pneumatization. Biol. J. Linn. Soc. Lond. 115, 333–347 (2015).Article 

    Google Scholar 
    20.Fukase, H., Ito, T. & Ishida, H. Geographic variation in nasal cavity form among three human groups from the Japanese Archipelago: ecogeographic and functional implications. Am. J. Hum. Biol. 28, 343–351 (2016).PubMed 
    Article 

    Google Scholar 
    21.Mitteroecker, P., Grunstra, N. D. S., Stansfield, E., Waltenberger, L. & Fischer, B. Bulletins et mémoires de la Société d’anthropologie de Paris (under review).22.de Azevedo, S. et al. Nasal airflow simulations suggest convergent adaptation in Neanderthals and modern humans. Proc. Natl. Acad. Sci. U. S. A. 114, 12442–12447 (2017).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    23.Wroe, S. et al. Computer simulations show that Neanderthal facial morphology represents adaptation to cold and high energy demands, but not heavy biting. Proc. R. Soc. B Biol. Sci. 285, 20180085 (2018).Article 

    Google Scholar 
    24.Bader, O. N. Sungir: Upper Palaeolithic Site (Nauka, 1978).
    Google Scholar 
    25.Nalawade-Chavan, S., McCullagh, J. & Hedges, R. New hydroxyproline radiocarbon dates from Sungir, Russia, confirm early Mid Upper Palaeolithic burials in Eurasia. PLoS ONE 9, e76896 (2014).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    26.Trinkaus, E., Buzhilova, A. P., Mednikova, M. B. & Dobrovolʹskaia, M. V. The People of Sunghir: Burials, Bodies, and Behavior in the Earlier Upper Paleolithic (Oxford University Press, 2014).
    Google Scholar 
    27.Wild, E. M. et al. Direct dating of Early Upper Palaeolithic human remains from Mladeč. Nature 435, 332–335 (2005).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    28.Teschler-Nicola, M. Taphonomic Aspects of the Human Remains from the Mladeč Cave. In Early Modern Humans at the Moravian Gate: The Mladeč Caves and Their Remains (ed. Teschler-Nicola, M.) 75–98 (Springer, 2006).
    Google Scholar 
    29.Wolpoff, M. H., Frayer, D. W. & Jelínek, J. Aurignacian Female Crania and Teeth from the Mladeč Caves, Moravia, Czech Republic. In Early Modern Humans at the Moravian Gate: The Mladeč Caves and Their Remains (ed. Teschler-Nicola, M.) 273–340 (Springer, 2006).
    Google Scholar 
    30.Sikora, M. et al. Ancient genomes show social and reproductive behavior of early Upper Paleolithic foragers. Science 358, 659–662 (2017).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    31.Trinkaus, E. & Svoboda, J. The Paleobiology of the Pavlovian People. In Early Human Evolution in Central Europe: The People of Dolní Věstonice and Pavlov (eds Trinkaus, E. & Svoboda, J.) 459–466 (Oxford University Press, 2006).
    Google Scholar 
    32.Svoboda, J. Environment and Upper Palaeolithic adaptations in Moravia. in Man and Environment in the
    Palaeolithic. Actes du symposium de Neuwied (2-7 mai 1993) (ed. Ullrich, H.) vol. 62 291–295 (ERAUL Liège,
    1995).33.Svoboda, J. A. The structure of the cave, stratigraphy, and depositional context. in Early Modern Humans at the Moravian Gate (ed. Teschler-Nicola, M.) 27–40 (Springer, 2006).34. Kovanda, J. Molluscs from the section with the skeleton of Upper Palaeolithic man at Dolní Vestonice. Journ. Sci. Cent. Nat. Coord. Etud. Rech. Nutr. Aliment. 54, 89–96 (1991).35.Gugalinskaya, L. D. & Alifanov, V. M. The Sungir settlement: patterns of formation. In Homo Sungirensis (eds Alexeeva, T. I. et al.) 43–48 (Nauchny Mir, 2000).
    Google Scholar 
    36.Lavrushin, Y. A., Sulerzhiski, L. D. & Spiridonova, E. A. Age of the Sunghir archaeological site and environmental conditions at the time of the prehistoric man. Homo sungirensis. Upper Palaeolithic man (eds.Alexeeva, T.I.; Bader, N.O.; Munchaev, R.M.; Buzhilova, A.P.; Kozlovskaya, M.V.; Mednikova, M.B.) 35–42 (2000).37.Velichko, A. A. & Morozova, T. D. Basic features of late pleistocene soil formation in the east european plain and their paleogeographic interpretation. Eurasian Soil Sci. 43, 1535–1546 (2010).ADS 
    Article 

    Google Scholar 
    38.Dagvadorj, D. & Mijiddorj, R. Climate change issues in Mongolia. Hydrometeorological Issues in Mongolia. in Papers in Hydrometeorology, Special Issue, (eds. Dagvadorj, D. and Natsagdorj, L.) Hydrometeorological
    Research Institute, 79–88. (Ulaanbaatar, 1996).39.Boldanov, T. A. & Mukhin, G. D. Ecological adaptation of agricultural land use under climate change in the Republic of Buryatia. Arid. Ecosyst. 9, 7–14 (2019).Article 

    Google Scholar 
    40.Batima, P., Natsagdorj, L., Gombluudev, P. & Erdenetsetseg, B. Observed climate change in Mongolia. in Assessments of Impacts and Adaptations of Climate Change 1–29 (START, the Third World Academy of Sciences, and the UN Environment Programme, 2005).41.Bunak, V. V. The fossil man from the Sunghir settlement and his place among other Late Paleolithic fossils. In Physical Anthropology of European Populations (ed. Schwidetzky, I.) 245–256 (Mouton Publishers, 1980).
    Google Scholar 
    42.Mednikova, M. B. Adaptive biological trends in the European upper palaeolithic: the case of the Sunghir remains. J. Physiol. Anthropol. Appl. Human Sci. 24, 425–431 (2005).PubMed 
    Article 

    Google Scholar 
    43.Bader, O. & Bader, N. Ecological and evolutionary aspects of the investigation. In Homo sungirensis. Upper Palaeolithic man (eds, Alexeeva, T.I.; Bader, N.O.; Munchaev, R.M.; Buzhilova, A.P.; Kozlovskaya, M.V.; Mednikova, M.B.) 35–42
    (Nauka, 2000).44.Evteev, A. A. & Grosheva, A. N. Nasal cavity and maxillary sinuses form variation among modern humans of Asian descent. Am. J. Phys. Anthropol. 169, 513–525 (2019).PubMed 
    Article 

    Google Scholar 
    45.Cole, P. Modification of inspired air. In The Nose: Upper Airway Physiology and the Atmospheric Environment (eds Proctor, D. F. & Anderson, I. B.) 351–375 (Elsevier Biomedical Press, 1982).
    Google Scholar 
    46.Elad, D., Wolf, M. & Keck, T. Air-conditioning in the human nasal cavity. Respir. Physiol. Neurobiol. 163, 121–127 (2008).PubMed 
    Article 

    Google Scholar 
    47.Franciscus, R. G. Later Pleistocene Nasofacial Variation in Western Eurasia and Africa and Modern Human Origins (The University of New Mexico, 1995).
    Google Scholar 
    48.Buck, L. Craniofacial Morphology, Adaptation, and Paranasal Pneumatisation in Pleistocene Hominins (University of Roehampton, 2014).
    Google Scholar 
    49.Butaric, L. N. Differential scaling patterns in maxillary sinus volume and nasal cavity breadth among modern humans. Anat. Rec. 298, 1710–1721 (2015).Article 

    Google Scholar 
    50.Naftali, S., Rosenfeld, M., Wolf, M. & Elad, D. The air-conditioning capacity of the human nose. Ann. Biomed. Eng. 33, 545–553 (2005).PubMed 
    Article 

    Google Scholar 
    51.Oxnard, C. E. Project MUSE—The Order of Man. https://muse.jhu.edu/book/12405 (1983).52.Debets, G. F. Late Palaeolithic male skeleton from the Sungir burial site. In Homo Sungirensis (eds Alexeeva, T. I. et al.) 147–149 (Nauchny Mir, 2000).
    Google Scholar 
    53.Hall, R. L. Energetics of nose and mouth breathing, body size, body composition, and nose volume in young adult males and females. Am. J. Hum. Biol. 17, 321–330 (2005).PubMed 
    Article 

