More stories

  • in

    Sleep contributes to preference for novel food odours in Drosophila melanogaster

    1.Medic, G., Wille, M. & Hemels, M. Short- and long-term health consequences of sleep disruption. Nat. Sci. Sleep 9, 151–161 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    2.Randazzo, A. C., Muehlbach, M. J., Schweitzer, P. K. & Walsh, J. K. Cognitive function following acute sleep restriction in children ages 10–14. Sleep 21, 861–868 (1998).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    3.Stickgold, R. Sleep-dependent memory consolidation. Nature 437, 1272–1278 (2005).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    4.Tononi, G. & Cirelli, C. Sleep and the price of plasticity: From synaptic and cellular homeostasis to memory consolidation and integration. Neuron 81, 12–34 (2014).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    5.Marshall, L. & Born, J. The contribution of sleep to hippocampus-dependent memory consolidation. Trends Cogn. Sci. 11, 442–450 (2007).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    6.Smith, C. Sleep states and memory processes in humans: Procedural versus declarative memory systems. Sleep Med. Rev. 5, 491–506 (2001).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    7.Johnston, T. D. In Selective Costs and Benefits in the Evolution of Learning. in Advances in the Study of Behavior (eds. Rosenblatt, J. S. et al.) 12, 65–106 (Academic Press, 1982).8.Hendricks, J. C. et al. Rest in Drosophila is a sleep-like state. Neuron 25, 129–138 (2000).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    9.Campbell, S. S. & Tobler, I. Animal sleep: A review of sleep duration across phylogeny. Neurosci. Biobehav. Rev. 8, 269–300 (1984).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    10.Shaw, P. J. Correlates of sleep and waking in Drosophila melanogaster. Science (80-). 287, 1834–1837 (2000).ADS 
    CAS 
    Article 

    Google Scholar 
    11.Hamblen, M. et al. Germ-line transformation involving DNA from the period locus in Drosophila melanogaster: Overlapping genomic fragments that restore circadian and ultradian rhythmicity to per 0 and per—mutants. J. Neurogenet. 3, 249–291 (1986).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    12.Kirszenblat, L. & van Swinderen, B. Sleep in Drosophila. In Handbook of Sleep Research, Vol. 30 (ed. Dringenberg, H. C.) 333–347 (Elsevier, 2019).13.Ly, S., Pack, A. I. & Naidoo, N. The neurobiological basis of sleep: Insights from Drosophila. Neurosci. Biobehav. Rev. 87, 67–86 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    14.Helfrich-Förster, C. Sleep in insects. Annu. Rev. Entomol. 63, 69–86 (2018).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    15.Le Glou, E., Seugnet, L., Shaw, P. J., Preat, T. & Goguel, V. Circadian modulation of consolidated memory retrieval following sleep deprivation in Drosophila. Sleep 35, 1377–1384 (2012).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    16.Li, X., Yu, F. & Guo, A. Sleep deprivation specifically impairs short-term olfactory memory in Drosophila. Sleep 32, 1417–1424 (2009).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    17.Rihel, J. & Bendor, D. Flies sleep on it, or Fuhgeddaboudit!. Cell 161, 1498–1500 (2015).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    18.Geissmann, Q., Beckwith, E. J. & Gilestro, G. F. Most sleep does not serve a vital function: Evidence from Drosophila melanogaster. Sci. Adv. 5, eaau8253 (2019).Article 
    CAS 

