More stories

  • in

    Elevational and seasonal patterns of butterflies and hawkmoths in plant-pollinator networks in tropical rainforests of Mount Cameroon

    1.Classen, A. et al. Specialization of plant–pollinator interactions increases with temperature at Mt. Kilimanjaro. Ecol. Evol. 10, 2182–2195 (2020).
    Google Scholar 
    2.Klecka, J., Hadrava, J., Biella, P. & Akter, A. Flower visitation by hoverflies (Diptera: Syrphidae) in a temperate plant-pollinator network. PeerJ 2018, e6025 (2018).
    Google Scholar 
    3.Ollerton, J. Pollinator diversity: distribution, ecological function, and conservation. Annu. Rev. Ecol. Evol. Syst. 48, 353–376 (2017).
    Google Scholar 
    4.Martínez-Adriano, C. A., Díaz-Castelazo, C. & Aguirre-Jaimes, A. Flower-mediated plant-butterfly interactions in an heterogeneous tropical coastal ecosystem. PeerJ 2018, e5493 (2018).
    Google Scholar 
    5.Mertens, J. E. J. et al. Changes of pollinating community of Scadoxus cinnabarinus (Amaryllidaceae) along its elevational range on Mount Cameroon. Arthropod. Plant. Interact. 14, 215–226 (2020).
    Google Scholar 
    6.Wardhaugh, C. W. How many species of arthropods visit flowers?. Arthropod. Plant. Interact. 9, 547–565 (2015).
    Google Scholar 
    7.Hahn, M. & Brühl, C. A. The secret pollinators: an overview of moth pollination with a focus on Europe and North America. Arthropod. Plant. Interact. 10, 21–28 (2016).
    Google Scholar 
    8.Willmer, P. Pollination and Floral Ecology (Princeton University Press, 2011).
    Google Scholar 
    9.Johnson, S. D. et al. The long and the short of it: a global analysis of hawkmoth pollination niches and interaction networks. Funct. Ecol. 31, 101–115 (2017).
    Google Scholar 
    10.Darwin, C. On the Various Contrivances by Which British and Foreign Orchids are Fertilized (Murray, 1862).
    Google Scholar 
    11.Fox, K. et al. Nectar Robbery and Thievery in the hawk moth (Lepidoptera: Sphingidae)-Pollinated Western Prairie Fringed Orchid Platanthera praeclara. Ann. Entomol. Soc. Am. 108, 1000–1013 (2015).
    Google Scholar 
    12.Martins, D. J. & Johnson, S. D. Interactions between hawkmoths and flowering plants in East Africa: polyphagy and evolutionary specialization in an ecological context. Biol. J. Linn. Soc. 110, 199–213 (2013).
    Google Scholar 
    13.Arroyo, M. T. K., Till-Bottraud, I., Torres, C., Henríquez, C. A. & Martínez, J. Display size preferences and foraging habits of high andean butterflies pollinating Chaetanthera lycopodioides (Asteraceae) in the subnival of the central Chilean Andes. Arctic Antarct. Alp. Res. 39, 347–352 (2007).
    Google Scholar 
    14.Santos, R. S., Milfont, M. O., Silva, M. M., Carneiro, L. T. & Castro, C. C. Butterflies provide pollination services to macadamia in northeastern Brazil. Sci. Hortic. (Amst.) 259, 108818 (2020).
    Google Scholar 
    15.Fleming, T. H. & Holland, J. N. The evolution of obligate pollination mutualisms: Senita cactus and senita moth. Oecologia 114, 368–375 (1998).
    Google Scholar 
    16.Skogen, K. A., Overson, R. P., Hilpman, E. T. & Fant, J. B. Hawkmoth pollination facilitates long-distance pollen dispersal and reduces isolation across a gradient of land-use change. Ann. Mo. Bot. Gard. 104, 495–511 (2019).
    Google Scholar 
    17.Corbet, S. A. Butterfly nectaring flowers: butterfly morphology and flower form. Entomol. Exp. Appl. 96, 289–298 (2000).
    Google Scholar 
    18.Tiple, A. D., Khurad, A. M. & Dennis, R. L. H. Adult butterfly feeding-nectar flower associations: constraints of taxonomic affiliation, butterfly, and nectar flower morphology. J. Nat. Hist. 43, 855–884 (2009).
    Google Scholar 
    19.Faegri, K. & van der Pijl, L. The Principles of Pollination Ecology (Pergamon Press, 1979).
    Google Scholar 
    20.Mitchell, T. C., Dötterl, S. & Schaefer, H. Hawk-moth pollination and elaborate petals in Cucurbitaceae: the case of the Caribbean endemic Linnaeosicyos amara. Flora Morphol. Distrib. Funct. Ecol. Plants 216, 50–56 (2015).
    Google Scholar 
    21.Glover, B. J. Pollinator attraction: the importance of looking good and smelling nice. Curr. Biol. 21, R307–R309 (2011).
    Google Scholar 
    22.Kelber, A., Balkenius, A. & Warrant, E. J. Colour vision in diurnal and nocturnal hawkmoths. Integr. Comp. Biol. 43, 571–579 (2003).
    Google Scholar 
    23.Ômura, H. & Honda, K. Priority of color over scent during flower visitation by adult Vanessa indica butterflies. Oecologia 142, 588–596 (2005).
    Google Scholar 
    24.Pohl, N. B., Van Wyk, J. & Campbell, D. R. Butterflies show flower colour preferences but not constancy in foraging at four plant species. Ecol. Entomol. 36, 290–300 (2011).
    Google Scholar 
    25.Yurtsever, S., Okyar, Z. & Guler, N. What colour of flowers do Lepidoptera prefer for foraging?. Biologia (Bratisl). 65, 1049–1056 (2010).
    Google Scholar 
    26.Poisot, T., Stouffer, D. B. & Gravel, D. Beyond species: why ecological interaction networks vary through space and time. Oikos 124, 243–251 (2015).
    Google Scholar 
    27.Klomberg, Y. et al. Spatiotemporal shifts in the role of floral traits in shaping tropical plant-pollinator interactions. bioRxiv 2020.10.16.342386. https://doi.org/10.1101/2020.10.16.342386 (2020).28.Ollerton, J., Johnson, S. D. & Hingston, A. B. Geographical variation in diversity and specificity of pollination systems. In Plant–Pollinator Interactions: From Specialization to Generalization (eds Waser, N. M. & Ollerton, J.) 283–308 (University of Chicago Press, 2006).
    Google Scholar 
    29.Maicher, V. et al. Flying between raindrops: strong seasonal turnover of several Lepidoptera groups in lowland rainforests of Mount Cameroon. Ecol. Evol. 8, 12761–12772 (2018).
    Google Scholar 
    30.Maicher, V. et al. Seasonal shifts of biodiversity patterns and species’ elevation ranges of butterflies and moths along a complete rainforest elevational gradient on Mount Cameroon. J. Biogeogr. 47, 342–354 (2020).
    Google Scholar 
    31.MacArthur, R. H. Geographical Ecology: Patterns in the Distribution of Species (Princeton University Press, 1972).
    Google Scholar 
    32.McCain, C. M. & Grytnes, J.-A. Elevational gradients in species richness. In Encyclopedia of Life Sciences (ed. John Wiley & Sons, Ltd), a0022548 (Wiley, Chichester, 2010) https://doi.org/10.1002/9780470015902.a0022548.33.Šmilauer, P. & Lepš, J. Multivariate analysis of ecological data using Canoco 5 (Cambridge University Press, 2014). https://doi.org/10.1017/CBO9781139627061.
    Google Scholar 
    34.Kato, M. et al. Plant-pollinator interactions in tropical monsoon forests in Southeast Asia. Am. J. Bot. 95, 1375–1394 (2008).
    Google Scholar 
    35.Momose, K. et al. Pollination biology in a lowland dipterocarp forest in Sarawak, Malaysia. I. Characteristics of the plant-pollinator community in a lowland dipterocarp forest. Am. J. Bot. 85, 1477–1501 (1998).
    Google Scholar 
    36.Ramirez, N. Biologia de Polinizacion en una Comunidad Arbustiva Tropical de la Alta Guayana Venezolana. Biotropica 21, 319 (1989).
    Google Scholar 
    37.Van Dulmen, A. Pollination and phenology of flowers in the canopy of two contrasting rain forest types in Amazonia, Colombia. Plant Ecology. 153, 73–85 (2001).
    Google Scholar 
    38.Nsor, C. A. & Chapman, H. M. A preliminary investigation into the avian pollinators of three tree species in a Nigerian montane forest. Malimbus 35, 38–49 (2013).
    Google Scholar 
    39.Weber, N., Kalko, E. K. V. & Fahr, J. A first assessment of home range and foraging behaviour of the African long-tongued bat Megaloglossus woermanni (Chiroptera: Pteropodidae) in a heterogeneous landscape within the Lama Forest Reserve, Benin. Acta Chiropterol. 11, 317–329 (2009).
    Google Scholar 
    40.Borges, R. M., Gowda, V. & Zacharias, M. Butterfly pollination and high-contrast visual signals in a low-density distylous plant. Oecologia 136, 571–573 (2003).
    Google Scholar 
    41.Mizusawa, L., Takimoto, G., Yamasaki, M., Isagi, Y. & Hasegawa, M. Comparison of pollination characteristics between the insular shrub Clerodendrum izuinsulare and its widespread congener C.trichotomum. Plant Species Biol. 29, 73–84 (2014).
    Google Scholar 
    42.Budumajji, U. & Solomon Raju, A. J. Pollination ecology of Bidens pilosa L. (Asteraceae). Taiwania 63, 89–100 (2018).
    Google Scholar 
    43.Valentin-Silva, A., Godinho, M. A. S., Cruz, K. C., Lelis, S. M. & Vieira, M. F. Three psychophilous Asteraceae species with distinct reproductive mechanisms in southeastern Brazil. New Zeal. J. Bot. 54, 498–510 (2016).
    Google Scholar 
    44.Valtonen, A. et al. Tropical phenology: Bi-annual rhythms and interannual variation in an Afrotropical butterfly assemblage. Ecosphere 4, art36 (2013).
    Google Scholar 
    45.Aizen, M. A. Down-facing flowers, hummingbirds and rain. Taxon 52, 675–680 (2003).
    Google Scholar 
    46.Janeček, Š, Bartoš, M. & Njabo, K. Y. Convergent evolution of sunbird pollination systems of Impatiens species in tropical Africa and hummingbird systems of the New World. Biol. J. Linn. Soc. 115, 127–133 (2015).
    Google Scholar 
    47.Bartoš, M. & Janeček, Š. Pollinator-induced twisting of flowers sidesteps floral architecture constraints. Curr. Biol. 24, R793–R795 (2014).
    Google Scholar 
    48.Bärtschi, F. et al. Elevational richness patterns of sphingid moths support area effects over climatic drivers in a near-global analysis. Glob. Ecol. Biogeogr. 28, 917–927 (2019).
    Google Scholar 
    49.Beck, J. et al. Elevational species richness gradients in a hyperdiverse insect taxon: a global meta-study on geometrid moths. Glob. Ecol. Biogeogr. 26, 412–424 (2017).
    Google Scholar 
    50.Hořák, D. et al. Forest structure determines spatial changes in avian communities along an elevational gradient in tropical Africa. J. Biogeogr. 46, 2466–2478 (2019).
    Google Scholar 
    51.Ramos-Jiliberto, R. et al. Topological change of Andean plant-pollinator networks along an altitudinal gradient. Ecol. Complex. 7, 86–90 (2010).
    Google Scholar 
    52.Bloch, D. & Erhardt, A. Selection toward shorter flowers by butterflies whose probosces are shorter than floral tubes. Ecology 89, 2453–2460 (2008).
    Google Scholar 
    53.Brehm, G., Zeuss, D. & Colwell, R. K. Moth body size increases with elevation along a complete tropical elevational gradient for two hyperdiverse clades. Ecography (Cop.) 42, 632–642 (2019).
    Google Scholar 
    54.Kaczorowski, R. L., Seliger, A. R., Gaskett, A. C., Wigsten, S. K. & Raguso, R. A. Corolla shape vs. size in flower choice by a nocturnal hawkmoth pollinator. Funct. Ecol. 26, 577–587 (2012).
    Google Scholar 
    55.Dellinger, A. S. Pollination syndromes in the 21st century: where do we stand and where may we go?. New Phytol. 228, 1193–1213 (2020).
    Google Scholar 
    56.Larsen, T. Butterflies of West Africa (Apollo Books, 2005).
    Google Scholar 
    57.Ballesteros-Mejia, L., Kitching, I. J., Jetz, W., Nagel, P. & Beck, J. Mapping the biodiversity of tropical insects: species richness and inventory completeness of African sphingid moths. Glob. Ecol. Biogeogr. 22, 586–595 (2013).
    Google Scholar 
    58.Cheek, M., Cable, S., Hepper, F. N., Ndam, N. & Watts, J. Mapping plant biodiversity on Mount Cameroon. In The Biodiversity of African Plants (eds van der Maesen, L. et al.) 110–120 (Springer, 1996). https://doi.org/10.1007/978-94-009-0285-5_16.
    Google Scholar 
    59.Weinstein, B. G. MotionMeerkat: integrating motion video detection and ecological monitoring. Methods Ecol. Evol. 6, 357–362 (2015).
    Google Scholar 
    60.Dormann, C. F., Fründ, J., Blüthgen, N. & Gruber, B. Indices, graphs and null models: analyzing bipartite ecological networks. Open Ecol. J. 2, 7–24 (2009).
    Google Scholar 
    61.R Core Team. R: A language and environment for statistical computing (2019).62.Jordano, P. Patterns of mutualistic interactions in pollination and seed dispersal: connectance, dependence asymmetries, and coevolution. Am. Nat. 129, 657–677 (1987).
    Google Scholar 
    63.Blüthgen, N., Menzel, F. & Blüthgen, N. Measuring specialization in species interaction networks. BMC Ecol. 6, 1–12 (2006).
    Google Scholar 
    64.Dormann, C. F. & Strauss, R. A method for detecting modules in quantitative bipartite networks. Methods Ecol. Evol. 5, 90–98 (2014).
    Google Scholar 
    65.Almeida-Neto, M., Guimarães, P., Guimarães, P. R., Loyola, R. D. & Ulrich, W. A consistent metric for nestedness analysis in ecological systems: reconciling concept and measurement. Oikos 117, 1227–1239 (2008).
    Google Scholar 
    66.Bartoš, M. et al. Self-compatibility and autonomous selfing of plants in meadow communities. Plant Biol. 22, 120–128 (2020).
    Google Scholar 
    67.Rueden, C. T. et al. Image J2: ImageJ for the next generation of scientific image data. BMC Bioinform. 18, 529 (2017).
    Google Scholar 
    68.Hurvich, C. M. & Tsai, C.-L. A corrected akaike information criterion for vector autoregressive model selection. J. Time Ser. Anal. 14, 271–279 (1993).
    Google Scholar 
    69.ter Braak, C. J. F. & Šmilauer, P. Canoco reference manual and user’s guide: software for ordination, version 50 (Microcomputer Power, 2012).
    Google Scholar  More