    Google Scholar 
    54.Bastir, M., Godoy, P. & Rosas, A. Common features of sexual dimorphism in the cranial airways of different human populations. Am. J. Phys. Anthropol. 146, 414–422 (2011).PubMed 
    Article 

    Google Scholar 
    55.Holton, N. E., Yokley, T. R., Froehle, A. W. & Southard, T. E. Ontogenetic scaling of the human nose in a longitudinal sample: implications for genus Homo facial evolution. Am. J. Phys. Anthropol. 153, 52–60 (2014).PubMed 
    Article 

    Google Scholar 
    56.Steegmann, A. T. Jr., Cerny, F. J. & Holliday, T. W. Neandertal cold adaptation: physiological and energetic factors. Am. J. Hum. Biol. 14, 566–583 (2002).PubMed 
    Article 

    Google Scholar 
    57.Froehle, A. W., Yokley, T. R. & Churchill, S. E. Energetics and
    the origin of modern humans. in The origins of modern humans: biology reconsidered (eds. Smith, F. and Ahern, J.) 285–320 (Wiley, 2013).58.Khrisanfova, E. N. Sungir 1 in ecological and evolutionary aspects. In Homo Sungirensis (eds Alexeeva, T. I. et al.) 345–350 (Nauchny Mir, 2000).
    Google Scholar 
    59.Formicola, V. & Holt, B. Tall guys and fat ladies: Grimaldi’s Upper Paleolithic burials and figurines in an historical perspective. J. Anthropol. Sci. 93, 71–88 (2015).PubMed 

    Google Scholar 
    60.Weinstein, K. J. Thoracic morphology in Near Eastern Neandertals and early modern humans compared with recent modern humans from high and low altitudes. J. Hum. Evol. 54, 287–295 (2008).PubMed 
    Article 

    Google Scholar 
    61.Markova, A. K., Simakova, A. N., Puzachenko, A. Y. & Kitaev, L. M. Environments of the Russian Plain during the Middle Valdai Briansk Interstade (33,000–24,000 yr B.P.) indicated by fossil mammals and plants. Quat. Res. 57, 391–400 (2002).Article 

    Google Scholar 
    62.Rusakov, A. et al. Landscape evolution in the periglacial zone of Eastern Europe since MIS5: Proxies from paleosols and sediments of the Cheremoshnik key site (Upper Volga, Russia). Quat. Int. 365, 26–41 (2015).Article 

    Google Scholar 
    63.Andersen, K. K. et al. The Greenland ice core chronology 2005, 15–42 ka. Part 1: constructing the time scale. Quat. Sci. Rev. 25, 3246–3257 (2006).ADS 
    Article 

    Google Scholar 
    64.Haesaerts, P. et al. Charcoal and wood remains for radiocarbon dating Upper Pleistocene loess sequences in Eastern Europe and Central Siberia. Palaeogeogr. Palaeoclimatol. Palaeoecol. 291, 106–127 (2010).Article 

    Google Scholar 
    65.Antoine, P. et al. High-resolution record of the environmental response to climatic variations during the Last Interglacial-Glacial cycle in Central Europe: the loess-palaeosol sequence of Dolní Věstonice (Czech Republic). Quat. Sci. Rev. 67, 17–38 (2013).ADS 
    Article 

    Google Scholar 
    66.Moine, O., Antoine, P., Deschodt, L. & Sellier-Segard, N. Enregistrements malacologiques à haute résolution dans les lœss et les gleys de toundra du pléniglaciaire weichselien supérieur: premiers exemples du nord de la France. Quaternaire. Revue de l’Association française pour l’étude du Quaternaire 22, 307–325 (2011).
    Google Scholar 
    67.Moine, O., Rousseau, D.-D. & Antoine, P. The impact of Dansgaard-Oeschger cycles on the loessic environment and malacofauna of Nussloch (Germany) during the Upper Weichselian. Quat. Res. 70, 91–104 (2008).Article 

    Google Scholar 
    68.Butaric, L. N., Stansfield, E., Vasilyev, A. Y. & Vasilyev, S. CT-Based Descriptions of the paranasal complex of Sungir-1, an Upper Paleolithic European. PaleoAnthropology 389, 399 (2019).
    Google Scholar 
    69.Stalling, D. et al. Amira: a highly interactive system for visual data analysis. Vis. Handb. 38, 749–767 (2005).
    Google Scholar 
    70.Prossinger, H. et al. Electronic removal of encrustations inside the Steinheim cranium reveals paranasal sinus features and deformations, and provides a revised endocranial volume estimate. Anat. Rec. Part B New Anat. Off. Publ. Am. Assoc. Anat. 273, 132–142 (2003).
    Google Scholar 
    71.Prossinger, H. & Teschler-Nicola, M. Electronic segmentation methods reveal the preservation status and otherwise unobservable features of the Mladeč 1 Cranium. In Early Modern Humans at the Moravian Gate: The Mladeč Caves and their Remains (ed. Teschler-Nicola, M.) 341–356 (Springer, 2006).
    Google Scholar 
    72.Weber, G. W. & Bookstein, F. L. Virtual Anthropology: A Guide to a New Interdisciplinary Field (Springer, 2011).
    Google Scholar 
    73.Fedorov, A. et al. 3D Slicer as an Image Computing Platform for the Quantitative Imaging Network. Magn. Reson. Imaging 30, 1323–1341 (2012).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    74.Gunz, P., Mitteroecker, P., Neubauer, S., Weber, G. W. & Bookstein, F. L. Principles for the virtual reconstruction of hominin crania. J. Hum. Evol. 57, 48–62 (2009).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    75.Betti, L., Balloux, F., Amos, W., Hanihara, T. & Manica, A. Distance from Africa, not climate, explains within-population phenotypic diversity in humans. Proc. Biol. Sci. 276, 809–814 (2009).PubMed 
    PubMed Central 

    Google Scholar 
    76.Roseman, C. C. Detecting interregionally diversifying natural selection on modern human cranial form by using matched molecular and morphometric data. Proc. Natl. Acad. Sci. U. S. A. 101, 12824–12829 (2004).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    77.Ramachandran, S. et al. Support from the relationship of genetic and geographic distance in human populations for a serial founder effect originating in Africa. Proc. Natl. Acad. Sci. U. S. A. 102, 15942–15947 (2005).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    78.R Core Team. R: A Language and Environment for Statistical Computing. (R Foundation for Statistical Computing, 2018).79.Adams, D., Collyer, M., Kaliontzopoulou, A. & Baken E. Geomorph: Software for geometric morphometric analyses. R package version 3.3.2. https://cran.r-project.org/package=geomorph. (2021).80.Schlager, S. Soft-Tissue Reconstruction of the Human Nose: Population Differences and Sexual Dimorphism, Anthropologie (Universität Freiburg, 2013).
    Google Scholar 
    81.Le Maître, A. & Mitteroecker, P. Multivariate comparison of variance in R. Methods Ecol. Evol. 10, 1380–1392 (2019).Article 

    Google Scholar 
    82.Rohlf, F. J. & Slice, D. Extensions of the Procrustes method for the optimal superimposition of landmarks. Syst. Biol. 39, 40–59 (1990).
    Google Scholar 
    83.Grunstra, N. D. S., Mitteroecker, P. & Foley, R. A. A multivariate ecogeographic analysis of macaque craniodental variation. Am. J. Phys. Anthropol. 166, 386–400 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    84.Izenman, A. J. Reduced-rank regression for the multivariate linear model. J. Multivar. Anal. 5, 248–264 (1975).MathSciNet 
    MATH 
    Article 

    Google Scholar 
    85.Aldrin, M. Multivariate prediction using softly shrunk reduced-rank regression. Am. Stat. 54, 29–34 (2000).
    Google Scholar 
    86.Mitteroecker, P., Cheverud, J. M. & Pavlicev, M. Multivariate analysis of genotype–phenotype association. Genetics 202, 1345–1363 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    87.Dormann, C. F. et al. Methods to account for spatial autocorrelation in the analysis of species distributional data: a review. Ecography 30, 609–628 (2007). More

  • in

    Fire-induced rock spalling as a mechanism of weathering responsible for flared slope and inselberg development