    Google Scholar 
    19.Tougeron, K. & Abram, P. K. An ecological perspective on sleep disruption. Am. Nat. 190, E55–E66 (2017).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    20.Aulsebrook, A. E., Jones, T. M., Rattenborg, N. C., Roth, T. C. & Lesku, J. A. Sleep ecophysiology: Integrating neuroscience and ecology. Trends Ecol. Evol. 31, 590–599 (2016).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    21.Markow, T. A. Host use and host shifts in Drosophila. Curr. Opin. Insect Sci. 31, 139–145 (2019).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    22.Badel, L., Ohta, K., Tsuchimoto, Y. & Kazama, H. Decoding of context-dependent olfactory behavior in Drosophila. Neuron 91, 155–167 (2016).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    23.Knaden, M., Strutz, A., Ahsan, J., Sachse, S. & Hansson, B. S. Spatial representation of odorant valence in an insect brain. Cell Rep. 1, 392–399 (2012).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    24.Hopkins, A. A discussion of C.G. Hewitt’s paper on ‘Insect Behavior’. J. Econ. Entomol. 10, 92–93 (1917).
    Google Scholar 
    25.Davis, J. M. & Stamps, J. A. The effect of natal experience on habitat preferences. Trends Ecol. Evol. 19, 411–416 (2004).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    26.Barron, A. B. The life and death of Hopkins’ host selection principle. J. Insect Behav. 14, 725–737 (2001).Article 

    Google Scholar 
    27.van Emden, H. F. et al. Plant chemistry and aphid parasitoids (Hymenoptera: Braconidae): Imprinting and memory. Eur. J. Entomol. 105, 477–483 (2008).Article 

    Google Scholar 
    28.Liu, S. S., Li, Y. H., Liu, Y. Q. & Zalucki, M. P. Experience-induced preference for oviposition repellents derived from a non-host plant by a specialist herbivore. Ecol. Lett. 8, 722–729 (2005).Article 

    Google Scholar 
    29.Hamilton, C. E., Beresford, D. V. & Sutcliffe, J. F. Effects of natal habitat odour, reinforced by adult experience, on choice of oviposition site in the mosquito Aedes aegypti. Med. Vet. Entomol. 25, 428–435 (2011).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    30.Turlings, T. C. L., Wackers, F. L., Vet, L. E. M., Lewis, W. J. & Tumlinson, J. H. Learning of Host-Finding Cues by Hymenopterous parasitoids. In Insect Learning (eds. Papaj, D. R. & Lewis, W. J.) 51–78 (Springer US, 1993). https://doi.org/10.1007/978-1-4615-2814-2_331.Jaenike, J. Induction of host preference in Drosophila melanogaster. Oecologia 58, 320–325 (1983).ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    32.Takemoto, H., Powell, W., Pickett, J., Kainoh, Y. & Takabayashi, J. Two-step learning involved in acquiring olfactory preferences for plant volatiles by parasitic wasps. Anim. Behav. 83, 1491–1496 (2012).Article 

    Google Scholar 
    33.Andretic, R. & Shaw, P. J. Essentials of sleep recordings in Drosophila: Moving beyond sleep time. Methods Enzymol. 393, 759–772 (2005).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    34.Garbe, D. S. et al. Context-specific comparison of sleep acquisition systems in Drosophila. Biol. Open 4, 1558–1568 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    35.Faraway, J. J. Extending the Linear Model with R (CRC Press, 2016). https://doi.org/10.1201/b21296.Book 
    MATH 

    Google Scholar 
    36.Ho, K. S. & Sehgal, A. Drosophila melanogaster: An insect model for fundamental studies of sleep. Methods Enzymol. 393, 1834–1837 (2005).
    Google Scholar 
    37.Greenspan, R. J., Tononi, G., Cirelli, C. & Shaw, P. J. Sleep and the fruit fly. Trends Neurosci. 24, 142–145 (2001).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    38.Killgore, W. D. S. Sleep deprivation and behavioral risk-taking. In Modulation of Sleep by Obesity, Diabetes, Age, and Diet 279–287 (Elsevier, 2015). https://doi.org/10.1016/B978-0-12-420168-2.00030-2.39.Revadi, S. et al. Olfactory responses of Drosophila suzukii females to host plant volatiles. Physiol. Entomol. 40, 54–64 (2015).CAS 
    Article 

    Google Scholar 
    40.Cirelli, C. & Tononi, G. Is sleep essential?. PLoS Biol. 6, 1605–1611 (2008).CAS 
    Article 