  • in

    Leadership – not followership – determines performance in ant teams

    1.Wilson, E. O. The insect societies. (Harvard University Press, Cambridge, Massachusetts, USA, 1971).
    Google Scholar 
    2.Venter, O. et al. Sixteen years of change in the global terrestrial human footprint and implications for biodiversity conservation. Nat. Commun. 7, 12558 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    3.Robson, S. K. & Traniello, J. F. Key individuals and the organisation of labor in ants. In Information processing in social insects, 239–259 (Springer, 1999).4.Smith, A. The wealth of nations (London, Methuen & Co, 1776).5.Oster, G. F. & Wilson, E. O. Caste and ecology in the social insects (Princeton University Press, 1978).6.Jeanne, R. L. The evolution of the organization of work in social insects. Italian J. Zool. 20, 119–133 (1986).
    Google Scholar 
    7.Seeley, T. D. Adaptive significance of the age polyethism schedule in honeybee colonies. Behav. Ecol. Sociobiol. 11, 287–293 (1982).Article 

    Google Scholar 
    8.Franks, N. R. The organization of working teams in social insects. Trends Ecol. Evol. 2, 72–75 (1987).CAS 
    PubMed 
    Article 

    Google Scholar 
    9.Robinson, G. E. Regulation of division of labor in insect societies. Ann. Rev. Entomol. 37, 637–665 (1992).CAS 
    Article 

    Google Scholar 
    10.O’Donnell, S. & Jeanne, R. L. Forager specialization and the control of nest repair in Polybia occidentalis olivier (Hymenoptera: Vespidae). Behav. Ecol. Sociobiol. 27, 359–364 (1990).Article 

    Google Scholar 
    11.Wahl, L. Evolving the division of labour: generalists, specialists and task allocation. J. Theor. Biol. 219, 371–388 (2002).CAS 
    PubMed 
    Article 

    Google Scholar 
    12.Jaffé, R., Kronauer, D. J., Bernhard Kraus, F., Boomsma, J. J. & Moritz, R. F. Worker caste determination in the army ant Eciton burchellii. Biol. Lett. 3, 513–516 (2007).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    13.Kuhn, S. L. & Stiner, M. C. What’s a mother to do? The division of labor among Neandertals and modern humans in Eurasia. Curr. Anthropol. 47, 953–981 (2006).Article 

    Google Scholar 
    14.Wilson, E. O. Caste and division of labor in leaf-cutter ants (hymenoptera: Formicidae: Atta). Behav. Ecol. Sociobiol. 7, 157–165 (1980).Article 

    Google Scholar 
    15.Mirenda, J. T. & Vinson, S. B. Division of labour and specification of castes in the red imported fire ant solenopsis invicta buren. Animal Behav. 29, 410–420 (1981).Article 

    Google Scholar 
    16.Detrain, C. & Pasteels, J. Caste differences in behavioral thresholds as a basis for polyethism during food recruitment in the ant, pheidole pallidula (nyl.)(hymenoptera: Myrmicinae). J. Insect behav. 4, 157–176 (1991).Article 

    Google Scholar 
    17.Theraulaz, G., Bonabeau, E. & Denuebourg, J. Response threshold reinforcements and division of labour in insect societies. Proc. R. Soc. Lond. Ser. B Biol. Sci. 265, 327–332 (1998).Article 

    Google Scholar 
    18.Johnson, B. R. Organization of work in the honeybee: a compromise between division of labour and behavioural flexibility. Proc. R. Soc. Lond. Ser. B Biol. Sci. 270, 147–152 (2003).Article 

    Google Scholar 
    19.Dukas, R. & Visscher, P. K. Lifetime learning by foraging honey bees. Animal Behav. 48, 1007–1012 (1994).Article 

    Google Scholar 
    20.Richardson, T. O., Mullon, C., Marshall, J. A., Franks, N. R. & Schlegel, T. The influence of the few: a stable ‘oligarchy’ controls information flow in house-hunting ants. Proc. R. Soc. B 285, 20172726 (2018).PubMed 
    Article 

    Google Scholar 
    21.Trumbo, S. T. & Robinson, G. E. Learning and task interference by corpse-removal specialists in honey bee colonies. Ethology 103, 966–975 (1997).Article 

    Google Scholar 
    22.Julian, G. E. & Cahan, S. Undertaking specialization in the desert leaf-cutter ant Acromyrmex versicolor. Animal Behav. 58, 437–442 (1999).CAS 
    Article 

    Google Scholar 
    23.Dukas, R. Life history of learning: performance curves of honeybees in settings that minimize the role of learning. Animal Behav. 75, 1125–1130 (2008).Article 

    Google Scholar 
    24.Charbonneau, D., Sasaki, T. & Dornhaus, A. Who needs ‘lazy’workers? inactive workers act as a ‘reserve’labor force replacing active workers, but inactive workers are not replaced when they are removed. PloS one 12, e0184074 (2017).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    25.Crall, J. D. et al. Spatial fidelity of workers predicts collective response to disturbance in a social insect. Nat. Commun. 9, 1201 (2018).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    26.Franks, N. R., Pratt, S. C., Mallon, E. B., Britton, N. F. & Sumpter, D. J. Information flow, opinion polling and collective intelligence in house–hunting social insects. Philosop. Trans. R. Soc. Lond. Ser. B Biol. Sci. 357, 1567–1583 (2002).Article 

    Google Scholar 
    27.Pratt, S. C., Mallon, E. B., Sumpter, D. J. & Franks, N. R. Quorum sensing, recruitment, and collective decision-making during colony emigration by the ant Leptothorax albipennis. Behav. Ecol. Sociobiol. 52, 117–127 (2002).Article 

    Google Scholar 
    28.Möglich, M. Social organization of nest emigration in Leptothorax (Hym., Form.). Insectes Sociaux 25, 205–225 (1978).Article 

    Google Scholar 
    29.Visscher, P. K. Group decision making in nest-site selection among social insects. Ann. Rev. Entomol. 52, 255–275 (2007).CAS 
    Article 

    Google Scholar 
    30.McGlynn, T. P. The ecology of nest movement in social insects. Ann. Rev. Entomol. 57, 291–308 (2012).CAS 
    Article 

    Google Scholar 
    31.Franks, N. R. & Richardson, T. Teaching in tandem-running ants. Nature 439, 153–153 (2006).CAS 
    PubMed 
    Article 

    Google Scholar 
    32.Richardson, T. O., Sleeman, P. A., McNamara, J. M., Houston, A. I. & Franks, N. R. Teaching with evaluation in ants. Curr. Biol. 17, 1520–1526 (2007).CAS 
    PubMed 
    Article 

    Google Scholar 
    33.Franklin, E. L., Richardson, T. O., Sendova-Franks, A. B., Robinson, E. J. & Franks, N. R. Blinkered teaching: tandem running by visually impaired ants. Behav. Ecol. Sociobiol. 65, 569–579 (2011).Article 

    Google Scholar 
    34.Franks, N. R. et al. Ant search strategies after interrupted tandem runs. J. Exper. Biol. 213, 1697–1708 (2010).Article 

    Google Scholar 
    35.Flack, J. C., Krakauer, D. C. & de Waal, F. B. M. Robustness mechanisms in primate societies: a perturbation study. Proc. R. Soc. B Biol. Sci. 272, 1091–1099 (2005).Article 

    Google Scholar 
    36.Pinter-Wollman, N., Hubler, J., Holley, J.-A., Franks, N. R. & Dornhaus, A. How is activity distributed among and within tasks in Temnothorax ants? Behav. Ecol. Sociobiol. 66, 1407–1420 (2012).Article 