    Establishing the variables involved in rock weathering and fire behaviour is a key aspect of developing an accurate fire-induced rock spalling hypothesis. We expand on these variables by drawing on field observations and existing findings outlined below.Mechanical weatheringThe physical breakup and removal of rocks of varying hardness and degrees of weathering via mechanical weathering is the primary process that denudes and sculpts uplifted regions of Earth’s surface. Sub-critical cracking describes the slow propagation of microfractures through a rock in low-stress, near-surface conditions as a result of thermal stress, ice wedging, mineral alteration (volumetric expansion) and biomechanical processes such as root growth25. Sheeting is characterised by thick (0.1–1 m) layers of rock peeling off exposed surfaces roughly parallel to the surface topography. There is debate as to whether sheeting is related to gradual unloading and release of stresses near the surface or a combination of other stresses26,27. The physical process of thermal expansion and contraction of rocks over thousands of years is responsible for the thinner, gradual flaking (exfoliation) of rock surfaces, which can be observed all over the surface of inselbergs in central Australia5 and presumably the main process responsible for the slow rates of erosion at the tops of inselbergs14.Fracture propagation is facilitated by the presence of water28, which helps to break chemical bonds leading to more fractured rock at shallow, superficial levels of the crust. Thus, rocks are generally more fractured in the superficial, near-surface environments than at deeper levels. Spontaneous rock-burst events were captured on video during a hot summer of 2014 in California when a granite dome at Twain Harte began explosively exfoliating29. Extreme thermal stresses associated with fire and lightning strikes are acknowledged as mechanisms of critical stress fracturing in rocks but generally considered to be a rare form of rapid and catastrophic mechanical weathering25. Our observations of rock surfaces following wildfires are that fire-related rock spalling is a commonly observed phenomenon wherever high-intensity fire has swept across rocky outcrops (for example, Figs. 5 and 6). We suggest that fire-spalling is a significant driving mechanism of physical weathering in arid, fire-prone environments and has been overlooked as an important agent of geomorphic change and landscape evolution.Fig. 6: Existing and new models of flared slope development using Uluru as an example and a graphical representation of the formula for erosion due to fire-spalling in different fire regimes.a The model of Twidale and Bourne 199822 involving subsurface weathering via shallow groundwaters to form soft regolith or unconsolidated soil that is subsequently removed by erosion and landscape lowering; b a new model of flared slope development via fire-induced rock spalling associated with episodic wildfire events. Note the charcoal on the recently burnt trees is the same height as the flared slope; c inverse correlation relationship between rates of erosion E(t) plotted against fire recurrence interval (t) using the formula E = W.A/t (see https://www.geogebra.org/calculator/uwa68amr). Rock-type and fire temperatures tend to control the thickness of spalled sheets (W) whilst fire intensity and duration are the main controls on the surface area spalled (0–100%). The inverse correlation of rates of fire-spalling erosion with average recurrence intervals (t) results in an increasing rate of weathering with smaller average fire recurrence intervals. Fire recurrence intervals are largely controlled by climatic and vegetation regimes and examples from Figs. 2 and 4 are shown and plotted on the graph according to the fire recurrence interval for that region.Full size imageWildfire temperaturesA detailed study of high-intensity wildfires in eucalypt forests of SW Australia30 revealed that these fires burn at temperatures between 300 °C at the tips of visible flames and up to a maximum of 1100 °C near the flame base, while temperatures of up to 1330 °C were recorded in Canadian crown fires31. Experimental fires conducted in jarrah forests of south-west Western Australia (Project VESTA) reveal that temperature correlates directly with the rate of spread, fire intensity, flame height and surface fuel bulk density30. This single case study measured the average flame-front residence time in eucalypt forest fuels of about 37 s. However, radiant heat and hot winds fanning out in front of the fire have the ability to pre-heat the rock surface and vegetation before and after the arrival of the fire front31 particularly along cliff lines.We report the first documented case of spalling in basalt from Mount Kaputar in northern N.S.W. (Fig. 4d). Basalt is a high-temperature volcanic rock with no quartz content. Fire-spalling was minimal across most of the outcrops and generally consisted of dislodged pyroxene phenocrysts. However, a few basalt outcrops adjacent to nearby fallen burnt logs were intensely scorched and displayed thin (1–4 mm) spalled flakes of basalt indicating that fire-spalling is not restricted entirely to quartz-rich lithologies. In mature eucalypt forests with large, woody fuels, termed ‘down wood’32, fires can burn or smoulder for days, providing prolonged heat required for extensive spalling. Some cliff faces record distinct ghosted impressions of nearby tree trunks with the resultant spalling hollowing out the line and shape of a tree trunk in an otherwise flat, vertical rockface (Fig. 5a—right-hand side). A discarded brown glass bottle adjacent to the basalt spalling had softened and undergone ductile collapse and partially melted. The glass had cooled slowly enough to avoid shattering indicating prolonged heating from the smouldering downward. This glass was collected and placed in a high-temperature oven where it was observed to become soft and malleable at 750 °C and completely collapsed and started melting at 830 °C indicating that this fire sustained ground surface temperatures of between 750 and 830 °C next to the smouldering tree and fallen logs.Fire-induced rock spallingFire is known to accelerate the rock flaking process25,33,34,35,36,37,38 resulting in rock spalling36,39 and shattering38. Conflagration leads to the rapid disintegration of the rock surface due to the differential expansion of the hot rock surface compared with the cooler interior. Fire-spalling can remove between 10 and 100% of the burnt rock surface in sheets between 5 and 50 mm thick37 depending upon rock type and fire intensity. Detailed measurements of post-fire rock spalling after the Esperanza chaparral fire in California revealed that 7–55% of the granodiorite boulder surfaces were spalled to a depth of 11–24 mm33. They found that the thickest spalled sheets occurred around the flanks of the boulders and cautioned that, if sampled for cosmogenic dating, these freshly exposed, spalled surfaces would produce a significant underestimate of exposure age. These figures match our own observations of spalled granite following the fires in Cobargo, Moonbi and Thredbo N.S.W. (Fig. 4) in which granite boulders spalled sheets between 5 and 50 mm thick, while sandstones from the Blue Mountains spalled sheets between 5 and 22 mm thick (Fig. 5).Quartz expands four times more than feldspar and twice as much as hornblende and shows a 3.76% volume expansion when heated from room temperature to 570 °C40. Thus, quartz-rich rocks have a greater expansion potential and are more likely to spall. Experimental studies41 show that rock elasticity reduces significantly at temperatures as low as 200 °C, over a relatively short period of time. Goudie et al.41 postulated that rock outcrops subject to intense fires would have an increased susceptibility to erosion via spalling and weathering. However, these findings have not been applied to broader landscape models or the formation of flared slopes around inselbergs.Fire regimesThe potential rate of erosion due to fire-spalling at the base of inselbergs will be strongly influenced by fire severity and recurrence intervals, which vary greatly across Australia from 1- to 5-year recurrence intervals and 100-year intervals and >10,000 kW m−1 for tall, open forests of the cool, temperate south42. Accurately calculating the fire return period is difficult due to limited historical records but estimates for arid, spinifex-dominated regions such as the Tanami are in the order of every 7–9 years43. Analyses of satellite data between 1998 and 2004 revealed that 27% of arid Australia burnt at least once over that 6-year period44. Figure 1a shows the areas burnt in Australia since 2001. The surface area of the rock affected by spalling depends on the rock-type and severity of the fire. Fire severity is strongly determined by the bulk density45, height and proximity of the adjacent vegetation to rock surfaces and the surrounding slope gradient. All the examples of flared slopes shown in Figs. 1 and 2 reveal a close relationship between the height of the encroaching vegetation and the height of the concavity. Katter Kich, Pildappa Rock and Walga Rock form distinct embayments where the flared slopes are most pronounced, which appear to promote denser, taller vegetation growth and hence greater fuel loading and thus higher fire severity (Fig. 3).The impermeable nature of inselbergs results in rapid and efficient water runoff from the bare-rock surface before draining into adjacent, thin soil profiles. This creates a “roof and gutter” effect around the periphery of many inselbergs which creates permanent water holes and shallow groundwater within easy reach of deep-rooted plants. Inselbergs create important geodiversity within otherwise flat landscapes and thus host important niche ecosystems that add to the overall biodiversity of desert regions46. Accessible groundwater around the fringes of the inselbergs encourages denser, taller vegetation at the interface between bare rock and unconsolidated surficial sediments which in turn increases the fuel load. Inselbergs are prominent topographic features in flat deserts that provide sources of permanent water, abundant flora and fauna and shelter.Grassy plains and savannahs of central Australia are