    Google Scholar 
    41.Bateson, M., Desire, S., Gartside, S. E. & Wright, G. A. Agitated honeybees exhibit pessimistic cognitive biases. Curr. Biol. 21, 1070–1073 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    42.Wilkin, M. M., Waters, P., McCormick, C. M. & Menard, J. L. Intermittent physical stress during early- and mid-adolescence differentially alters rats’ anxiety- and depression-like behaviors in adulthood. Behav. Neurosci. 126, 344–360 (2012).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    43.Chaumet, G. et al. Confinement and sleep deprivation effects on propensity to take risks. Aviat. Space. Environ. Med. 80, 73–80 (2009).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    44.Killgore, W. D. S. Effects of sleep deprivation and morningness-eveningness traits on risk-taking. Psychol. Rep. 100, 613–626 (2007).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    45.Killgore, W. D. S. et al. Restoration of risk-propensity during sleep deprivation: Caffeine, dextroamphetamine, and modafinil. Aviat. Space. Environ. Med. 79, 867–874 (2008).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    46.Tversky, A. & Kahneman, D. Judgment under uncertainty: Heuristics and biases. Science (80-). 185, 1124–1131 (1974).ADS 
    CAS 
    Article 

    Google Scholar 
    47.Spieth, H. T. Courtship behavior in Drosophila. Annu. Rev. Entomol. 19, 385–405 (1974).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    48.Bartelt, R. J., Schaner, A. M. & Jackson, L. L. cis-Vaccenyl acetate as an aggregation pheromone in Drosophila melanogaster. J. Chem. Ecol. 11, 1747–1756 (1985).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    49.Cazalé-Debat, L., Houot, B., Farine, J. P., Everaerts, C. & Ferveur, J. F. Flying Drosophila show sex-specific attraction to fly-labelled food. Sci. Rep. 9, 1–13 (2019).Article 
    CAS 

    Google Scholar 
    50.Malek, H. L. & Long, T. A. F. On the use of private versus social information in oviposition site choice decisions by Drosophila melanogaster females. Behav. Ecol. 31, 739–749 (2020).Article 

    Google Scholar 
    51.Inoue, I. et al. Impaired locomotor activity and exploratory behavior in mice lacking histamine H1 receptors. Proc. Natl. Acad. Sci. U. S. A. 93, 13316–13320 (1996).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    52.Daffner, K. R., Mesulam, M.-M., Cohen, L. G. & Scinto, L. F. M. Mechanisms underlying diminished novelty-seeking behavior in patients with probable Alzheimer’s disease. Neuropsychiatry Neuropsychol. Behav. Neurol. 12, 58–66 (1999).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    53.Lee, A. C. H., Rahman, S., Hodges, J. R., Sahakian, B. J. & Graham, K. S. Associative and recognition memory for novel objects in dementia: Implications for diagnosis. Eur. J. Neurosci. 18, 1660–1670 (2003).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    54.Ju, Y.-E.S., Lucey, B. P. & Holtzman, D. M. Sleep and Alzheimer disease pathology—A bidirectional relationship. Nat. Rev. Neurol. 10, 115–119 (2014).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    55.Tabuchi, M. et al. Sleep interacts with aβ to modulate intrinsic neuronal excitability. Curr. Biol. 25, 702–712 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    56.Dissel, S. et al. Enhanced sleep reverses memory deficits and underlying pathology in drosophila models of Alzheimer’s disease. Neurobiol. Sleep Circadian Rhythm. 2, 15–26 (2017).Article 

    Google Scholar 
    57.Takano-Shimizu-Kouno, T. KYOTO Stock Center—Department of Drosophila Genomics and Genetic Resources (Kyoto Institute of Technology, 2015).58.Shaw, P. J., Tortoni, G., Greenspan, R. J. & Robinson, D. F. Stress response genes protect against lethal effects of sleep deprivation in Drosophila. Nature 417, 287–291 (2002).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    59.https://www.arduino.cc/. Accessed 6 Jan 202160.https://processing.org/. Accessed 6 Jan 2021 More

  • in

    Energy budget and carbon footprint in a wheat and maize system under ridge furrow strategy in dry semi humid areas

    1.Yadav, G. S. et al. Energy budget and carbon footprint in a no-till and mulch based rice–mustard cropping system. J. Clean. Prod. 191, 144–157 (2018).Article 