    Google Scholar 
    37.Burnham, K. P. & Anderson, D. R. Model selection and multimodel inference: a practical information-theoretic approach (Springer Science & Business Media, 2003).38.Burnham, K. P., Anderson, D. R. & Huyvaert, K. P. AIC model selection and multimodel inference in behavioral ecology: some background, observations, and comparisons. Behav. Ecol. Sociobiol. 65, 23–35 (2011).Article 

    Google Scholar 
    39.Grueber, C., Nakagawa, S., Laws, R. & Jamieson, I. Multimodel inference in ecology and evolution: challenges and solutions. J. Evol. Biol. 24, 699–711 (2011).CAS 
    PubMed 
    Article 

    Google Scholar 
    40.Symonds, M. R. & Moussalli, A. A brief guide to model selection, multimodel inference and model averaging in behavioural ecology using Akaike’s information criterion. Behav. Ecol. Sociobiol. 65, 13–21 (2011).Article 

    Google Scholar 
    41.Rosenthal, S. B., Twomey, C. R., Hartnett, A. T., Wu, H. S. & Couzin, I. D. Revealing the hidden networks of interaction in mobile animal groups allows prediction of complex behavioral contagion. Proc. Natl Acad. Sci. 112, 4690–4695 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    42.Pratt, S. C., Sumpter, D. J., Mallon, E. B. & Franks, N. R. An agent-based model of collective nest choice by the ant Temnothorax albipennis. Animal Behav. 70, 1023–1036 (2005).Article 

    Google Scholar 
    43.Volny, V. P. & Gordon, D. M. Genetic basis for queen–worker dimorphism in a social insect. Proc. Natl Acad. Sci. 99, 6108–6111 (2002).CAS 
    PubMed 
    Article 

    Google Scholar 
    44.Walsh, J. T., Warner, M. R., Kase, A., Cushing, B. J. & Linksvayer, T. A. Ant nurse workers exhibit behavioural and transcriptomic signatures of specialization on larval stage. Animal Behav. 141, 161–169 (2018).Article 

    Google Scholar 
    45.Seeley, T. D. Division of labor between scouts and recruits in honeybee foraging. Behav. Ecol. Sociobiol. 12, 253–259 (1983).Article 

    Google Scholar 
    46.Boesch, C. Cooperative hunting roles among tai chimpanzees. Human Nat. 13, 27–46 (2002).Article 

    Google Scholar 
    47.Stander, P. E. Cooperative hunting in lions: the role of the individual. Behav. Ecol. Sociobiol. 29, 445–454 (1992).Article 

    Google Scholar 
    48.Gazda, S. K., Connor, R. C., Edgar, R. K. & Cox, F. A division of labour with role specialization in group–hunting bottlenose dolphins (tursiops truncatus) off cedar key, florida. Proc. R. Soc. B Biol. Sci. 272, 135–140 (2005).Article 

    Google Scholar 
    49.Nagy, M., Ákos, Z., Biro, D. & Vicsek, T. Hierarchical group dynamics in pigeon flocks. Nature 464, 890–893 (2010).CAS 
    PubMed 
    Article 

    Google Scholar 
    50.Nagy, M. et al. Context-dependent hierarchies in pigeons. Proc. Natl Acad. Sci. USA 110, 13049–13054 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    51.Fewell, J. H., Armbruster, D., Ingraham, J., Petersen, A. & Waters, J. S. Basketball teams as strategic networks. PloS One 7, e47445 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    52.Alleman, A., Stoldt, M., Feldmeyer, B. & Foitzik, S. Tandem-running and scouting behaviour are characterized by up-regulation of learning and memory formation genes within the ant brain. Mol. Ecol. 28, 2342–2359 (2019).PubMed 
    Article 

    Google Scholar 
    53.Collett, T. S. & Collett, M. Memory use in insect visual navigation. Nat. Rev. Neurosci. 3, 542 (2002).CAS 
    PubMed 
    Article 

    Google Scholar 
    54.Collett, T. S., Graham, P. & Durier, V. Route learning by insects. Curr. Opin. Neurobiol. 13, 718–725 (2003).CAS 
    PubMed 
    Article 

    Google Scholar 
    55.Wehner, R. Desert ant navigation: how miniature brains solve complex tasks. J. Comp. Physiol. A 189, 579–588 (2003).CAS 
    Article 

    Google Scholar 
    56.Langridge, E. A., Franks, N. R. & Sendova-Franks, A. B. Improvement in collective performance with experience in ants. Behav. Ecol. Sociobiol. 56, 523–529 (2004).Article 

    Google Scholar 
    57.Ravary, F., Lecoutey, E., Kaminski, G., Châline, N. & Jaisson, P. Individual experience alone can generate lasting division of labor in ants. Curr. Biol. 17, 1308–1312 (2007).CAS 
    PubMed 
    Article 

    Google Scholar 
    58.Chittka, L. & Muller, H. Learning, specialization, efficiency and task allocation in social insects. Commun. Integr. Biol. 2, 151–154 (2009).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    59.Franklin, E. L., Robinson, E. J., Marshall, J. A., Sendova-Franks, A. B. & Franks, N. R. Do ants need to be old and experienced to teach? J. Exp. Biol. 215, 1287–1292 (2012).PubMed 
    Article 

    Google Scholar 
    60.Westhus, C., Kleineidam, C. J., Roces, F. & Weidenmüller, A. Behavioural plasticity in the fanning response of bumblebee workers: impact of experience and rate of temperature change. Animal Behav. 85, 27–34 (2013).Article 

    Google Scholar 
    61.Dukas, R. Animal expertise: mechanisms, ecology and evolution. Animal Behav. 147, 199–210 (2019).Article 

    Google Scholar 
    62.Carter, C. E. & Grahn, J. A. Optimizing music learning: exploring how blocked and interleaved practice schedules affect advanced performance. Front. Psychol. 7, 1251 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    63.Stroeymeyt, N., Franks, N. R. & Giurfa, M. Knowledgeable individuals lead collective decisions in ants. J. Exp. Biol. 214, 3046–3054 (2011).PubMed 
    Article 

    Google Scholar 
    64.Stroeymeyt, N., Giurfa, M. & Franks, N. R. Information certainty determines social and private information use in ants. Sci. Rep. 7, 43607 (2017).PubMed Central 
    Article 
    PubMed 

    Google Scholar 
    65.Hansen, M. J., Schaerf, T. M. & Ward, A. J. The influence of nutritional state on individual and group movement behaviour in shoals of crimson-spotted rainbowfish (Melanotaenia duboulayi). Behav. Ecol. Sociobiol. 69, 1713–1722 (2015).Article 

    Google Scholar 
    66.Jolles, J. W., Boogert, N. J., Sridhar, V. H., Couzin, I. D. & Manica, A. Consistent individual differences drive collective behavior and group functioning of schooling fish. Curr. Biol. 27, 2862–2868 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    67.Leca, J.-B., Gunst, N., Thierry, B. & Petit, O. Distributed leadership in semifree-ranging white-faced capuchin monkeys. Animal Behav. 66, 1045–1052 (2003).Article 

    Google Scholar 
    68.McComb, K. et al. Leadership in elephants: the adaptive value of age. Proc. R. Soc. B Biol. Sci. 278, 3270–3276 (2011).Article 

    Google Scholar 
    69.Jolles, J. W., King, A. J. & Killen, S. S. The role of individual heterogeneity in collective animal behaviour. Trends Ecol. Evol. 35, 278–291 (2020).PubMed 
    Article 

    Google Scholar 
    70.Cook, C. N. et al. Individual differences in learning and biogenic amine levels influence the behavioural division between foraging honeybee scouts and recruits. J. Animal Ecol. 88, 236–246 (2019).Article 

    Google Scholar 
    71.Eyer, P.-A., Freyer, J. & Aron, S. Genetic polyethism in the polyandrous desert ant cataglyphis cursor. Behav. Ecol. 24, 144–151 (2013).Article 

    Google Scholar 
    72.Franks, N. R., Mallon, E. B., Bray, H. E., Hamilton, M. J. & Mischler, T. C. Strategies for choosing between alternatives with different attributes: exemplified by house-hunting ants. Animal Behav. 65, 215–223 (2003).Article 

    Google Scholar 
    73.Dornhaus, A., Franks, N. R., Hawkins, R. & Shere, H. Ants move to improve: colonies of Leptothorax albipennis emigrate whenever they find a superior nest site. Animal Behav. 67, 959–963 (2004).Article 

    Google Scholar 
    74.Planqué, R., Dechaume-Moncharmont, F.-X., Franks, N. R., Kovacs, T. & Marshall, J. A. Why do house-hunting ants recruit in both directions? Naturwissenschaften 94, 911–918 (2007).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar  More

  • in

    Diversification, selective sweep, and body size in the invasive Palearctic alfalfa weevil infected with Wolbachia

    1.Bonizzoni, M. et al. On the origins of medfly invasion and expansion in Australia. Mol. Ecol. 13, 3845–3855 (2004).CAS 
    PubMed 
    Article 

    Google Scholar 
    2.Tuda, M., Kagoshima, K., Toquenaga, Y. & Arnqvist, G. Global genetic differentiation in a cosmopolitan pest of stored beans: Effects of geography, host-plant usage and anthropogenic factors. PLoS ONE 9, e106268 (2014).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    3.Karsten, M., van Vuuren, B. J., Addison, P. & Terblanche, J. S. Deconstructing intercontinental invasion pathway hypotheses of the Mediterranean fruit fly (Ceratitis capitata) using a Bayesian inference approach: Are port interceptions and quarantine protocols successfully preventing new invasions?. Divers. Distrib. 21, 813–825 (2015).Article 

    Google Scholar 
    4.Rodriguero, M. S. et al. Out of the forest: past and present range expansion of a parthenogenetic weevil pest, or how to colonize the world successfully. Ecol. Evol. 6, 5431–5445 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    5.Kébé, K. et al. Global phylogeography of the insect pest Callosobruchus maculatus (Coleoptera: Bruchinae) relates to the history of its main host Vigna unguiculata. J. Biogeogr. 44, 2515–2526 (2017).Article 

    Google Scholar 
    6.Lombaert, E. et al. Colonization history of the western corn rootworm (Diabrotica virgifera virgifera) in North America: insights from random forest ABC using microsatellite data. Biol. Invasions 20, 665–677 (2018).Article 

    Google Scholar 
    7.Tuda, M., Ronn, J., Buranapanichpan, S., Wasano, N. & Arnqvist, G. Evolutionary diversification of the bean beetle genus Callosobruchus (Coleoptera: Bruchidae): Traits associated with stored-product pest status. Mol. Ecol. 15, 3541–3551 (2006).CAS 
    PubMed 
    Article 

    Google Scholar 
    8.Wei, S. J. et al. Population genetic structure and approximate Bayesian computation analyses reveal the southern origin and northward dispersal of the oriental fruit moth Grapholita molesta (Lepidoptera: Tortricidae) in its native range. Mol. Ecol. 24, 4094–4111 (2015).PubMed 
    Article 