characterised by regular, low-intensity fires with fire recurrence intervals between 1 and 5 years42. However, where these fires encounter inselbergs they move into thicker, taller vegetation regimes with greater fuel loads (Figs. 2 and 3). Inselbergs are topographic highs within relatively flat landscapes and the slight increase in slope gradient around the inselberg will accelerate and intensify an approaching fire front. Steep slopes around the margins of inselbergs possibly act as chimneys, drawing in hot air from the surrounding plains and channelling them upwards. These factors possibly help to draw in fires from the surrounding plains into and around topographically high inselbergs where the intensity is enhanced at the base of inselbergs due to the denser vegetation and greater fuel load.A fire-induced spalling weathering formulaFire-spalling leads to physical weathering (erosion) and disintegration of exposed rock faces36,37 as shown in Figs. 3–5. The degree and extent of spalling on different rock types and at varying temperatures and durations is less well understood and requires further experimental work41 but essentially fire-spalling is a function of fire intensity (temperature), duration and rock type with quartz-rich rocks having a greater propensity to expand and spall40.We developed a simple fire-spalling erosion formula to estimate a long-term rate of fire-induced spalling that broadly considers the net result of fire-spalling in terms of the thickness (width) of the spalled flakes produced by a single fire event, the total surface area as a percentage of the exposed rock face affected by a single fire-spalling event, and the average fire recurrence interval for a given region. Together these variables can give some indication as to the long-term rates of erosion due to fire-spalling at the base of an inselberg or cliff face where there is significant vegetation to fuel a wildfire.The formula for erosion due to fire-spalling.$$E = frac{{W times A}}{t}$$
    (1)
    where, E = rate of erosion due to fire-spalling (mm yr−1), W = average width (thickness) of spalled sheets (mm) for a single fire event. Dependent on rock type (quartz content and texture), rock strength, fire temperature and duration, A = area of rock surface affected by fire-spalling as a percentage (%) of total surface area. Dependent on temperature and duration of the fire, t = average fire recurrence interval (years). Determined from regional, historic fire records or palaeofire records for longer time periods. Dependent on vegetation, climatic regimes and land management practices.Limitations: this equation applies to a near-vertical rock face at ground level which receives uniform heat radiation from a fire that burns right up to the rock face at ground level. The intensity of radiation will vary according to the dynamics of the fire front, fuel loading, vegetation type and slope gradient. Flame height is not critical to the overall rate of retreat of the cliff face because fire-spalling at the base of the cliff will gradually remove material supporting the cliff resulting in over-steepening at the base of the cliff and periodic sheeting and rockfalls as the overhanging cliff face becomes gravitationally unstable. The formula assumes that fire recurrence intervals have remained constant but we know from palaeofire records47,48 that fire intensity and recurrence intervals are largely controlled by long-term climatic variations which affect vegetation types and thus fuel loads. Below, we give two end-member examples of long-term rates of spalling-related erosion for low and high-frequency fire regimes that may apply to temperate and arid environments, respectively.Example 1. Low intensity, irregular fire regime. In this scenario, the average fire against a cliff results in spalling and flaking of ~10 mm sheets off ~20% of the surface area at ground level during a single fire event. Fire recurrence interval is one event every 50 years.$$E = frac{{W times A}}{t} = frac{{10;{mathrm{mm}} times 0.2}}{{50}} = 0.04;{rm{mm}};{rm{yr}}^{ – 1} = 40;{rm{m}};{rm{Ma}}^{ – 1}$$Example 2. High intensity, high-frequency fire regime. In this scenario, the average fire against a cliff results in spalling and flaking of ~20 mm sheets (Fig. 5) off ~80% of the surface area at ground level. Fire recurrence interval is one event every 5 years.$$E = frac{{W times A}}{t} = frac{{20;{mathrm{mm}} times 0.8}}{5} = 3.2;{rm{mm}};{rm{yr}}^{ – 1} = 3200;{rm{m}};{rm{Ma}}^{ – 1}$$In an intensely fire-prone environment such as example 2 above, it may only take about 625 years of fire-induced spalling to weather out a 2 m deep flared slope at the base of a vertical rock face. The point at which undercutting due to fire-spalling would trigger massive sheeting of the unsupported, overhanging rock ledge and subsequent rockfall event is not well constrained but some of the flared slopes around Uluru and Walga Rock are at least 2–3 m deep (Fig. 2h).Sediment production ratesIf rates of erosion due to fire-spalling around the periphery of an inselberg are orders of magnitude greater than those across the top of the inselberg, then this has implications for mechanisms of sediment production in flat, arid environments like Central Australia.Spalling of a 20 mm sheet from a 1 m2 area of granite with a density of 2691 kg m−3 will yield 0.02 m3 (53.82 kg) of rock. A flared slope around an inselberg such as Uluru with a circumference of ~10,000 m and a height of 2 m, would produce 400 m3 (1,076,400 kg) in a single event in which 100% of the 2 m high flared slope was spalled. Obviously, 100% spalling of the entire flared slope would never occur in a single event, so we use the long-term erosion rate based on fire recurrence intervals and average area spalled calculated in Eq. 1. This long-term estimate of sediment production from a single inselberg is compared with quantitative measurements of spalled granite surfaces sampled after the 2019–2020 fires in Cobargo on the south coast of N.S.W., Australia.The formula for sediment production.$$S_{rm{FS}} = P.H.E$$where, SFS = sediment production from fire-spalled rock surface (cubic metres per year), P = perimeter of the inselberg (metres), H = height of the flared slope around the inselberg as determined by vegetation and fire height, E =  rate of erosion due to fire-spalling (Eq. 1).Fire-spalling sediment production around the periphery of an inselberg such as Uluru with a perimeter of roughly 10,000 m and flared slope height of 2 m, would be$$S_{mathrm{FS}}=10,000, {mathrm{m}}times 2, {mathrm{m}} times 0.0032, {mathrm{m}}, {mathrm{yr}}^{-1}=64, {mathrm{m}}^{3}, {mathrm{yr}}^{-1}=172,224, {mathrm{kg}}, {mathrm{yr}}^{-1}$$This can be standardised to give a volume of rock spalled per year per square metre, which is the same as the erosion rate but in cubic metres per year. Given the density of the rock (granite = 2691 kg m−3 and compacted, meta-arkose sandstone (Uluru) are about the same) we can calculate the average mass of rock spalled each year. In the above scenario, it equals 8.61 kg per square metre per year.The rate of background (non-fire related) sediment production (SBA) from erosion of the surface area of an inselberg such as Uluru is equivalent to the surface area (~3,440,000 m2) multiplied by the average denudation rate of ~0.3–0.6 m/Ma (0.0003 mm yr−1) as established from cosmogenic studies.$$S_{mathrm{BA}}=3,440,000, {mathrm{m}}^{2}times 0.0000003, {mathrm{m}}, {mathrm{yr}}^{-1} =, sim! 1, {mathrm{m}}^{3}, {mathrm{yr}}^{-1}=2691, {mathrm{kg}}, {mathrm{yr}}^{-1}$$This equates to only 0.00081 kg per square metre per year. We estimate that fire-spalling on a 2 m high perimeter produces in the order of 64 times more sediment than the erosion of the entire surface of the inselberg due to background (non-fire related) processes.Spalled granite material was collected from two locations following the 2019–2020 fires in the Cobargo region along the south coast of N.S.W. (Fig. 4) to assist in quantifying the amount of rock spalled from a single rock face. Spalled surface area can be estimated simply by measuring the maximum height and width of the spalled surface in the field. We also created a digital surface using photogrammetry MetaShapePro software to calculate a precise surface area of the spalled surface. All of the spalled material was weighed and a standard granite density of 2691 kg m−3 was used to determine total volume. Generally spalling occurs as thin (1–3 cm) sheets but occasionally includes large 20–30 cm thick slabs that substantially add to the overall weight of spalled material. Whilst complete spalling of a 2 cm sheet from one square metre of granite surface will produce 53.82 kg m−2 of rock, our two sites (Cobargo2 and 3A) produced 23.65 kg total (16.89 kg m−2) and 41.60 kg m−2 total (33.55 kg m−2), respectively, indicating an average spalling thickness of 0.63–1.25 cm although the spalled thickness was highly variable with spalling distinctly more prominent along sharp or protruding edges than on flat surfaces. Large logs or tree trunks have the potential to continue burning long after the fire front moves through and their presence near rock surfaces significantly increases the degree of spalling. The most intense spalling was observed at Moonbi Granite near Tamworth in northern N.S.W. where some granite boulders had 100% surface spalling up to 2 m above ground level and not one but several spalled sheets (5–20 cm total thickness) exfoliating off during a single, intense fire creating several hundred kilograms of spalled rock debris on the granite surface facing the fire front (Fig. 4). Likewise, lichen coated granites from Australia’s most elevated alpine regions in the Snowy Mountains (Thredbo) displayed intense spalling but were covered in snow six months later. The fire recurrence interval for these alpine regions is probably in the order of one every 20–100 years thus the effects of fire-spalling are less pronounced than in arid regions and less evident than other forms of fluvial or chemical weathering that dominate in wetter climates. However, the abundant spalled surfaces shown in Fig. 4 reveal that large, intense fires such as the Black Summer fires of 2019–2020 will result in significant erosion and sediment production even in alpine environments. More