    Google Scholar 
    2.Fleming-Muñoz, D. A., Preston, K. & Arratia-Solar, A. Value and impact of publicly funded climate change agricultural mitigation research: Insights from New Zealand. J. Clean. Prod. 248, 119249 (2020).Article 

    Google Scholar 
    3.IPCC. Climate Change 2014: Mitigation of Climate Change (Cambridge University Press, 2014).
    Google Scholar 
    4.Wang, Z. B. et al. Lowering carbon footprint of winter wheat by improving management practices in North China Plain. J. Clean. Prod. 112, 149–157 (2016).CAS 
    Article 

    Google Scholar 
    5.Grassini, P. & Cassman, K. G. High-yield maize with large net energy yield and small global warming intensity. Proc. Natl. Acad. Sci. 109, 1074–1079 (2012).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    6.Gao, B. et al. Chinese cropping systems are a net source of greenhouse gases despite soil carbon sequestration. Glob. Change Biol. 24, 5590–5606 (2018).Article 

    Google Scholar 
    7.Xue, J. F. et al. Carbon footprint of dryland winter wheat under film mulching during summer-fallow season and sowing method on the Loess Plateau. Ecol. Indic. 95, 12–20 (2018).CAS 
    Article 

    Google Scholar 
    8.Yuan, S., Peng, S. B., Wang, D. & Man, J. G. Evaluation of the energy budget and energy use efficiency in wheat production under various crop management practices in China. Energy 160, 184–191 (2018).Article 

    Google Scholar 
    9.Qi, J. Y. et al. Response of carbon footprint of spring maize production to cultivation patterns in the Loess Plateau, China. J. Clean. Prod. 187, 525–536 (2018).CAS 
    Article 

    Google Scholar 
    10.Lu, X. L. & Liao, Y. C. Effect of tillage practices on net carbon flux and economic parameters from farmland on the Loess Plateau in China. J. Clean. Prod. 162, 1617–1624 (2017).CAS 
    Article 

    Google Scholar 
    11.Tan, Y. C., Wu, D., Bol, R., Wu, W. L. & Meng, F. Q. Conservation farming practices in winter wheat–summer maize cropping reduce GHG emissions and maintain high yields. Agric. Ecosyst. Environ. 272, 266–275 (2019).CAS 
    Article 

    Google Scholar 
    12.Lal, R. Carbon emission from farm operations. Environ. Int. 30, 981–990 (2004).CAS 
    PubMed 
    Article 

    Google Scholar 
    13.Wang, X. L. et al. Emergy analysis of grain production systems on large-scale farms in the North China Plain based on LCA. Agric. Syst. 128, 66–78 (2014).Article 

    Google Scholar 
    14.Chen, X. Z. et al. Environmental impact assessment of water-saving irrigation systems across 60 irrigation construction projects in northern China. J. Clean. Prod. 245, 118883 (2020).Article 

    Google Scholar 
    15.Racette, K., Zurweller, B., Tillman, B. & Rowland, D. Transgenerational stress memory of water deficit in peanut production. Field Crop. Res. 248, 107712 (2020).Article 

    Google Scholar 
    16.Xie, J. H. et al. Subsoiling increases grain yield, water use efficiency, and economic return of maize under a fully mulched ridge-furrow system in a semiarid environment in China. Soil. Till. Res. 199, 104584 (2020).Article 

    Google Scholar 
    17.Li, R., Hou, X. Q., Jia, Z. K. & Han, Q. F. Soil environment and maize productivity in semi-humid regions prone to drought of Weibei Highland are improved by ridge-and-furrow tillage with mulching. Soil. Till. Res. 196, 104476 (2020).Article 

    Google Scholar 
    18.Zhang, X. D. et al. Optimizing fertilization under ridge-furrow rainfall harvesting system to improve foxtail millet yield and water use in a semiarid region, China. Agric. Water Manag. 227, 105852 (2020).Article 