    Google Scholar 
    9.Takano, S. et al. Unique clade of alphaproteobacterial endosymbionts induces complete cytoplasmic incompatibility in the coconut beetle. Proc. Natl. Acad. Sci. USA 114, 6110–6115 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    10.Radcliffe, E. B. & Flanders, K. L. Biological control of alfalfa weevil in North America. Integr. Pest Manag. Rev. 3, 225–242 (1998).Article 

    Google Scholar 
    11.Kuwata, R., Tokuda, M., Yamaguchi, D. & Yukawa, J. Coexistence of two mitochondrial DNA haplotypes in Japanese populations of Hypera postica (Col., Curculionidae). J. Appl. Entomol. 129, 191–197 (2005).CAS 
    Article 

    Google Scholar 
    12.Skuhrovec, J. Host plants of weevils of the genus Hypera (Coleoptera: Curculionidae) occurring in the Czech Republic. Klapalekiana 41, 215–255 (2005).
    Google Scholar 
    13.Wood, K. A., Armbrust, E. J., Bartell, D. P. & Irwin, B. J. The literature of arthropods associated with alfalfa. V. A bibliography of the alfalfa weevil, Hypera postica (Gyllenhal), and the Egyptian alfalfa weevil, Hypera brunneipennis (Boheman) (Coleoptera: Curculionidae). Illinois Agricultural Experimental Station, Special Publication, 54 (1978).14.Kimura, H., Okumura, M. & Yoshida, T. Emergence of and recent damage by the alfalfa weevil. Shokubutsu Boeki (Plant Protection) 42, 498–501 (in Japanese) (1988).15.CAB International crop protection compendium. CAB International. http://www.cabicompendium.org/cpc/home.asp (2013).16.Titus, E. G. On the life history of the alfalfa leaf-weevil. J. Econ. Entomol. 3, 459–470 (1910).Article 

    Google Scholar 
    17.Wehrle, L. P. The discovery of an alfalfa weevil (Hypera brunneipennis Boheman) in Arizona. J. Econ. Entomol. 33, 119–121 (1940).Article 

    Google Scholar 
    18.Poos, F. W. & Bissell, T. L. The alfalfa weevil in Maryland. J. Econ. Entomol. 46, 178–179 (1953).Article 

    Google Scholar 
    19.Volker, K. C. & Simpson, R. G. Behavior of alfalfa weevil larvae affecting the establishment of Tetrastichus incertus in Colorado. Environ. Entomol. 4, 742–744 (1975).Article 

    Google Scholar 
    20.Salt, G. & van den Bosch, R. The defense reactions of three species of Hypera (Coleoptera, Curculionidae) to an Ichneumon wasp. J. Invertebr. Pathol. 9, 164–177 (1967).Article 

    Google Scholar 
    21.Maund, C. M. & Hsiao, T. H. Differential encapsulation of two Bathyplectes parasitoids among alfalfa weevil strains, Hypera postica (Gyllenhal). Can. Entomol. 123, 197–203 (1991).Article 

    Google Scholar 
    22.Hsiao, T. H. Studies of interactions between alfalfa weevil strains, Wolbachia endosymbionts and parasitoids. In The ecology of agricultural pests: biochemical approaches (eds, Symondson, W. O. C. & Liddell, J. E.). 57–71 (Chapman & Hall, 1996).23.Hsiao, T. H. & Stutz, J. M. Discrimination of alfalfa weevil strains by allozyme analysis. Entomol. Exp. Appl. 37, 113–121 (1985).CAS 
    Article 

    Google Scholar 
    24.Erney, S. J., Pruess, K. P., Danielson, S. D. & Powers, T. O. Molecular differentiation of alfalfa weevil strains (Coleoptera: Curculionidae). Ann. Entomol. Soc. Am. 89, 804–811 (1996).CAS 
    Article 

    Google Scholar 
    25.Böttger, J. A. A. Phylogenetic analysis of the alfalfa weevil complex (Coleoptera: Curculionidae) in North America. J. Econ. Entomol. 106, 426–436 (2013).PubMed 
    Article 
    CAS 

    Google Scholar 
    26.Iwase, S., Nakahira, K., Tuda, M., Kagoshima, K. & Takagi, M. Host-plant dependent population genetics of the invading weevil Hypera postica. Bull. Entomol. Res. 105, 92–100 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    27.White, C. E., Armbrust, E. J. & Ashley, J. Cross-mating studies of eastern and western strains of alfalfa weevil. J. Econ. Entomol. 65, 85–89 (1972).Article 

    Google Scholar 
    28.Iwase, S. & Tani, S. New haplotype and inter-strain reproductive compatibility of Wolbachia-uninfected alfalfa weevil, Hypera postica (Coleoptera: Curculionidae), in Japan. Entomol. Sci. 19, 72–76 (2016).Article 

    Google Scholar 
    29.Werren, J. H. Biology of Wolbachia. Annu. Rev. Entomol. 42, 587–609 (1997).CAS 
    PubMed 
    Article 

    Google Scholar 
    30.LePage, D. P. et al. Prophage WO genes recapitulate and enhance Wolbachia-induced cytoplasmic incompatibility. Nature 543, 243–247 (2017).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    31.Bailly-Bechet, M. et al. How long does Wolbachia remain on board?. Mol. Biol. Evol. 34, 1183–1193 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    32.Hale, L. R. & Hoffmann, A. A. Mitochondrial DNA polymorphism and cytoplasmic incompatibility in natural populations of Drosophila simulans. Evolution 44, 1383–1386 (1990).PubMed 
    Article 

    Google Scholar 
    33.Ballard, J. W. O. & Kreitman, M. Unravelling selection in the mitochondrial genome of Drosophila. Genetics 138, 757–772 (1994).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    34.Johnstone, R. A. & Hurst, G. D. D. Maternally inherited male-killing microorganisms may confound interpretation of mitochondrial DNA variability. Biol. J. Linn. Soc. 58, 453–470 (1996).Article 

    Google Scholar 
    35.Jiggins, F. M. Male-killing Wolbachia and mitochondrial DNA: selective sweeps, hybrid introgression and parasite population dynamics. Genetics 164, 5–12 (2003).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    36.Werren, J. H., Baldo, L. & Clark, M. E. Wolbachia: master manipulators of invertebrate biology. Nat. Rev. Microbiol. 6, 741–751 (2008).CAS 
    PubMed 
    Article 

    Google Scholar 
    37.Shoemaker, D. D., Dyer, K. A., Ahrens, M., McAbee, K. & Jaenike, J. Decreased diversity but increased substitution rate in host mtDNA as a consequence of Wolbachia endosymbiont infection. Genetics 168, 2049–2058 (2004).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    38.Cariou, M., Duret, L. & Charlat, S. The global impact of Wolbachia on mitochondrial diversity and evolution. J. Evol. Biol. 30, 2204–2210 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    39.Teixeira, L., Ferreira, A. & Ashburner, M. The bacterial symbiont Wolbachia induces resistance to RNA viral infections in Drosophila melanogaster. PLoS Biol. 6, 2753–2763 (2008).CAS 
    Article 

    Google Scholar 
    40.Brownlie, J. C. et al. Evidence for metabolic provisioning by a common invertebrate endosymbiont, Wolbachia pipientis, during periods of nutritional stress. PLoS Pathog. 5, e1000368 (2009).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    41.Rand, D. M., Haney, R. A. & Fry, A. J. Cytonuclear coevolution: the genomics of cooperation. TRENDS Ecol. Evol. 19, 645–653 (2004).PubMed 
    Article 

    Google Scholar 
    42.Arnqvist, G. et al. The genetic architecture of metabolic rate: environment specific epistasis between mitochondrial and nuclear genes in an insect. Evolution 64, 3354–3363 (2010).CAS 
    PubMed 
    Article 

    Google Scholar 
    43.Blickenstaff, C. C. Partial intersterility of eastern and western US strains of the alfalfa weevil. Ann. Entomol. Soc. Am. 58, 523–526 (1965).Article 

    Google Scholar 
    44.Hsiao, T. H. & Hsiao, C. Hybridization and cytoplasmic incompatibility among alfalfa weevil strains. Entomol. Exp. Appl. 37, 155–159 (1985).Article 

    Google Scholar 
    45.Laven, H. Eradication of Culex pipiens fatigans through cytoplasmic incompatibility. Nature 216, 383–384 (1967).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    46.Iwase, S. et al. Dynamics of infection with Wolbachia in Hypera postica (Coleoptera: Curculionidae) during invasion and establishment. Biol. Invasions 17, 3639–3648 (2015).Article 

    Google Scholar 
    47.Sanaei, E. et al. Global genetic diversity, lineage distribution and Wolbachia infection of the alfalfa weevil Hypera postica (Coleoptera: Curculionidae). Ecol. Evol. 9, 9546–9563 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    48.Ros, V. I. D., Fleming, V. M., Feil, E. J. & Breeuwer, J. A. J. How diverse is the genus Wolbachia? Multiple-gene sequencing reveals a putatively new Wolbachia supergroup recovered from spider mites (Acari: Tetranychidae). Appl. Environ. Microbiol. 75, 1036–1043 (2009).CAS 
    PubMed 
    Article 

    Google Scholar 
    49.Avise, J. C. Phylogeography: The history and formation of species (Harvard University Press, 2000).
    Google Scholar 
    50.Narita, S., Nomura, M., Kato, Y. & Fukatsu, T. Genetic structure of sibling butterfly species affected by Wolbachia infection sweep: evolutionary and biogeographical implications. Mol. Ecol. 15, 1095–1108 (2006).CAS 
    PubMed 
    Article 

    Google Scholar 
    51.Raychoudhury, R. et al. Phylogeography of Nasonia vitripennis (Hymenoptera) indicates a mitochondrial–Wolbachia sweep in North America. Heredity 104, 318–326 (2010).CAS 
    PubMed 
    Article 

    Google Scholar 
    52.Jäckel, R., Mora, D. & Dobler, S. Evidence for selective sweeps by Wolbachia infections: phylogeny of Altica leaf beetles and their reproductive parasites. Mol. Ecol. 22, 4241–4255 (2013).PubMed 
    Article 
    CAS 

    Google Scholar 
    53.Jiang, W. et al. Wolbachia infection status and genetic structure in natural populations of Polytremis nascens (Lepidoptera: Hesperiidae). Infect. Genet. Evol. 27, 202–211 (2014).PubMed 
    Article 

    Google Scholar 
    54.Jansen, V. A. A., Turelli, M. & Godfray, H. C. J. Stochastic spread of Wolbachia. Proc. R. Soc. Lond. B Biol. Sci. 275, 2769–2776 (2008).
    Google Scholar 
    55.Clancy, D. J. & Hoffmann, A. A. Environmental effects on cytoplasmic incompatibility and bacterial load in Wolbachia-infected Drosophila simulans. Entomol. Exp. Appl. 86, 13–24 (1998).Article 

    Google Scholar 
    56.Bordenstein, S. R. & Bordenstein, S. R. Temperature affects the tripartite interactions between bacteriophage WO, Wolbachia, and cytoplasmic incompatibility. PLoS ONE 6, e29106 (2011).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    57.Kamo, T. et al. Limited distribution of natural cyanamide in higher plants: Occurrence in Vicia villosa subsp varia, V. cracca, and Robinia pseudo-acacia. Phytochemistry 69, 1166–1172 (2008).CAS 
    PubMed 
    Article 