  • in

    The first record of exceptionally-preserved spiral coprolites from the Tsagan-Tsab formation (lower cretaceous), Tatal, western Mongolia

    SizesAs from the measurements, all collected coprolites vary in sizes (Table 1). The smallest and complete specimen is IVPP V 27,545 (Fig. 2D–G), and while IVPP V 27,550 (2 V-Z) is multiple time larger. The maximum length for specimen IVPP V 27,544, IVPP V 27,546, IVPP V 27,547 and IVPP V 27,549 have not been determined due to their incompleteness.Table 1 Biometrical and morphological features of spiral coprolites from Tsagan-Tsab Formation (Lower Cretaceous), Tatal, western Mongolia. Paul Rummy, Kazim Halaclar & He Chen.Full size tableSurface adhesion and marksAll specimens contained some degree of bone fragments and rhomboidal-shaped ganoid scales adhered to the coprolite surfaces (Fig. 3). Additionally, all specimens have smooth surfaces with little abrasion. The inner coil lines of specimen IVPP V 27,549 adhered with a matrix of red clay with silt (Fig. 2S–U). Only specimen IVPP V 27,550 has been seen with concentric cracks (Fig. 2V–Z). Bite marks have also been found on specimen IVPP V 27,545, in which these traces were short, parallel, shallow and isolated. They have been formed from 3 furrows of roughly 3.8 mm long and 0.3 mm deep (Fig. 4).InclusionsThrough CT scans and surface observation, we noticed that all specimens contained bone fragments and scales of varying degrees (Fig. 5). We were unable to identify the bones in detail for specimen IVPP V 27,544, IVPP V 27,546, IVPP V 27,547, IVPP V 27,548, IVPP V 27,549 and IVPP V 27,550, as they were excessive in amount and extremely fragmentary. On the contrary, for specimen IVPP V 27,545, we noticed a rather complete bone structure, such as the ribs and a segment of an infraorbital (Fig. 5H–N). SEM photograph from one random point of specimen IVPP V 27,545 yielded results of the existents of pollen grain (Fig. 6C).BoringsSurface borings of invertebrate burrowing can be seen in 2 spiral coprolites, namely IVPP V 27,547 (Fig. 2D–G) and IVPP V 27,550 (Fig. 2V–Z). CT scans revealed that the borings of specimen IVPP V 27,550 did not intrude internally, and it was the same for some of IVPP V 27,547 as well (Fig. 7). Specimens IVPP V 27,546, IVPP V 27,547, IVPP V 27,548 and IVPP V 27,549 are shown to have traces of internal borings (Fig. 5C–F).EDS analysesIn this work, in regards to Tatal’s coprolites, the mineral elements were examined by using EDS and the photos were taken with SEM. Analyses was conducted on 2 specimens (IVPP V 27,546 and IVPP V 27,545) with two sample points for each. All 4 samples showed high peaks of calcium and phosphorus. EDS results of specimen IVPP V 27,546 (Fig. 6A–B) and specimen IVPP V 27,545 (Fig. 6C–D) gave similar atomic compositions. They were mainly composed of Ca, P and O and small peaks that belong to Nb, Si, C, K, Fe and Al. We have also described a potential pollen structure under SEM image (Fig. 6C). This possible pollen structure in specimen IVPP V 27,545 (Fig. 6C) showed different atomic elements from the other EDS results, where it contained high peaks of Na and Cl.Taphonomy inferencesNo signs of abrasion were found on all of the coprolites. Coloration of the coprolites varied, thus, indicating they were buried in different sedimentary conditions. Through the shape of the coprolites, we can deduce that they have indeed spent different amounts of time or phases in water bodies before burial (see above description/discussion). Meanwhile, specimen IVPP V 27,550 showed shallow coil deepness, therefore, this indicates that it was buried rapidly after excretion.Discussion and interpretationThere are several pivotal evidences that corroborate to fecal origins of the Tsagan-Tsab Formation material: (1) basic morphology; (2) general shape and size (3) inclusions of the fecal matter; (4) high calcium and phosphorus content; (5) bioerosional scars; (6) borings and cavities; (7) concentric cracks.The fundamental puzzle in the studies of coprolite is the difficulty in identifying the potential producer, which can be due to their nature and preservation. Also, that includes the methods used to deduce them with their producer, which were done by inferring with various forms of relationship based on stratigraphy and geographical relationships, as well as on neoichnology studies7,23,54,55. Such problems similarly arose in our context as well, and the materials were collected from a stratum that were interpreted as lake deposit margins, thus, suggesting an amphibious or aquatic producer. The paleoenvironment correlates with the findings of pterosaur fossils such as the Noripterus44 or argued as ‘Phobetor’56, and the diets of these pterosaurs were dependable on the lake environment57,58,59,60. Above all, and more importantly, that the shape of the coprolite has to be intact in order to represent the shape of the internal intestine of the producer, whereby, anatomically it can lead to a certain biological aspect and digestive system of the organism. Despite these, there are on-going controversies on the origin of the spiral shaped bromalites in regards to whether or not they signify fossilized feces, or they are the cololite that was formed within the colon6,21,23,61,62.Spiral coprolites are producer of an animal with spiral intestine valves to increase the surface area of absorption, to slow down food movement in the bowel to maximise nutrient absorption, which has a significant strategy in surviving uncertain and harsh environment conditions28,63,64. Referring to past literature, it is generally agreed upon that the spiral shape is the only distinctively coprolite morphology, whereby it has been regarded as a true coprolite and can be correctly associated to the source animal, such as a range of fishes in particular6,22,52. Many primitive bony fishes (except those of teleosts), fresh water sharks (elasmobranches), coelacanths, Saurichthys, sturgeons and lungfishes are known to have the spiral valve intestine51,64,65,66. Also, Price67 suggested that the amphipolar form could have been derived from palaeoniscoids. Additionally, Romer & Parsons68 noted that the spiral valves are secondarily lost in teleost and tetrapods, while Chin69 noted a few teleosteans still possessing them.The spiral coprolites collected for this study are mainly amphipolar in shape and one in scroll. As we know, generally heteropolar spiral coprolite are produced by sharks, which have complex spiral valves62. Therefore, we can exclude those in the family of elasmobranches as the potential producers and this can also be supported by the non-marine geological settings of Tsagan-Tsab Formation. But it is also noteworthy to mention that in previous studies, some workers have conducted observations on sharks that were kept in tanks, and were not been able to find any spiral fecal pellets. The reasons given were that the sharks’ eating habits could have changed due to the tank environment, which would have differed from the natural marine environment. Also, modern day sharks are totally unrelated to the ancient Permian pleuracanth sharks6. Despite these, evidence of spiral fecal pellet can still be observed in some of the present-day fishes, such as the African lungfish Protopterus annectans, the Australian lungfish Neoceratodus forsteri, the long-nosed gar Lepisosteus osseus and the spotted gar Lepisosteus oculatus6,70,71,72. As for scroll coprolites, it is generally known to be produced by animal with longitudinal valves (valvular voluta), whereby the valves naturally rolls in upon itself , in a way that it maximises nutrient absorption8,9,17,18. Gilmore17 in his work mentioned that this type of valve must be primitive than the transverse valve (valvular spiralis), which could be a modification of the previous ones. This form is especially known to sharks of carcharhiniforms73, and it is evident that it could have been associated with sarcopterygian53, as well as anaspid and thelodont agnathans17.In this study, we recognised four new ichnotaxa for all the seven coprolite specimens. Assigning four new ichnotaxa does not conclude that the coprofauna are of four different types of animals. Considering there are two distinct morphologies, which are the amphipolar spiral and scroll, we can deduce that at least two animals can produce these coprolites. But we have to carefully consider that diverse diets at different times for the same animal can often be variable, and soft fecal materials can range disparately after defecation, as well as taphonomy influence74,75. Specimen IVPP V 27,550 is remarkably huge and its producer should be a massive animal since large animals could produce small excrement, but small animals would not be able to produce big excrement52,54. Moreover, since there are no relevant fossils fauna found in the locality, we were unable to exactly identify the specific producer, rather, we deduced with relevant sources. However, we do know that both amphipolar spiral and scroll coprolites can be attributed to certain types of fishes. As of these, we can conclude that the coprolites were produced by fishes in different sizes. Specimen IVPP V 27,545 differs from the rest by its shape and size, which makes prediction even harder, because it could be produced by either large or smaller animals.CT scans revealed that bony inclusions are evident in all of the coprolites (Fig. 5). However, except in specimen IVPP V 27,545, the bones in the rest of the coprolites are fragmentary. Specifically, bones in specimen IVPP V 27,545 are rather unaffected by the acidity of the digestive enzyme and these were evident by the presence of clusters of entire bones in the coprolite (Fig. 3A–C), as contrast to the fragmentary bones in the rests of the coprolites. Furthermore, we identified an infraorbital bone of a fish. CT scans revealed that the infraorbital bone has a sensory canal where it branches off at both ends (Fig. 5M–N). With these, we can indicate that the producer of specimen IVPP V 27,545 poorly masticated the prey and also had a rather low gut digestion for food28,55,76,77,78. Through these results, we can infer the digestive strategies of the producers were in correlation with food intake and digestion process, as discussed in Barrios-de Pedro & Buscalioni77. Specimen IVPP V 27,545 might belong to the first type of digestive strategy, whereby the producer has limited food processing in the mouth and the food stays in the digestive system for a short period of time. This strategy is regarded to be efficient in conditions where food sources are abundant and the nourishment levels are sufficient79. The rest of the coprolites possibly belong to the second digestive strategy, as the bone content is fragmentary. This suggest the producer might have limited mastication with improved digestive assimilation and longer gut time to favour better absorptions of nutrients55,80,81,82,83. The third type of digestive strategy does not imply in our study. It is also noteworthy to mention that the quantity of the inclusions is not correlated to the size of the coprolite, rather, it is dependable on the above-mentioned biological variables28,84.Carnivorous coprolites are normally composed of calcium phosphate and other organic matter, but it is important to be aware that the initial compositions are usually altered during fossilization processes33. Meanwhile, the excretion of herbivores is generally lacking in phosphates and their fossilization are mostly dependable of the mineral enrichment85. Through the morphological shape, the density of bone and scale inclusions on the surface from the CT scans, we can directly assume that these coprolites are inevitably produced by carnivorous organisms. Despite that, we still conducted SEM–EDS tests on two specimens, IVPP V 27,546 and specimen IVPP V 27,545 (Fig. 6), in order to determine its mineral content, and to prove them as a valid coprolite material because we were not able to compare these materials to any attached locality matrix at the time the study. The reason for that was because the specimens were collected almost two decades ago and they were very well-kept in the archives