    Google Scholar 
    19.Nishimura, S., Komada, M., Takebe, M., Yonemura, S. & Kato, N. Nitrous oxide evolved from soil covered with plastic mulch film in horticultural field. Biol. Fertil. Soils 48, 787–795 (2012).CAS 
    Article 

    Google Scholar 
    20.Xiong, L., Liang, C., Ma, B., Shah, F. & Wu, W. Carbon footprint and yield performance assessment under plastic film mulching for winter wheat production. J. Clean. Prod. 270, 122468 (2020).CAS 
    Article 

    Google Scholar 
    21.Zhang, F., Zhang, W. J., Qi, J. G. & Li, F. M. A regional evaluation of plastic film mulching for improving crop yields on the Loess Plateau of China. Agric. Forest Meteorol. 248, 458–468 (2018).ADS 
    Article 

    Google Scholar 
    22.Peng, X. Y., Wu, X. H., Wu, F. Q., Wang, X. Q. & Tong, X. G. Life cycle assessment of winter wheat-summer maize rotation system in Guanzhong region of shaanxi province. J. Agro-Environ. Sci. 34, 809–816 (2015).CAS 

    Google Scholar 
    23.Li, C. J. et al. Ridge-furrow with plastic film mulching practice improves maize productivity and resource use efficiency under the wheat-maize double-cropping system in dry semi-humid areas. Field Crop. Res. 203, 201–211 (2017).Article 

    Google Scholar 
    24.Tang, J. J., Folmer, H. & Xue, J. H. Technical and allocative efficiency of irrigation water use in the Guanzhong Plain. China. Food Policy 50, 43–52 (2015).Article 

    Google Scholar 
    25.Liu, Y., Zhang, X. L., Xi, L. Y., Liao, Y. C. & Han, J. Ridge-furrow planting promotes wheat grain yield and water productivity in the irrigated sub-humid region of China. Agric. Water Manag. 231, 105935 (2020).Article 

    Google Scholar 
    26.Li, Y. Z. et al. Combined ditch buried straw return technology in a ridge–furrow plastic film mulch system: Implications for crop yield and soil organic matter dynamics. Soil. Till. Res. 199, 104596 (2020).Article 

    Google Scholar 
    27.Wart, J. V., Kersebaum, K. C., Peng, S. B., Maribeth, M. & Cassman, K. G. Estimating crop yield potential at regional to national scales. Field Crops Res. 143, 34–43 (2013).Article 

    Google Scholar 
    28.Hu, Y. J. et al. Exploring optimal soil mulching for the wheat-maize cropping system in sub-humid drought-prone regions in China. Agric. Water Manag. 219, 59–71 (2019).Article 

    Google Scholar 
    29.Cui, J. X. et al. Integrated assessment of economic and environmental consequences of shifting cropping system from wheat-maize to monocropped maize in the North China Plain. J. Clean. Prod. 193, 524–532 (2018).Article 

    Google Scholar 
    30.Yin, W. et al. Wheat-maize intercropping with reduced tillage and straw retention: A step towards enhancing economic and environmental benefits in arid areas. Front. Plant Sci. 9, 1328 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    31.Zheng, J. F. et al. Biochar compound fertilizer increases nitrogen productivity and economic benefits but decreases carbon emission of maize production. Agric. Ecosyst. Environ. 241, 70–78 (2017).CAS 
    Article 

    Google Scholar 
    32.Liang, L. et al. A multi-indicator assessment of peri-urban agricultural production in Beijing, China. Ecol. Indic. 97, 350–362 (2019).CAS 
    Article 

    Google Scholar 
    33.Moitzi, G., Neugschwandtner, R. W., Kaul, H. P. & Wagentristl, H. Energy efficiency of winter wheat in a long-term tillage experiment under Pannonian climate conditions. Eur. J. Agron. 103, 24–31 (2019).Article 

    Google Scholar 
    34.Nasseri, A. Energy use and economic analysis for wheat production by conservation tillage along with sprinkler irrigation. Sci. Total Environ. 648, 450–459 (2019).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    35.Sahabi, H., Feizi, H. & Karbasi, A. Is saffron more energy and economic efficient than wheat in crop rotation systems in northeast Iran?. Sustain. Prod. Consum. 5, 29–35 (2016).Article 