    Google Scholar 
    58.Megías, C., Cortes-Giraldo, I., Giron-Calle, J., Alaiz, M. & Vioque, J. Free amino acids, including canavanine, in the seeds from 32 Vicia species belonging to subgenus Vicilla. Biocatal. Agric. Biotechnol. 8, 126–129 (2016).Article 

    Google Scholar 
    59.Rosenthal, G. A. & Dahlman, D. L. Incorporation of L-canavanine into proteins and the expression of its antimetabolic effects. J. Agric. Food Chem. 39, 987–990 (1991).CAS 
    Article 

    Google Scholar 
    60.Kamo, T., Tokuoka. Y. & Miyazaki, M. Quantification of canavanine, 2-aminoethanol, and cyanamide in Aphis craccivora and its host plants, Robinia pseudoacacia and Vicia angustifolia: Effects of these compounds on larval survivorship of Harmonia axyridis. J. Chem. Ecol. 38, 1552–1560 (2012).61.Hewitt, G. M. Post-glacial re-colonization of European biota. Biol. J. Linn. Soc. 68, 87–112 (1999).Article 

    Google Scholar 
    62.Schmitt, T. Molecular biogeography of Europe: Pleistocene cycles and postglacial trends. Front. Zool. 4, 11 (2007).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    63.Taberlet, P., Fumagalli, L., Wust-Saucy, A. G. & Cosson, J. F. Comparative phylogeography and postglacial colonization routes in Europe. Mol. Ecol. 7, 453–464 (1998).CAS 
    PubMed 
    Article 

    Google Scholar 
    64.Jordal, B. H. & Kambestad, M. DNA barcoding of bark and ambrosia beetles reveals excessive NUMTs and consistent east-west divergence across Palearctic forests. Mol. Ecol. Resour. 14, 7–17 (2013).PubMed 
    Article 
    CAS 

    Google Scholar 
    65.Quiros, C. F. & Bauchan, G. R. The genus Medicago and the origin of the Medicago sativa complex. In Alfalfa and alfalfa improvement (eds, Hanson, A. A., Barnes, D. K. & Hill, R. R.). 93–124 (American Society of Agronomy, Crop Science Society of America, Soil Science Society of America, 1988).66.Small, E. Alfalfa and Relatives: Evolution and Classification of Medicago (NRC Research Press, 2011).
    Google Scholar 
    67.FAO Statistics Division. FAOSTAT: Crops and livestock products. http://www.fao.org/faostat/en/#data/TP (2017).68.Simon, C. A. et al. Evolution, weighting, and phylogenetic utility of mitochondrial gene sequences and a compilation of conserved polymerase chain reaction primers. Ann. Entomol. Soc. Am. 87, 651–701 (1994).CAS 
    Article 

    Google Scholar 
    69.Kim, C. G. et al. Pattern of morphological diversification in the Leptocarabus ground beetles (Coleoptera: Carabidae) as deduced from mitochondrial ND5 gene and nuclear 28S rDNA sequences. Mol. Biol. Evol. 17, 137–145 (2000).CAS 
    PubMed 
    Article 

    Google Scholar 
    70.Holden, P. R., Brookfield, J. F. Y. & Jones, P. Cloning and characterization of an ftsZ homologue from a bacterial symbiont of Drosophila melanogaster. Mol. Gen. Genet. 240, 213–220 (1993).CAS 
    PubMed 
    Article 

    Google Scholar 
    71.Kondo, N. I. et al. Wolbachia infections in world populations of bean beetles (Coleoptera: Chrysomelidae: Bruchinae) infesting cultivated and wild legumes. Zool. Sci. 28, 501–508 (2011).ADS 
    Article 

    Google Scholar 
    72.Baldo, L. et al. Multilocus sequence typing system for the endosymbiont Wolbachia pipientis. Appl. Environ. Microbiol. 72, 7098–7110 (2006).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    73.Huelsenbeck, J. P. & Ronquist, F. MrBayes: Bayesian inference of phylogeny. Biometrics 17, 754–755 (2001).CAS 

    Google Scholar 
    74.Nylander, J. A. A. MrAIC.pl. Program distributed by the author. Uppsala: Evolutionary Biology Centre, Uppsala University (2004).75.Rambaut, A. & Drummond, A. J. Tracer v1.5, http://beast.bio.ed.ac.uk/ (2009).76.Tajima, F. Statistical methods to test for nucleotide mutation hypothesis by DNA polymorphism. Genetics 123, 585–595 (1989).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    77.Fu, Y.-X. & Li, W.-H. Statistical tests of neutrality of mutations. Genetics 133, 693–709 (1993).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    78.Librado, P. & Rozas, J. DnaSP v5: A software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25, 1451–1452 (2009).CAS 
    PubMed 
    Article 

    Google Scholar 
    79.Yang, Z. PAML 4: A program package for phylogenetic analysis by maximum likelihood. Mol. Biol. Evol. 24, 1586–1591 (2007).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    80.Song, H., Buhay, J. E., Whiting, M. F. & Crandall, K. A. Many species in one: DNA barcoding overestimates the number of species when nuclear mitochondrial pseudogenes are coamplified. Proc. Natl. Acad. Sci. USA 105, 13486–13491 (2008).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    81.Haran, J., Koutroumpa, F., Magnoux, E., Roques, A. & Roux, G. Ghost mtDNA haplotypes generated by fortuitous NUMTs can deeply disturb infra-specific genetic diversity and phylogeographic pattern. J. Zoolog. Syst. Evol. Res. 53, 109–115 (2015).Article 

    Google Scholar 
    82.Clement, M., Snell, Q., Walker, P., Posada, D. & Crandall, K. TCS: Estimating gene genealogies. Parallel Distrib. Proces. Symp. Int. Proc. 2, 184 (2002).
    Google Scholar 
    83.Tajima, F. Evolutionary relationship of DNA sequences in finite populations. Genetics 105, 437–460 (1983).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    84.Excoffier, L. & Lischer, H. E. L. Arlequin suite ver 3.5: A new series of programs to perform population genetics analyses under Linux and Windows. Mol. Ecol. Resour. 10, 564–567 (2010).PubMed 
    Article 

    Google Scholar 
    85.Wright, S. Isolation by distance. Genetics 28, 114–138 (1943).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    86.Mantel, N. The detection of disease clustering and a generalized regression approach. Cancer Res. 27, 209–220 (1967).CAS 
    PubMed 

    Google Scholar 
    87.Raymond, M. & Rousset, F. Genepop (version 1.2): Population genetics software for exact tests and ecumenicism. J. Hered. 86, 248–249 (1995).Article 

    Google Scholar 
    88.Nei, M. & Li, W. H. Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc. Natl. Acad. Sci. USA 76, 5269–5273 (1979).ADS 
    CAS 
    PubMed 
    MATH 
    Article 

    Google Scholar 
    89.Lemey, P., Rambaut, A., Drummond, A. J. & Suchard, M. A. Bayesian phylogeography finds its roots. PLoS Comput. Biol. 5, e1000520 (2009).ADS 
    MathSciNet 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    90.Suchard, M. A. et al. Bayesian phylogenetic and phylodynamic data integration using BEAST 1.10. Virus Evol. 4, vey016 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    91.Drummond, A. J., Suchard, M. A., Xie, D. & Rambaut, A. Bayesian phylogenetics with BEAUti and the BEAST 1.7. Mol. Biol. Evol. 29, 1969–1973 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    92.Bielejec, F. et al. SpreaD3: Interactive visualization of spatiotemporal history and trait evolutionary processes. Mol. Biol. Evol. 33, 2167–2169 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar  More

  • in

    Dynamic global monitoring needed to use restoration of forest cover as a climate solution

    1.Griscom, B. W. et al. Proc. Natl Acad. Sci. USA 114, 11645–11650 (2017).CAS 
    Article 

    Google Scholar 
    2.Anderson, C. M. et al. Science 363, 933–934 (2019).CAS 
    Article 

    Google Scholar 
    3.Bastin, J.-F. et al. Science 365, 6–9 (2019).Article 

    Google Scholar 
    4.Cook-Patton, S. C. et al. Nature 585, 545–550 (2020).CAS 
    Article 

    Google Scholar 
    5.Holl, K. D. & Brancalion, P. S. Science 368, 580–582 (2020).CAS 
    Article 

    Google Scholar 
    6.Fargione, J. et al. Front. For. Glob. Change (in the press).7.West, T. A. P., Börner, J., Sills, E. O. & Kontoleon, A. Proc. Natl Acad. Sci. USA 117, 24188–24194 (2020).CAS 
    Article 

    Google Scholar 
    8.Brancalion, P. H. S. et al. L. Degrad. Dev. 32, 830–841 (2020).Article 

    Google Scholar 
    9.Sills, E. O. et al. PLoS ONE 10, e0132590 (2015).Article 

    Google Scholar 
    10.Ferraro, P. J. & Hanauer, M. M. Annu. Rev. Environ. Resour. 39, 495–517 (2014).Article 

    Google Scholar 
    11.Harris, N. L. et al. Nat. Clim. Change 11, 234–240 (2021).Article 

    Google Scholar 
    12.Reytar, K. et al. The challenge of tracking how a trillion trees grow. World Resources Institute https://www.wri.org/blog/2020/07/trillion-trees-tracking-challenges (2020).13.Shoch, D. et al. Methodology For Improved Forest Management (Family Forest Carbon Program, 2020).14.McDowell, N. G. et al. Science 368, eaaz9463 (2020).CAS 
    Article 

    Google Scholar 
    15.IPCC Special Report on Global Warming of 1.5 °C (eds Masson-Delmotte, V. et al.) (WMO, 2018). More

  • in

    Woody-biomass projections and drivers of change in sub-Saharan Africa

    1.Davis, S. J. & Caldeira, K. Consumption-based accounting of CO2 emissions. Proc. Natl Acad. Sci. USA 107, 5687–5692 (2010).CAS 
    Article 

    Google Scholar 
    2.Wiedmann, T. O. et al. The material footprint of nations. Proc. Natl Acad. Sci. USA 112, 6271–6276 (2015).CAS 
    Article 

    Google Scholar 
    3.Rogelj, J. et al. Paris Agreement climate proposals need a boost to keep warming well below 2 °C. Nature 534, 631–639 (2016).CAS 
    Article 

    Google Scholar 
    4.Brandt, M. et al. Satellite passive microwaves reveal recent climate-induced carbon losses in African drylands. Nat. Ecol. Evol. 2, 827–835 (2018).Article 

    Google Scholar 
    5.Sankaran, M. et al. Determinants of woody cover in African savannas. Nature 438, 846–849 (2005).CAS 
    Article 

    Google Scholar 
    6.Bond, W. J. & Keane, R. E. Fires, Ecological Effects of☆. In Reference Module in Life Sciences (Elsevier, 2017); https://doi.org/10.1016/B978-0-12-809633-8.02098-77.Valentini, R. et al. A full greenhouse gases budget of Africa: synthesis, uncertainties, and vulnerabilities. Biogeosciences 11, 381–407 (2014).Article 
    CAS 

    Google Scholar 
    8.Williams, C. A. et al. Africa and the global carbon cycle. Carbon Balance Manag. 2, 3 (2007).Article 
    CAS 

    Google Scholar 
    9.Hanan, N. P. Agroforestry in the Sahel. Nat. Geosci. 11, 296–297 (2018).Article 
    CAS 