throughout these years. As predicted, all 4 samples gave higher content of Ca and P, thus, there is no doubt that they are indeed fossilized fecal materials. Also, in regards to the SEM–EDS on specimen IVPP V 27,545 (Fig. 6C–D), when randomly pointed to a particular structure, it yielded unusual results from the rest, in which the EDS peaks are composed of Na and Cl. At the same time, the SEM image potentially showed a pollen grain like structure. Hollocher and Hollocher86 documented a pollen image by using SEM, which brings our potential pollen image (Fig. 6C) dimensionally compatible with their sample. Although specimen IVPP V 27,545 is produced by an unidentified carnivorous vertebrate, it is common for carnivore coprolites to have plant remains within them. Also, it is known that spores and pollens are exceptionally well preserved within the encasement of calcium phosphate, which inhibits sporopollenin degradation87. Various reasons can be inferred for the presence of the pollen in specimen IVPP V 27,545, to which it could either be by accident or by preying on an herbivorous animal. Furthermore, it could also be through the adhesion on the excrement when the fecal is still fresh88. Pollens are in fact valuable information provider for paleoenvironment reconstruction, as well as for understanding the vegetation state of a particular era87,89,90,91,92. Hence, further palynology analyses are needed for future work.EDS mineral composition and coprolite coloration can be correlated to a certain degree, in which it could also explain depositional origin27. Most of the Tatal’s coprolites are pink-whitish in color, which is highly associated with the presence of calcium through its carnivorous diets93,94,95,96. The dark colors can also be due to the presence of iron or it could also be due to complete phosphatisation23,27. However, a large part of the colorations was influenced by diagenesis27,28.Traces of burrows are evident on the surface of specimen IVPP V 27,547 and IVPP V 27,550, but CT scans revealed internal traces burrowing did occur in specimen IVPP V 27,546, IVPP V 27,547, IVPP V 27,548 and IVPP V 27,549 (Fig. 5). Since not all possible burrows were dug-in, we gave the term ‘pseudo-burrow’ on those burrows that were abandoned in the early stages. For example, on all of the burrow traces in specimen IVPP V 27,547, only one traces showed burrowing holes, while the rest did not form a hole. While those specimens with internals, but without any traces on the outer surface, this can be explained by taphonomy processes, whereby the outer surface is covered with sedimentary and non-differentiable. It was reported in Tapanila et al.97, that marine bivalves are potential makers of the burrows in coprolites by expanding the diameter of the hole as they dig in, although Milàn, Rasmussen & Bonde98, reported a contradictory example, where the holes were indeed constant in diameter. In our study, we couldn’t determine if the holes were constantly in diameter or not. Numerous tiny holes were visible on all of the coprolites surface, as well as within it, and these were most probably caused by gases within the fecal matters. These holes can be called as microvoids or ‘degassing holes’, which contain gases trapped during digestion74,99,100. Microvoids are quickly filled with water when fecal matter is excreted from the animal body, thus making the fecal becoming heavy and sinking to the lake floor74.A series of three parallel furrows or bioerosional scars were evident on the surface of specimen IVPP V 27,545 (Fig. 3). Those lines only occurred once without any repetition on the rest of the surface. The information from these furrows were insufficient to deduce any potential biters, as widely discussed in the work of Godfrey & Palmer101, Godfrey & Smith102, Dentzien-Dias et al.103, and Collareta et al.104. On the other hand, deducing from the dented surface on the bitten marks, we predicted that the marks were most probably made by the biting pressures from the fish mandibles, which may indicate coprophagous behavior. The biting could have happened on the lake floor just before sedimentary deposition. Since the bitten marks are on the surface, this probably suggests unintentional scavenging and was eventually aborted during food search.In general, coprolites can be transported from the original place through various modes25 and this can be evident by the traces of abrasion51,65. However, in Tatal’s coprolites, there were little or almost no marks of abrasion. Yet again, this supports our hypothesis that these coprolites were excrements in shallow waters, such as in the lake banks with little turbulence and current, where the fecal matter was dropped in-situ after excrement. As stated in previous literature105,106, radial and concentric cracks are also evident on the surface of specimen IVPP V 27,550, therefore, these indicate that the coprolite was excreted on a very shallow environment where the water body was vastly evaporated and left for subaerial exposure before embedment. This phenomenon caused the coprolite to dehydrate through the cracking, and shrinking occurred in a low magnitude process while retaining its overall shape27,54,107. Previous authors have also discussed that the cracks could possibly be due to synaeresis under certain conditions27,54,108.It has been frequently reported in records that almost all spiral coprolite fossilization from various Phenerozoic ages have occurred in low-energy shallow marine environments54. Feces that are being excreted in this humid environment have a higher chance of preservation due to the rapid burial, as well as on the acidity level of the water bodies5,7,109,110,111. There are also several crucial factors that are involved in fecal fossilization. Among them, one of the most important criteria includes the content and composition of the fecal matter, and those of carnivorous diets tend to form coprolites than those who consumed an herbivorous diet75. As mentioned in Dentzien-Dias et al.111, there are three main stages involved in a coprolite taphonomy history, which include stages before final burial, after the final burial and after exposure. In accordance to this, we introduced the usage of phases to discuss the spiral coprolites morphologies in this study (see material and methods). The phase concept of spiral coprolites disentanglement has been widely discussed in early days by various workers6,22,70. Coprolite specimen IVPP V 27,544 and IVPP V 27,547 are considered as Phase 1, as the coils are not deep, and this can be explained as during excrement, there’s a mucosal membrane covering the surface of the fecal matter and embedment occurring rapidly, thus retaining most of its surface structure. Although there are signs of disentanglement, we predict that the uncoiling on the surface was not by natural processes, but has been caused by a breakage after on. Both of these two coprolites could have been large in actual size. Similar explanations can be given to specimens IVPP V 27,548 and IVPP V 27,550, whereby the coils are shallow, thus, classifying them as to had occurred in Phase 1. We classify specimen IVPP V 27,546 and IVPP V 27,549 as Phase 2, in which the spaces between the coils of IVPP V 27,546 were slightly separated and in IVPP V 27,549, they were strongly separated. Both of these specimens could have spent more time in water bodies before burial. Specimen IVPP V 27,545 does not provide any external information in regards of phases approach because of its non-spiral morphology. While it is also worthwhile to mention that none of them have spent sufficient time in the water bodies in order to possess the Phase 3 structure. Through these, we can also conclude that smaller coprolites are much complete while bigger coprolites tend to easily break-off. However, having mentioned that, the preservation of specimen IVPP V 27,550 is indeed valuable.Through the above morphological points, we predict that the amphipolar spiral coprolites could have belonged to groups of either prehistoric lungfishes or Acipenseriformes (sturgeon and paddlefish). Another aim of this work is to portray the existence of possible prey-predation relationships from the collected coprolites. In order to narrow down the identity of the potential producer and possibly the prey, we looked into some related fauna list from past literature. Geological settings have indicated that the Lower Cretaceous Tsagan-Tsab formation is not only recorded in the area of Tatal, but also in other regions of Mongolia as well36. There are two possibilities on the deduced prey and predator, they are either of Asipenceriformes—Lycopteriformes relationship or Asipenceriformes—Pholidophoriformes relationship. We suggest Pholidophoriformes as a much potential prey than the Lycopteriformes in the Tsagan-Tsab Formation, and the reasons will be explained thoroughly. As for the producer, we knew that Asipenceriformes are largely known from the Lycoptera-Peipiaosteus (Asipenceriformes) Fauna or the “Jehol Fauna”, as these assemblages of fishes were not only abundant in the Lower Cretaceous Yixian Formation of northeastern China, but also widely distributed over the region of eastern Siberia, Mongolia, northern China and northern Korea112. It is also noteworthy to mention that the Tsagan-Tsab formations and the Yixian formation were similar in geological age. In the same context, Jakolev35 described Stichopterus popovi (Asipenceriformes) and recorded amphipolar spiral coprolites from the Aptian lacustrine of Gurvan-Eren Formation of Mongolia , a locality that is close to Tatal. Although there are differences in the geological period of Tsagan-Tsab and Gurvan-Eren Formation, it is highly possible that Asipenceriformes existed in these areas. Furthermore, Asipenceriformes are shown to have spiral valves113, and this can be further proven with the work of Capasso64 on Peipiaosteus pani, thus, contributing to the morphology of the spiral coprolites. With these, we strongly suggest that the amphipolar spiral coprolites of Tsagan-Tsab Formation and for Gurvan-Eren Formation to belong to Asipenceriformes. As for prey, we know from existing literature that there is a close relationship between Asipenceriformes and Lycoptera, as evident in the name Lycoptera-Peipiaosteus Fauna. Yondon et al.36 reported Lycoptera middendorfii, a form of small freshwater Teleost fish from the Eastern Gobi—Tsagan-Tsab formation. But, it was clearly mentioned that Bon-Tsagan/Bon-Chagan (Fig. 1) is the westernmost locality of Lycoptera in Mongolia114. Another fact that was taken into account for the possible prey is the shape of the scales found in the inclusions, whereby Lycoptera are known for their cycloid shaped scales, while the ones in our specimens are more towards rhomboidal-shaped ganoid scales. These facts crucially eliminate the possibilities of Lycoptera for the Tsagan-Tsab fauna. With this, we further examined Jakolev35′s works and discovered the species that he described, Gurvanichthys mongoliensis (Pholidophoriformes) from the Gurvan-Eren Formation has rhomboidal-shaped ganoid scales. The size, shape of the scale and the nature of this fish fits well as a prey for the Stichopterus popovi (Asipenceriformes). Through these interpretations, we can possibly infer that the spiral coprolites in our study might have belonged to Asipenceriformes and Pholidophoriformes as the prey, which could further affirm the occurrence of prey-predator inter-relationship in the Lower Cretaceous of Tsagan-Tsab Formation.As for the sole scroll coprolite in this study, we do not intend to further deduce any detailed possibilities. Based on other works, chondricthyans origins or a sarcopterygian for scroll coprolites were suggested18,53,but such deduction is difficult to be purported in our studies as there is a lack of such fossil materials in the locality and surrounding localities. The chances of the underived producer to be a sarcopterygian is much higher than to be a chondricthyan, mainly due to its geological settings. The discovery of the single scroll coprolite can be a window opening to many paleontological questions for Tsagan-Tsab Formation. More