    Google Scholar 
    36.Mondani, F., Aleagha, S., Khoramivafa, M. & Ghobadi, R. Evaluation of greenhouse gases emission based on energy consumption in wheat agroecosystems. Energy Rep. 3, 37–45 (2017).Article 

    Google Scholar 
    37.Bertocco, M., Basso, B., Sartori, L. & Martin, E. C. Evaluating energy efficiency of site-specific tillage in maize in NE Italy. Bioresour. Technol. 99, 6957–6965 (2008).CAS 
    PubMed 
    Article 

    Google Scholar 
    38.Amaducci, S., Colauzzi, M., Battini, F., Fracasso, A. & Perego, A. Effect of irrigation and nitrogen fertilization on the production of biogas from maize and sorghum in a water limited environment. Eur. J. Agron. 76, 54–65 (2016).ADS 
    CAS 
    Article 

    Google Scholar 
    39.Qiu, G. Y., Zhang, X., Yu, X. & Zou, Z. The increasing effects in energy and GHG emission caused by groundwater level declines in North China’s main food production plain. Agr. Water Manag. 203, 138–150 (2018).Article 

    Google Scholar 
    40.Arvidsson, J. Energy use efficiency in different tillage systems for winter wheat on a clay and silt loam in Sweden. Eur. J. Agron. 33, 250–256 (2010).Article 

    Google Scholar 
    41.Singh, R. J. et al. Energy budgeting and emergy synthesis of rainfed maize–wheat rotation system with different soil amendment applications. Ecol. Indic. 61, 753–765 (2016).CAS 
    Article 

    Google Scholar 
    42.Zhang, Y. et al. Effects of different fertilizer strategies on soil water utilization and maize yield in the ridge and furrow rainfall harvesting system in semiarid regions of China. Agric. Water Manag. 208, 414–421 (2018).Article 

    Google Scholar 
    43.Cheng, K. et al. Carbon footprint of China’s crop production–An estimation using agro-statistics data over 1993–2007. Agr. Ecosyst. Environ. 142, 231–237 (2011).Article 

    Google Scholar 
    44.Hillier, J. et al. The carbon footprints of food crop production. Int. J. Agric. Sustain. 7, 107–118 (2009).Article 

    Google Scholar 
    45.Su, B., Su, Z. & Shangguan, Z. Trade-off analyses of plant biomass and soil moisture relations on the Loess Plateau. CATENA 197, 104946 (2020).Article 

    Google Scholar 
    46.Prata, J. C. et al. Solutions and integrated strategies for the control and mitigation of plastic and microplastic pollution. Int. J. Environ. Res. Public Health 16, 2411 (2019).PubMed Central 
    Article 
    PubMed 

    Google Scholar 
    47.Sardon, H. & Dove, A. P. Plastics recycling with a difference. Science 360, 380–381 (2018).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    48.Qin, W., Hu, C. & Oenema, O. Soil mulching significantly enhances yields and water and nitrogen use efficiencies of maize and wheat: A metaeanalysis. Sci. Rep. 5, 16210 (2015).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    49.Sun, M. et al. Maize and rice double cropping benefits carbon footprint and soil carbon budget in paddy field. Field Crops Res. 243, 107620 (2019).Article 

    Google Scholar 
    50.Choudhary, M. et al. Energy budgeting and carbon footprint of pearl millet e mustard cropping system under conventional and conservation agriculture in rainfed semi-arid agro-ecosystem. Energy 141, 1052–1058 (2017).Article 

    Google Scholar 
    51.Bai, J. et al. Straw returning and one-time application of a mixture of controlled release and solid granular urea to reduce carbon footprint of plastic film mulching spring maize. J. Clean. Prod. 280, 124478 (2021).CAS 
    Article 

    Google Scholar 
    52.Li, C. J. et al. Towards the highly effective use of precipitation by ridge-furrow with plastic film mulching instead of relying on irrigation resources in a dry semi-humid area. Field Crops Res. 188, 62–73 (2016).ADS 
    Article 