    Google Scholar 
    10.Dai, A. Increasing drought under global warming in observations and models. Nat. Clim. Change 3, 52–58 (2013).Article 

    Google Scholar 
    11.Zhou, L. et al. Widespread decline of Congo rainforest greenness in the past decade. Nature 509, 86–90 (2014).CAS 
    Article 

    Google Scholar 
    12.Feng, S. & Fu, Q. Expansion of global drylands under a warming climate. Atmos. Chem. Phys. 13, 10081–10094 (2013).CAS 
    Article 

    Google Scholar 
    13.Anchang, J. Y. et al. Trends in woody and herbaceous vegetation in the savannas of West Africa. Remote Sens. 11, 576 (2019).Article 

    Google Scholar 
    14.Andela, N., Liu, Y. Y., van Dijk, A. I. J. M., de Jeu, R. A. M. & McVicar, T. R. Global changes in dryland vegetation dynamics (1988–2008) assessed by satellite remote sensing: comparing a new passive microwave vegetation density record with reflective greenness data. Biogeosciences 10, 6657–6676 (2013).Article 

    Google Scholar 
    15.Kaptué, A. T., Prihodko, L. & Hanan, N. P. On regreening and degradation in Sahelian watersheds. Proc. Natl Acad. Sci. USA 112, 12133–12138 (2015).Article 
    CAS 

    Google Scholar 
    16.Schneider, S. H. The greenhouse effect: science and policy. Science 243, 771–781 (1989).CAS 
    Article 

    Google Scholar 
    17.Walsh, J. et al. Climate Change Impacts in the United States: The Third National Climate Assessment Ch. 2 (US Global Change Research Program, 2014); https://doi.org/10.7930/J0KW5CXT18.Filatova, T., Polhill, J. G. & van Ewijk, S. Regime shifts in coupled socio-environmental systems: review of modelling challenges and approaches. Environ. Model. Softw. 75, 333–347 (2016).Article 

    Google Scholar 
    19.Loarie, S. R. et al. The velocity of climate change. Nature 462, 1052–1055 (2009).CAS 
    Article 

    Google Scholar 
    20.Brandt, M. et al. Reduction of tree cover in West African woodlands and promotion in semi-arid farmlands. Nat. Geosci. 11, 328–333 (2018).CAS 
    Article 

    Google Scholar 
    21.Keys, P. W. et al. Anthropocene risk. Nat. Sustain. 2, 667–673 (2019).Article 

    Google Scholar 
    22.Rockström, J. et al. A safe operating space for humanity. Nature 461, 472–475 (2009).Article 
    CAS 

    Google Scholar 
    23.Steffen, W. et al. Planetary boundaries: guiding human development on a changing planet. Science 347, 1259855 (2015).Article 
    CAS 

    Google Scholar 
    24.Hanan, N. P., Prihodko, L., Ross, C. W., Bucini, G. & Tredennick, A. T. Gridded Estimates of Woody Cover and Biomass across Sub-Saharan Africa, 2000-2004 (ORNL DAAC, 2020); https://doi.org/10.3334/ORNLDAAC/177725.Bouvet, A. et al. An above-ground biomass map of African savannahs and woodlands at 25 m resolution derived from ALOS PALSAR. Remote Sens. Environ. 206, 156–173 (2018).Article 

    Google Scholar 
    26.Avitabile, V. et al. An integrated pan-tropical biomass map using multiple reference datasets. Glob. Change Biol. 22, 1406–1420 (2016).Article 

    Google Scholar 
    27.Saatchi, S. S. et al. Benchmark map of forest carbon stocks in tropical regions across three continents. Proc. Natl Acad. Sci. USA 108, 9899–9904 (2011).CAS 
    Article 

    Google Scholar 
    28.Baccini, A. et al. Estimated carbon dioxide emissions from tropical deforestation improved by carbon-density maps. Nat. Clim. Change 2, 182–185 (2012).CAS 
    Article 

    Google Scholar 
    29.Anchang, J. Y. et al. Toward operational mapping of woody canopy cover in tropical savannas using Google Earth Engine. Front. Environ. Sci. https://doi.org/10.3389/fenvs.2020.00004 (2020).30.Kahiu, M. N. & Hanan, N. P. Fire in sub-Saharan Africa: the fuel, cure and connectivity hypothesis. Glob. Ecol. Biogeogr. 27, 946–957 (2018).Article 

    Google Scholar 
    31.Venter, O. et al. Global terrestrial Human Footprint maps for 1993 and 2009. Sci. Data 3, 160067 (2016).Article 

    Google Scholar 
    32.Ross, C. W. et al. HYSOGs250m, global gridded hydrologic soil groups for curve-number-based runoff modeling. Sci. Data 5, 180091 (2018).Article 

    Google Scholar 
    33.Lüdeke, M. K. B., Moldenhauer, O. & Petschel-Held, G. Rural poverty driven soil degradation under climate change: the sensitivity of the disposition towards the Sahel Syndrome with respect to climate. Environ. Model. Assess. 4, 315–326 (1999).Article 

    Google Scholar 
    34.Hansfort, S. L. & Mertz, O. Challenging the woodfuel crisis in West African woodlands. Hum. Ecol. 39, 583 (2011).Article 

    Google Scholar 
    35.Andela, N. et al. A human-driven decline in global burned area. Science 356, 1356–1362 (2017).CAS 
    Article 

    Google Scholar 
    36.Wei, F. et al. Nonlinear dynamics of fires in Africa over recent decades controlled by precipitation. Glob. Change Biol. 26, 4495–4505 (2020).Article 

    Google Scholar 
    37.Jones, B. & O’Neill, B. C. Spatially explicit global population scenarios consistent with the Shared Socioeconomic Pathways. Environ. Res. Lett. 11, 084003 (2016).Article 

    Google Scholar 
    38.Riahi, K. et al. The Shared Socioeconomic Pathways and their energy, land use, and greenhouse gas emissions implications: an overview. Glob. Environ. Change 42, 153–168 (2017).Article 

    Google Scholar 
    39.Potapov, P. et al. Mapping the World’s intact forest landscapes by remote sensing. Ecol. Soc. 13, 2 (2008).Article 

    Google Scholar 
    40.Herold, M., Mayaux, P., Woodcock, C. E., Baccini, A. & Schmullius, C. Some challenges in global land cover mapping: an assessment of agreement and accuracy in existing 1 km datasets. Remote Sens. Environ. 112, 2538–2556 (2008).Article 

    Google Scholar 
    41.Martens, C. et al. Large uncertainties in future biome changes in Africa call for flexible climate adaptation strategies. Glob. Change Biol. 27, 340–358 (2021).Article 

    Google Scholar 
    42.Smith, W. K. et al. Large divergence of satellite and Earth system model estimates of global terrestrial CO2 fertilization. Nat. Clim. Change 6, 306–310 (2016).Article 
    CAS 

    Google Scholar 
    43.Reich, P. B., Hobbie, S. E. & Lee, T. D. Plant growth enhancement by elevated CO2 eliminated by joint water and nitrogen limitation. Nat. Geosci. 7, 920–924 (2014).CAS 
    Article 

    Google Scholar 
    44.Wieder, W. R., Cleveland, C. C., Smith, W. K. & Todd-Brown, K. Future productivity and carbon storage limited by terrestrial nutrient availability. Nat. Geosci. 8, 441–444 (2015).CAS 
    Article 

    Google Scholar 
    45.Körner, C. A matter of tree longevity. Science 355, 130–131 (2017).Article 

    Google Scholar 
    46.Olson, D. M. & Dinerstein, E. The Global 200: priority ecoregions for global conservation. Ann. Mo. Bot. Gard. 89, 199–224 (2002).Article 

    Google Scholar 
    47.R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2019).48.Liaw, A. & Wiener, M. Classification and regression by randomForest. R News 2, 18–22 (2002).
    Google Scholar 
    49.Breiman, L. Random forests. Mach. Learn. 45, 5–32 (2001).Article 

    Google Scholar 
    50.Massey, F. J. The Kolmogorov-Smirnov test for goodness of fit. J. Am. Stat. Assoc. 46, 68–78 (1951).Article 

    Google Scholar 
    51.Jarvis, A., Reuter, H. I., Nelson, A. & Guevara, E. Hole-filled SRTM for the globe: version 4: data grid (CGIAR Consortium for Spatial Information, 2008).52.Ross, C. W. et al. Global Hydrologic Soil Groups (HYSOGs250m) for Curve Number-Based Runoff Modeling (ORNL DAAC, 2018); https://doi.org/10.3334/ORNLDAAC/156653.Simard, M., Pinto, N., Fisher, J. B. & Baccini, A. Mapping forest canopy height globally with spaceborne lidar. J. Geophys. Res. https://doi.org/10.1029/2011JG001708 (2011).54.Jucker, T. et al. Allometric equations for integrating remote sensing imagery into forest monitoring programmes. Glob. Change Biol. 23, 177–190 (2017).Article 

    Google Scholar 
    55.Sanderson, E. W. et al. The human footprint and the last of the wild. BioScience 52, 891–904 (2002).Article 

    Google Scholar 
    56.Molnar, C., Bischl, B. & Casalicchio, G. iml: an R package for interpretable machine learning. J. Open Source Softw. 3, 786 (2018).Article 

    Google Scholar 
    57.Wickham, H. tidyverse: Easily Install and Load the ‘Tidyverse’ (CRAN, 2017).58.Hijmans, R. J. et al. raster: Geographic Data Analysis and Modeling (CRAN, 2016).59.Perpiñán, O. & Hijmans, R. rasterVis (CRAN, 2018).60.Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer, 2016).61.Zeileis, A. et al. colorspace: A toolbox for manipulating and assessing colors and palettes. J. Stat. Soft. https://doi.org/10.18637/jss.v096.i01 (2020).62.Neuwirth, E. RColorBrewer: ColorBrewer Palettes (CRAN, 2014).63.Auguie, B. gridExtra: Miscellaneous Functions for ‘Grid’ Graphics (CRAN, 2017).64.Pebesma, E. Simple features for R: standardized support for spatial vector data. R J. 10, 439–446 (2018).Article 

    Google Scholar 
    65.Ross, C. W., Hanan, N. P. & Prihodko, L. Prediction Maps: Woody-Biomass Projections and Drivers of Change in Sub-Saharan Africa (Figshare, 2021); https://doi.org/10.6084/M9.FIGSHARE.14150210.V266.Ross, C. W. R Code for Woody-Biomass Projections and Drivers of Change in Sub-Saharan Africa (Figshare, 2021); https://doi.org/10.6084/M9.FIGSHARE.14143799.V1 More

  • in

    Carbon tariffs

    Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain
    the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in
    Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles
    and JavaScript. More

  • in

    A biogeochemical–hydrological framework for the role of redox-active compounds in aquatic systems

    1.Gruber, N. & Galloway, J. N. An Earth-system perspective of the global nitrogen cycle. Nature 451, 293–296 (2008).Article 

    Google Scholar 
    2.Zimmerman, J. B., Mihelcic, J. R. & Smith, J. Global stressors on water quality and quantity. Environ. Sci. Technol. 42, 4247–4254 (2008).Article 

    Google Scholar 
    3.Banwart, S. A., Nikolaidis, N. P., Zhu, Y.-G., Peacock, C. L. & Sparks, D. L. Soil functions: connecting Earth’s critical zone. Annu. Rev. Earth Planet. Sci. Lett. 47, 333–359 (2019).Article 