  • in

    Angiosperm pollinivory in a Cretaceous beetle

    1.Power, A. G. Ecosystem services and agriculture: tradeoffs and synergies. Phil. Trans. R. Soc. B 365, 2959–2971 (2010).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    2.Huang, D.-Y. et al. New fossil insect order Permopsocida elucidates major radiation and evolution of suction feeding in hemimetabolous insects (Hexapoda: Acercaria). Sci. Rep. 6, 23004 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    3.Grimaldi, D. A., Peñalver, E., Barrón, E., Herhold, H. W. & Engel, M. S. Direct evidence for eudicot pollen-feeding in a Cretaceous stinging wasp (Angiospermae; Hymenoptera, Aculeata) preserved in Burmese amber. Commun. Biol. 2, 408 (2019).4.Bao, T., Wang, B., Li, J. & Dilcher, D. Pollination of Cretaceous flowers. Proc. Natl Acad. Sci. USA 116, 24707–24711 (2019).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    5.Peris, D. et al. Generalist pollen-feeding beetles during the mid-Cretaceous. iScience 23, 100913 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    6.Ahrens, D., Schwarzer, J. & Vogler, A. P. The evolution of scarab beetles tracks the sequential rise of angiosperms and mammals. Proc. R. Soc. B 281, 20141470 (2014).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    7.Farrell, B. D. ‘Inordinate fondness’ explained: why are there so many beetles? Science 281, 555–559 (1998).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    8.Faegri, K. & van der Pijl, L. The Principles of Pollination Ecology (Pergamon, 1979).9.Poinar, G., Lambert, J. B. & Wu, Y. Araucarian source of fossiliferous Burmese amber: spectroscopic and anatomical evidence. J. Bot. Res. Inst. Tex. 1, 449–455 (2007).
    Google Scholar 
    10.Davies, E. H. Palynological Analysis and Age Assignments of Two Burmese Amber Sample Sets (Branta Biostratigraphy for Leeward Capital, 2001).11.Barrón, E. et al. Palynology of Aptian and upper Albian (lower Cretaceous) amber-bearing outcrops of the southern margin of the Basque-Cantabrian basin (northern Spain). Cretac. Res. 52, 292–312 (2015).Article 

    Google Scholar 
    12.Azar, D., Dejax, J. & Masure, E. Palynological analysis of amber-bearing clay from the lower Cretaceous of central Lebanon. Acta Geol. Sin. Engl. Ed. 85, 942–949 (2011).Article 

    Google Scholar 
    13.Barrón, E., Comas-Rengifo, M. J. & Elorza, L. Contribuciones al estudio palinológico del Cretácico Inferior de la Cuenca Vasco-Cantábrica: los afloramientos ambarigenos de Peñacerrada (España). Coloq. Paleontol. 52, 135–156 (2001).
    Google Scholar 
    14.Cai, C. et al. Basal polyphagan beetles in mid-Cretaceous amber from Myanmar: biogeographic implications and long-term morphological stasis. Proc. R. Soc. B 286, 20182175 (2019).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    15.Mao, Y. Y. et al. Various amberground marine animals on Burmese amber with discussions on its age. Palaeoentomology 1, 91–103 (2018).Article 

    Google Scholar 
    16.Shi, G. et al. Age constraint on Burmese amber based on U–Pb dating of zircons. Cretac. Res. 37, 155–163 (2012).Article 