    Google Scholar 
    53.Reisinger, A., Ledgard, S. F. & Falconer, S. J. Sensitivity of the carbon footprint of New Zealand milk to greenhouse gas metrics. Ecol. Indic. 81, 74–82 (2017).CAS 
    Article 

    Google Scholar 
    54.Chen, X. et al. Carbon footprint of a typical pomelo production region in China basedon farm survey data. J. Clean. Prod. 277, 124041 (2020).CAS 
    Article 

    Google Scholar 
    55.Pratibha, G. et al. Impact of conservation agriculture practices on energy use efficiency and global warming potential in rainfed pigeonpea–castor systems. Eur. J. Agron. 66, 30–40 (2015).Article 

    Google Scholar 
    56.Wang, C., Li, X., Gong, T. & Zhang, H. Life cycle assessment of wheat-maize rotation system emphasizing high crop yield and high resource use efficiency in Quzhou County. J. Clean. Prod. 68, 56–63 (2014).CAS 
    Article 

    Google Scholar 
    57.Li, S. et al. Effect of straw management on carbon sequestration and grain production in a maize–wheat cropping system in Anthrosol of the Guanzhong Plain. Soil Till. Res. 157, 43–51 (2016).Article 

    Google Scholar 
    58.Kong, A. Y. Y., Six, J., Bryant, D. C., Denison, R. F. & van Kessel, C. The relationship between carbon input, aggregation, and soil organic carbon stabilization in sustainable cropping systems. Soil Sci. Soc. Am. J. 69, 1078–1085 (2005).ADS 
    CAS 
    Article 

    Google Scholar 
    59.Zhu, Y. C. et al. Large-scale farming operations are win-win for grain production, soil carbon storage and mitigation of greenhouse gases. J. Clean. Prod. 172, 2143–2152 (2018).Article 

    Google Scholar 
    60.Wang, Z. B. et al. Comparison of greenhouse gas emissions of chemical fertilizer types in China’s crop production. J. Clean. Prod. 141, 1267–1274 (2017).CAS 
    Article 

    Google Scholar  More

  • in

    The ecological importance of habitat complexity to the Caribbean coral reef herbivore Diadema antillarum: three lines of evidence

    1.Hughes, T. P. et al. Coral reefs in the Anthropocene. Nature 546, 82–90 (2017).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    2.de Groot, R. et al. Global estimates of the value of ecosystems and their services in monetary units. Ecosyst. Serv. 1, 50–61 (2012).Article 

    Google Scholar 
    3.Exton, D. A. et al. Artisanal fish fences pose broad and unexpected threats to the tropical coastal seascape. Nat. Commun. 10, 2100 (2019).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    4.Pandolfi, J. M. et al. Global trajectories of the long-term decline of coral reef ecosystems. Science (80-) 301, 955–958 (2003).ADS 
    CAS 
    Article 

    Google Scholar 
    5.Graham, N. A. J., Jennings, S., MacNeil, M. A., Mouillot, D. & Wilson, S. K. Predicting climate-driven regime shifts versus rebound potential in coral reefs. Nature 518, 94–97 (2015).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    6.Roff, G. & Mumby, P. J. Global disparity in the resilience of coral reefs. Trends Ecol. Evol. 27, 404–413 (2012).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    7.Jackson, J.B.C., Donovan, M.K., Cramer, K.L. and Lam, V.V. Status and trends of Caribbean coral reefs. Global Coral Reef Monitoring
    Network, IUCN, Gland, Switzerland, pp.1970-2012. (2014).8.Alvarez-Filip, L., Dulvy, N. K., Gill, J. A., Côté, I. M. & Watkinson, A. R. Flattening of Caribbean coral reefs: region-wide declines in architectural complexity. Proc. R. Soc. B Biol. Sci. 276, 3019–3025 (2009).Article 

    Google Scholar 
    9.Elmqvist, T. et al. Response diversity, ecosystem change, and resilience. Front. Ecol. Environ. 1, 488–494 (2003).Article 