    Google Scholar 
    4.Hartmann, D. L. et al. in Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.) Ch. 2 (Cambridge Univ. Press, 2013).5.Knorr, K. H., Lischeid, G. & Blodau, C. Dynamics of redox processes in a minerotrophic fen exposed to a water table manipulation. Geoderma 153, 379–392 (2009).Article 

    Google Scholar 
    6.McClain, M. E. et al. Biogeochemical hot spots and hot moments at the interface of terrestrial and aquatic ecosystems. Ecosystems 6, 301–312 (2003).Article 

    Google Scholar 
    7.Yabusaki, S. B. et al. Water table dynamics and biogeochemical cycling in a shallow, variably-saturated floodplain. Environ. Sci. Technol. 51, 3307–3317 (2017).Article 

    Google Scholar 
    8.Krause, S. et al. Ecohydrological interfaces as hot spots of ecosystem processes. Water Resour. Res. 53, 6359–6376 (2017).Article 

    Google Scholar 
    9.Stumm W. & Morgan J. J. Aquatic Chemistry, Chemical Equilibria and Rates in Natural Waters 3rd edn (John Wiley & Sons, 1996).10.Aeschbacher, M., Vergari, D., Schwarzenbach, R. P. & Sander, M. Electrochemical analysis of proton and electron transfer equilibria of the reducible moieties in humic acids. Environ. Sci. Technol. 45, 8385–8394 (2011).Article 

    Google Scholar 
    11.Thamdrup, B. Bacterial manganese and iron reduction in aquatic sediments. Adv. Microb. Ecol. 16, 41–84 (2000).Article 

    Google Scholar 
    12.Kostka, J. E. & Nealson, K. H. Dissolution and reduction of magnetite by bacteria. Environ. Sci. Technol. 29, 2535–2540 (1995).Article 

    Google Scholar 
    13.Piepenbrock, A., Dippon, U., Porsch, K., Appel, E. & Kappler, A. Dependence of microbial magnetite formation on humic substance and ferrihydrite concentrations. Geochim. Cosmochim. Acta 75, 6844–6858 (2011).Article 

    Google Scholar 
    14.Amstaetter, K., Borch, T., Larese-Casanova, P. & Kappler, A. Redox transformation of arsenic by Fe(II)-activated goethite (α-FeOOH). Environ. Sci. Technol. 44, 102–108 (2010).Article 

    Google Scholar 
    15.Ilgen, A. G., Foster, A. L. & Trainor, T. P. Role of structural Fe in nontronite NAu-1 and dissolved Fe(II) in redox transformations of arsenic and antimony. Geochim. Cosmochim. Acta 94, 128–145 (2012).Article 

    Google Scholar 
    16.Lan, S. et al. Efficient catalytic As(III) oxidation on the surface of ferrihydrite in the presence of aqueous Mn(II). Water Res. 128, 92–101 (2018).Article 

    Google Scholar 
    17.Lovley, D. R. et al. Humic substances as a mediator for microbially catalyzed metal reduction. Acta Hydroch. Hydrob. 26, 152–157 (1998).Article 

    Google Scholar 
    18.Lovley, D. R., Fraga, J. L., Coates, J. D. & Blunt-Harris, E. L. Humics as an electron donor for anaerobic respiration. Environ. Microbiol. 1, 89–98 (1999).Article 

    Google Scholar 
    19.Peretyazhko, T. & Sposito, G. Reducing capacity of terrestrial humic acids. Geoderma 137, 140–146 (2006).Article 

    Google Scholar 
    20.Heitmann, T. & Blodau, C. Oxidation and incorporation of hydrogen sulfide by dissolved organic matter. Chem. Geol. 235, 12–20 (2006).Article 

    Google Scholar 
    21.Yu, Z. G., Peiffer, S., Goettlicher, J. & Knorr, K. H. Electron transfer budgets and kinetics of abiotic oxidation and incorporation of aqueous sulfide by dissolved organic matter. Environ. Sci. Technol. 49, 5441–5449 (2015).Article 

    Google Scholar 
    22.Rose, A. L. & Waite, T. D. Kinetics of iron complexation by dissolved natural organic matter in coastal waters. Mar. Chem. 84, 85–103 (2003).Article 

    Google Scholar 
    23.Bauer, I. & Kappler, A. Rates and extent of reduction of Fe(III) compounds and O2 by humic substances. Environ. Sci. Technol. 43, 4902–4908 (2009).Article 

    Google Scholar 
    24.Uchimiya, M. & Stone, A. T. Reversible redox chemistry of quinones: impact on biogeochemical cycles. Chemosphere 77, 451–458 (2009).Article 

    Google Scholar 
    25.Borch, T. et al. Biogeochemical redox processes and their impact on contaminant dynamics. Environ. Sci. Technol. 44, 15–23 (2010).Article 

    Google Scholar 
    26.Ilgen, A. G., Kukkadapu, R. K., Leung, K. & Washington, R. E. ‘Switching on’ iron in clay minerals. Environ. Sci. Nano 6, 1704–1715 (2019).Article 

    Google Scholar 
    27.Peiffer, S., dos Santos Afonso, M., Wehrli, B. & Gaechter, R. Kinetics and mechanism of the reaction of hydrogen sulfide with lepidocrocite. Environ. Sci. Technol. 26, 2408–2413 (1992).Article 

    Google Scholar 
    28.Poulton, S. W., Krom, M. D. & Raiswell, R. A revised scheme for the reactivity of iron (oxyhydr)oxide minerals towards dissolved sulfide. Geochim. Cosmochim. Acta 68, 3703–3715 (2004).Article 

    Google Scholar 
    29.Hellige, K., Pollok, K., Larese-Casanova, P., Behrends, T. & Peiffer, S. Pathways of ferrous iron mineral formation upon sulfidation of lepidocrocite surfaces. Geochim. Cosmochim. Acta 81, 69–81 (2012).Article 

    Google Scholar 
    30.Wan, M., Shchukarev, A., Lohmayer, R., Planer-Friedrich, B. & Peiffer, S. Occurrence of surface polysulfides during the interaction between ferric (hydr)oxides and aqueous sulfide. Environ. Sci. Technol. 48, 5076–5084 (2014).Article 

    Google Scholar 
    31.Hedderich, R. et al. Anaerobic respiration with elemental sulfur and with disulfides. FEMS Microbiol. Rev. 22, 353–381 (1998).Article 

    Google Scholar 
    32.Milucka, J. et al. Zero-valent sulphur is a key intermediate in marine methane oxidation. Nature 491, 541–546 (2012).Article 

    Google Scholar 
    33.Poser, A. et al. Disproportionation of elemental sulfur by haloalkaliphilic bacteria from soda lakes. Extremophiles 17, 1003–1012 (2013).Article 

    Google Scholar 
    34.Aeppli, M. et al. Decreases in iron oxide reducibility during microbial reductive dissolution and transformation of ferrihydrite. Environ. Sci. Technol. 53, 8736–8746 (2019).Article 

    Google Scholar 
    35.Aeppli, M. et al. Electrochemical analysis of changes in iron oxide reducibility during abiotic ferrihydrite transformation into goethite and magnetite. Environ. Sci. Technol. 53, 3568–3578 (2019).Article 

    Google Scholar 
    36.Klüpfel, L., Piepenbrock, A., Kappler, A. & Sander, M. Humic substances as fully regenerable electron acceptors in recurrently anoxic environments. Nat. Geosci. 7, 195–200 (2014).Article 

    Google Scholar 
    37.Blodau, C. Carbon cycling in peatlands—a review of processes and controls. Environ. Rev. 10, 111–134 (2002).Article 

    Google Scholar 
    38.Gao, C., Sander, M., Agethen, S. & Knorr, K.-H. Electron accepting capacity of dissolved and particulate organic matter control CO2 and CH4 formation in peat soils. Geochim. Cosmochim. Acta 245, 266–277 (2019).Article 

    Google Scholar 
    39.Schaefer, M. V., Gorski, C. A. & Scherer, M. M. Spectroscopic evidence for interfacial Fe(II)–Fe(III) electron transfer in a clay mineral. Environ. Sci. Technol. 45, 540–545 (2011).Article 

    Google Scholar 
    40.Pentrakova, L., Su, K., Pentrak, M. & Stucko, J. W. A review of microbial redox interactions with structural Fe in clay minerals. Clay Miner. 48, 543–560 (2013).Article 

    Google Scholar 
    41.Kostka, J. E., Dalton, D. D., Skelton, H., Dollhopf, S. & Stucki, J. W. Growth of iron(III)-reducing bacteria on clay minerals as the sole electron acceptor and comparison of growth yields on a variety of oxidized iron forms. Appl. Environ. Microbiol. 68, 6256–6262 (2002).Article 

    Google Scholar 
    42.Li, Y. L. et al. Iron reduction and alteration of nontronite NAu-2 by a sulfate-reducing bacterium. Geochim. Cosmochim. Acta 68, 3251–3260 (2004).Article 

    Google Scholar 
    43.Liu, D. et al. Reduction of structural Fe(III) in nontronite by methanogen Methanosarcina barkeri. Geochim. Cosmochim. Acta 75, 1057–1071 (2011).Article 

    Google Scholar 
    44.Zhang, J., Dong, H., Liu, D. & Agrawal, A. Microbial reduction of Fe(III) in smectite minerals by thermophilicmethanogen Methanothermobacter thermautotrophicus. Geochim. Cosmochim. Acta 106, 203–215 (2013).Article 

    Google Scholar 
    45.Shelobolina, E. et al. Microbial lithotrophic oxidation of structural Fe(II) in biotite. Appl. Environ. Microbiol. 78, 5746–5752 (2012).Article 

    Google Scholar 
    46.Gorski, C. A. et al. Redox properties of structural Fe in clay minerals. 1. Electrochemical quantification of electron-donating and -accepting capacities of smectites. Environ. Sci. Technol. 46, 9360–9368 (2012).Article 

    Google Scholar 
    47.Blodau, C., Mayer, B., Peiffer, S. & Moore, T. R. Support for an anaerobic sulfur cycle in two Canadian peatland soils. J. Geophys. Res. 112, G000364 (2007).
    Google Scholar 
    48.Gauci, V., Dise, N. & Fowler, D. Controls on suppression of methane flux from a peat bog subjected to simulated acid rain sulfate deposition. Glob. Biogeochem. Cycles 16, GB001370 (2002).Article 

    Google Scholar 
    49.Pester, M., Knorr, K. H., Friedrich, M. W., Wagner, M. & Loy, A. Sulfate-reducing microorganisms in wetlands—fameless actors in carbon cycling and climate change. Front. Microbiol. 3, 72 (2012).Article 

    Google Scholar 
    50.Hansel, C. M., Ferdelman, T. G. & Tebo, B. M. Cryptic cross-linkages among biogeochemical cycles: novel insights from reactive intermediates. Elements 11, 409–414 (2015).Article 

    Google Scholar 
    51.Kappler, A. & Bryce, C. Cryptic biogeochemical cycles: unravelling hidden redox reactions. Environ. Microbiol. 19, 842–846 (2017).Article 

    Google Scholar 
    52.Holmkvist, L., Ferdelman, T. G. & Jørgensen, B. B. A cryptic sulfur cycle driven by iron in the methane zone of marine sediment (Aarhus Bay, Denmark). Geochim. Cosmochim. Acta 75, 3581–3599 (2011).Article 