    Google Scholar 
    17.Yu, T. et al. An ammonite trapped in Burmese amber. Proc. Natl Acad. Sci. USA 116, 11345–11350 (2019).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    18.Jelínek, J. & Cline, A. R. in Handbook of Zoology, Arthropoda: Insecta, Coleoptera, Beetles Morphology and Systematics (eds Leschen, R. A. B. et al.) Vol. 2 386–390 (Walter De Gruyter, 2010).19.Hisamatsu, S. A review of the Japanese Kateretidae fauna (Coleoptera: Cucujoidea). Acta Entomol. Musei Natl Pragae 36, 551–585 (2011).
    Google Scholar 
    20.Peris, D. & Jelínek, J. Atypical short elytra in Cretaceous short-winged flower beetles (Coleoptera: Kateretidae). Palaeoentomology 2, 505–514 (2019).Article 

    Google Scholar 
    21.Peris, D. & Jelínek, J. Syninclusions of two new species of short-winged flower beetle (Coleoptera: Kateretidae) in mid-Cretaceous Kachin amber (Myanmar). Cretac. Res. 106, 104264 (2020).Article 

    Google Scholar 
    22.Poinar, G. & Brown, A. E. Furcalabratum burmanicum gen. et sp. nov., a short-winged flower beetle (Coleoptera: Kateretidae) in mid-Cretaceous Myanmar amber. Cretac. Res. 84, 240–244 (2018).Article 

    Google Scholar 
    23.Kirejtshuk, A. G. New species of nitidulid beetles (Coleoptera, Nitidulidae) of the Australian region. Entomol. Obozr. 65, 559–573 (1986).
    Google Scholar 
    24.Timerman, D., Greene, D. F., Ackerman, J. D., Kevan, P. G. & Nardone, E. Pollen aggregation in relation to pollination vector. Int. J. Plant Sci. 175, 681–687 (2014).Article 

    Google Scholar 
    25.Thomson, P. W. & Pflug, H. D. Pollen und sporen des mitteleuropäischen Tertiärs. Palaeontogr. Abt. B 94, 1–138 (1953).
    Google Scholar 
    26.Tekleva, M. V. & Maslova, N. P. A diverse pollen assemblage found on Friisicarpus infructescences (Platanaceae) from the Cenomanian–Turonian of Kazakhstan. Cretac. Res. 57, 131–141 (2016).Article 

    Google Scholar 
    27.Takahashi, K. Upper Cretaceous and lower Paleogene microfloras of Japan. Rev. Palaeobot. Palynol. 5, 227–234 (1967).Article 

    Google Scholar 
    28.Nadel, H., Peña, J. E. & Peña, J. E. Identity, behavior, and efficacy of nitidulid beetles (Coleoptera: Nitidulidae) pollinating commercial Annona species in Florida. Environ. Entomol. 23, 878–886 (1994).Article 

    Google Scholar 
    29.Sakai, S. A review of brood-site pollination mutualism: plants providing breeding sites for their pollinators. J. Plant Res. 115, 0161–0168 (2002).Article 

    Google Scholar 
    30.Williams, G. & Adam, P. A review of rainforest pollination and plant–pollinator interactions with particular reference to Australian subtropical rainforests. Aust. Zool. 29, 177–212 (1994).Article 

    Google Scholar 
    31.Klavins, S. D., Kellogg, D. W., Krings, M., Taylor, E. L. & Taylor, T. N. Coprolites in a Middle Triassic cycad pollen cone: evidence for insect pollination in early cycads? Evol. Ecol. Res. 7, 479–488 (2005).
    Google Scholar 
    32.Chadwick, C. E., Stevenson, D. W. & Norstog, K. J. The roles of Tranes lyterioides and T. sparsus Boh. (Col., Curculiodidae) in the pollination of Macrozamia communis (Zamiaceae). In The Biology, Structure, and Systematics of the Cycadales: Proc. CYCAD 90, the 2nd International Conference on Cycad Biology (eds. Stevenson, D. W. & Norstog, K. J.) 77–88 (Palm & Cycad Societies of Australia, 1993).33.Post, D. C., Page, R. E. & Erickson, E. H. Honeybee (Apis mellifera L.) queen feces: source of a pheromone that repels worker bees. J. Chem. Ecol. 13, 583–591 (1987).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    34.Weiss, H. B. & Boyd, W. M. Insect feculæ. J. N. Y. Entomol. Soc. 58, 154–168 (1950).
    Google Scholar 
    35.Lancucka-Srodoniowa, M. Tertiary coprolites imitating fruits of the Araliaceae. Acta Soc. Bot. Pol. 33, 469–473 (1964).Article 

    Google Scholar 
    36.Scott, A. C. Trace fossils of plant–arthropod interactions. Short Courses Paleontol. 5, 197–223 (1992).Article 

    Google Scholar 
    37.Weiss, H. B. & Boyd, W. M. Insect feculæ, II. J. N. Y. Entomol. Soc. 60, 25–30 (1952).
    Google Scholar 
    38.Parker, F. D., Tepedino, V. J. & Bohart, G. E. Notes on the biology of a common sunflower bee, Melissodes (Eumelissodes) agilis Cresson. J. N. Y. Entomol. Soc. 89, 43–52 (1981).
    Google Scholar 
    39.Sarzetti, L. C., Labandeira, C. C. & Genise, J. F. Reply to: Melittosphex (Hymenoptera: Melittosphecidae), a primitive bee and not a wasp. Palaeontology 52, 484 (2008).
    Google Scholar 
    40.Ohl, M. & Engel, M. S. Die Fossilgeschichte der Bienen und ihrer nächsten Verwandten (Hymenoptera: Apoidea). Denisia 20, 687–700 (2007).
    Google Scholar 
    41.Pant, D. D. & Singh, R. Preliminary observations on insect–plant relationships in Allahabad plants of Cycas. Palms Cycads 32, 10–14 (1990).
    Google Scholar 
    42.Labandeira, C. C. The paleobiology of pollination and its precursors. Paleontol. Soc. Pap. 6, 233–270 (2000).Article 

    Google Scholar 
    43.Procheş, Ş. & Johnson, S. D. Beetle pollination of the fruit-scented cones of the South African cycad Stangeria eriopus. Am. J. Bot. 96, 1722–1730 (2009).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    44.Tarno, H. et al. Types of frass produced by the ambrosia beetle Platypus quercivorus during gallery construction, and host suitability of five tree species for the beetle. J. For. Res. 16, 68–75 (2011).Article 

    Google Scholar 
    45.Friis, E. M., Pedersen, K. R. & Crane, P. R. Fossil floral structures of a basal angiosperm with monocolpate, reticulate-acolumellate pollen from the Early Cretaceous of Portugal. Grana 39, 226–239 (2000).Article 

    Google Scholar 
    46.Nambudiri, E. M. V. & Binda, P. L. Dicotyledonous fruits associated with coprolites from the upper Cretaceous (Maastrichtian) Whitemud Formation, southern Saskatchewan, Canada. Rev. Palaeobot. Palynol. 59, 57–66 (1989).Article 

    Google Scholar 
    47.Lupia, R., Herendeen, P. S. & Keller, J. A. A new fossil flower and associated coprolites: evidence for angiosperm–insect interactions in the Santonian (Late Cretaceous) of Georgia, U.S.A. Int. J. Plant Sci. 163, 675–686 (2002).Article 

    Google Scholar 
    48.Zhang, L. et al. The water lily genome and the early evolution of flowering plants. Nature 577, 79–84 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    49.Coiro, M., Doyle, J. A. & Hilton, J. How deep is the conflict between molecular and fossil evidence on the age of angiosperms? New Phytol. 223, 83–99 (2019).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    50.Liu, Z.-J., Huang, D., Cai, C. & Wang, X. The core eudicot boom registered in Myanmar amber. Sci. Rep. 8, 16765 (2018).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    51.Friis, E. M. & Pedersen, K. R. in Palynology: Principles and Applications (ed. Jansonius, J.) 409–426 (American Association of Stratigraphic Palynologists Foundation, 1996).52.Schönenberger, J. & Friis, E. M. Fossil flowers of ericalean affinity from the Late Cretaceous of southern Sweden. Am. J. Bot. 88, 467–480 (2001).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    53.The Angiosperm Phylogeny Group et al. An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG IV. Bot. J. Linn. Soc. 181, 1–20 (2016).54.Peris, D. et al. False blister beetles and the expansion of gymnosperm–insect pollination modes before angiosperm dominance. Curr. Biol. 27, 897–904 (2017).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    55.Cai, C. et al. Beetle pollination of cycads in the Mesozoic. Curr. Biol. 28, 2806–2812 (2018).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar  More