    Google Scholar 
    53.Hansel, C. M. et al. Dominance of sulfur-fueled iron oxide reduction in low-sulfate freshwater sediments. ISME J. 9, 2400–2412 (2015b).Article 

    Google Scholar 
    54.Findlay, A. J. Microbial impact on polysulfide dynamics in the environment. FEMS Microbiol. Lett. https://doi.org/10.1093/femsle/fnw103(2016).55.Berg, J. S. et al. Intensive cryptic microbial iron cycling in the low iron water column of the meromictic Lake Cadagno. Environ. Microbiol. 18, 5288–5302 (2016).Article 

    Google Scholar 
    56.Peng, C., Bryce, C., Sundman, A. & Kappler, A.Cryptic cycling of complexes containing Fe(III) and organic matter by phototrophic Fe(II)-oxidizing bacteria. Appl. Environ. Microbiol. 85, e02826-18 (2019).Article 

    Google Scholar 
    57.Bethke, C. M., Sanford, R. A., Kirk, M. F., Jin, Q. & Flynn, T. M. The thermodynamic ladder in geomicrobiology. Am. J. Sci. 311, 183–210 (2011).Article 

    Google Scholar 
    58.Otte, J. M. et al. The distribution of active iron cycling bacteria in marine and freshwater sediments is decoupled from geochemical gradients. Environ. Microbiol. 20, 2483–2499 (2018).Article 

    Google Scholar 
    59.Steefel, C. I. & van Cappellen, P. A new kinetic approach to modeling water–rock interaction: the role of nucleation, precursors, and Ostwald ripening. Geochim. Cosmochim. Acta 54, 2657–2677 (1990).Article 

    Google Scholar 
    60.Vinson, D. S., Block, S. E., Crossey, L. J. & Dahm, C. N. Biogeochemistry at the zone of intermittent saturation: field-based study of the shallow alluvial aquifer, Rio Grande, New Mexico. Geosphere 3, 366–380 (2007).Article 

    Google Scholar 
    61.Frei, S., Knorr, K., Peiffer, S. & Fleckenstein, J. Surface micro-topography causes hot spots of biogeochemical activity in wetland systems: a virtual modeling experiment. J. Geophys. Res. Biogeosciences 117, G00N12 (2012).Article 

    Google Scholar 
    62.Briggs, M. A. et al. A physical explanation for the development of redox microzones in hyporheic flow. Geophys. Res. Lett. 42, 4402–4410 (2015).Article 

    Google Scholar 
    63.Stockdale, A., Davison, W. & Zhang, H. Micro-scale biogeochemical heterogeneity in sediments: a review of available technology and observed evidence. Earth Sci. Rev. 92, 81–97 (2009).Article 

    Google Scholar 
    64.Sawyer, A. H. Enhanced removal of groundwater-borne nitrate in heterogeneous aquatic sediments. Geophys. Res. Lett. 42, 403–410 (2015).Article 

    Google Scholar 
    65.Arora, B., Dwivedi, D., Hubbard, S. S., Steefel, C. I. & Williams, K. H. Identifying geochemical hot moments and their controls on a contaminated river floodplain system using wavelet and entropy approaches. Environ. Model. Softw. 85, 27–41 (2016).Article 

    Google Scholar 
    66.Sawyer, A. H., Kaplan, L. A., Lazareva, O. & Michael, H. A. Hydrologic dynamics and geochemical responses within a floodplain aquifer and hyporheic zone during Hurricane Sandy. Water Resour. Res. 50, 4877–4892 (2014).Article 

    Google Scholar 
    67.Posth, N., Canfield, D. E. & Kappler, A. Biogenic Fe(III) minerals: from formation to diagenesis and preservation in the rock record. Earth Sci. Rev. 135, 103–121 (2014).Article 

    Google Scholar 
    68.Tomaszewski, E. J., Cronk, S. S., Gorski, C. A. & Ginder-Vogel, M. The role of dissolved Fe(II) concentration in the mineralogical evolution of Fe (hydr)oxides during redox cycling. Chem. Geol. 438, 163–170 (2016).Article 

    Google Scholar 
    69.Bishop, M. E. et al. Reactivity of redox cycled Fe-bearing subsurface sediments towards hexavalent chromium reduction. Geochim. Cosmochim. Acta 252, 88–106 (2019).Article 

    Google Scholar 
    70.Bartsch, S. et al. River–aquifer exchange fluxes under monsoonal climate conditions. J. Hydrol. 509, 601–614 (2014).Article 

    Google Scholar 
    71.McAllister, S. M. et al. Dynamic hydrologic and biogeochemical processes drive microbially enhanced iron and sulfur cycling within the intertidal mixing zone of a beach aquifer. Limnol. Oceanogr. 60, 329–345 (2015).Article 

    Google Scholar 
    72.Goldberg, S. D., Knorr, K. ‐H., Blodau, C., Lischeid, G. & Gebauer, G. Impact of altering the water table height of an acidic fen on N2O and NO fluxes and soil concentrations. Glob. Change Biol. 16, 220–233 (2010).Article 

    Google Scholar 
    73.Moore, T. R. et al. A multi-year record of methane flux at the Mer Bleue bog, Southern Canada. Ecosystems 14, 646–657 (2011).Article 

    Google Scholar 
    74.Brown, M. G., Humphreys, E. R., Moore, T. R., Roulet, N. T. & Lafleur, P. M. Evidence for a nonmonotonic relationship between ecosystem-scale peatland methane emissions and water table depth. J. Geophys. Res. Biogeosciences 119, 826–835 (2014).Article 

    Google Scholar 
    75.Estop-Aragonés, C., Zając, K. & Blodau, C. Effects of extreme experimental drought and rewetting on CO2 and CH4 exchange in mesocosms of 14 European peatlands with different nitrogen and sulfur deposition. Glob. Change Biol. 22, 2285–2300 (2016).Article 

    Google Scholar 
    76.Chamberlain, S. D. et al. Soil properties and sediment accretion modulate methane fluxes from restored wetlands. Glob. Change Biol. 24, 4107–4121 (2018).Article 

    Google Scholar 
    77.Arora, B. et al. Influence of hydrological, biogeochemical and temperature transients on subsurface carbon fluxes in a flood plain environment. Biogeochemistry 127, 367–396 (2016).Article 

    Google Scholar 
    78.Frei, S. & Peiffer, S. Exposure times rather than residence times control redox transformation efficiencies in Riparian Wetlands. J. Hydrol. 543, 182–196 (2016).Article 

    Google Scholar 
    79.Dwivedi, D., Arora, B., Steefel, C. I., Dafflon, B. & Versteeg, R. Hot spots and hot moments of nitrogen in a riparian corridor. Water Resour. Res. 54, 205–222 (2018).Article 

    Google Scholar 
    80.Peiffer, S., Klemm, O., Pecher, K. & Hollerung, R. Redox measurements in aqueous solutions—a theoretical approach to data interpretation, based on electrode kinetics. J. Contam. Hydrol. 10, 1–18 (1992).Article 

    Google Scholar 
    81.Wainwright, H. M. et al. Hierarchical Bayesian method for mapping biogeochemical hot spots using induced polarization imaging. Water Resour. Res. 52, 533–551 (2016).Article 

    Google Scholar 
    82.Mellage, A. et al. Sensing coated iron-oxide nanoparticles with spectral induced polarization (SIP): experiments in natural sand packed flow-through columns. Environ. Sci. Technol. 52, 14256–14265 (2018).Article 

    Google Scholar 
    83.Revil, A., Florsch, N. & Mao, D. Induced polarization response of porous media with metallic particles—part 1: a theory for disseminated semiconductors. Geophysics 80, D525–D538 (2015).Article 

    Google Scholar 
    84.Revil, A., Abdel Aal, G. Z., Atekwana, E. A., Mao, D. & Florsch, N. Induced polarization response of porous media with metallic particles—part 2: comparison with a broad database of experimental data. Geophysics 80, D539–D552 (2015).Article 

    Google Scholar 
    85.Pausch, J. & Kuzyakov, Y. Carbon input by roots into the soil: quantification of rhizodeposition from root to ecosystem scale. Glob. Change Biol. 24, 1–12 (2018).Article 

    Google Scholar 
    86.Dwivedi, D. et al. Geochemical exports to river from the intrameander hyporheic zone under transient hydrologic conditions: East River mountainous watershed, Colorado. Water Resour. Res. 54, 8456–8477 (2018).Article 

    Google Scholar 
    87.Jin, Q. & Bethke, C. M. The thermodynamics and kinetics of microbial metabolism. Am. J. Sci. 307, 643–677 (2007).Article 

    Google Scholar 
    88.Nitzsche, K. S. et al. Arsenic removal from drinking water by a household sand filter in Vietnam—effect of filter usage practices on arsenic removal efficiency and microbiological water quality. Sci. Total Environ. 502, 526–536 (2015).Article 

    Google Scholar 
    89.Appelo, C. A. J. & Postma, D. Geochemistry, Groundwater and Pollution (CRC Press, 2004).90.Brazhkin, V. V. Metastable phases and ‘metastable’ phase diagrams. J. Phys. Condens. Matter 18, 9643–9650 (2006).Article 

    Google Scholar 
    91.Cornell, R. M. & Schwertmann, U. The Iron Oxides: Structure, Properties, Reactions, Occurrences and Uses (Wiley-VCH, 2006).92.Ahmed, I. A. M. & Maher, B. A. Identification and paleoclimatic significance of magnetite nanoparticles in soils. Proc. Natl Acad. Sci. USA 115, 1736–1741 (2018).Article 

    Google Scholar 
    93.Engel, M. H. & Macko, S. A. Organic Geochemistry. Principles and Applications (Springer, 1993).94.Lovley, D. R. & Phillips, E. J. P. Novel mode of microbial energy metabolism: organic carbon oxidation coupled to dissimilatory reduction of iron or manganese. Appl. Environ. Microbiol. 54, 1472–1480 (1988).Article 

    Google Scholar 
    95.Gorski, C. A. & Scherer, M. M. in Aquatic Redox Chemistry (eds Tratnyek, P. G. et al.) 315–343 (ACS, 2011).96.Orsetti, S., Laskov, C. & Haderlein, S. B. Electron transfer between iron minerals and quinones: estimating the reduction potential of the Fe(II)–goethite surface from AQDS speciation. Environ. Sci. Technol. 47, 14161–14168 (2013).Article 

    Google Scholar 
    97.Gorski, C. A., Edwards, R., Sander, M., Hofstetter, T. B. & Stewart, S. M. Thermodynamic characterization of iron oxide–aqueous Fe2+ redox couples. Environ. Sci. Technol. 50, 8538–8547 (2016).Article 

    Google Scholar 
    98.Byrne, J. M. et al. Redox cycling of Fe(II) and Fe(III) in magnetite by Fe-metabolizing bacteria. Science 347, 1473–1476 (2015).Article 

    Google Scholar  More

  • in

    How trees and forests reduce risks from climate change

    Lisa Palmer is a journalist and author of Hot, Hungry Planet: The Fight to Stop a Global Food Crisis in the Face of Climate Change (St. Martin’s Press, 2017), and the National Geographic Visiting Professor of Science Communication at the George Washington University in Washington DC. More