    Google Scholar 
    10.Sasaki, T., Furukawa, T., Iwasaki, Y., Seto, M. & Mori, A. S. Perspectives for ecosystem management based on ecosystem resilience and ecological thresholds against multiple and stochastic disturbances. Ecol. Ind. 57, 395–408 (2015).Article 

    Google Scholar 
    11.McCann, K. S. The diversity-stability debate. Nature 405, 228–233 (2000).CAS 
    PubMed 
    Article 

    Google Scholar 
    12.Bellwood, D. R., Hughes, T. P., Folke, C. & Nyström, M. Confronting the coral reef crisis. Nature 429, 827–833 (2004).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    13.Mumby, P. J., Hastings, A. & Edwards, H. J. Thresholds and the resilience of Caribbean coral reefs. Nature 450, 98–101 (2007).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    14.Hughes, T. P., Graham, N. A. J., Jackson, J. B. C., Mumby, P. J. & Steneck, R. S. Rising to the challenge of sustaining coral reef resilience. Trends Ecol. Evol. 25, 633–642 (2010).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    15.Solandt, J. L. & Campbell, A. C. Macroalgal feeding characteristics of the sea urchin Diadema antillarum Philippi at Discovery Bay, Jamaica. Caribb. J. Sci. 37, 227–238 (2001).
    Google Scholar 
    16.Chiappone, M., Rutten, L. M., Miller, S. L. & Swanson, D. W. Recent trends (1999–2011) in population density and size of the echinoid Diadema antillarum in the Florida Keys. Florida Sci. 76, 23–35 (2013).
    Google Scholar 
    17.Lessios, H. A. The great Diadema antillarum die-off: 30 years later. Annu. Rev. Mar. Sci. 8, 267–283 (2016).ADS 
    CAS 
    Article 

    Google Scholar 
    18.Bruno, J. F., Sweatman, H., Precht, W. F., Selig, E. R. & Schutte, V. G. W. Assessing evidence of phase shifts from coral to macroalgal dominance on coral reefs. Ecol. Soc. Am. 90, 1478–1484 (2009).
    Google Scholar 
    19Miller, M. W., Szmant, A. M. & Precht, W. F. Lessons learned from experimental key-species restoration. In Coral Reef Restoration Handbook, 219–234 (ed. Precht, W. F.) (Taylor & Francis, 2006).
    Google Scholar 
    20.Mumby, P. J., Hedley, J. D., Zychaluk, K., Harborne, A. R. & Blackwell, P. G. Revisiting the catastrophic die-off of the urchin Diadema antillarum on Caribbean coral reefs: fresh insights on resilience from a simulation model. Ecol. Modell. 196, 131–148 (2006).Article 

    Google Scholar 
    21.Myhre, S. & Acevedo-Gutiérrez, A. Recovery of sea urchin Diadema antillarum populations is correlated to increased coral and reduced macroalgal cover. Mar. Ecol. Prog. Ser. 329, 205–210 (2007).ADS 
    Article 

    Google Scholar 
    22.Carpenter, R. C. Predator and population density control of homing behavior in the Caribbean echinoid Diadema antillarum. Mar. Biol. 82, 101–108 (1984).Article 

    Google Scholar 
    23.Edmunds, P. J. & Carpenter, R. C. Recovery of Diadema antillarum reduces macroalgal cover and increases abundance of juvenile corals on a Caribbean reef. Proc. Natl. Acad. Sci. U. S. A. 98, 5067–5071 (2001).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    24.Wanders, J. B. W. The role of benthic algae in the shallow reef of Curaçao (Netherlands Antilles) III: the significance of grazing. Aquat. Bot. 3, 357–390 (1977).Article 

    Google Scholar 
    25.Bak, R. P. M., Carpay, M. J. E. & de Ruyter van Steveninck, E. D. Densities of the sea urchin Diadema antillarum before and after mass mortalities on the coral reefs of Curacao. Mar. Ecol. Prog. Ser. 17, 105–108 (1984).ADS 
    Article 

    Google Scholar 
    26.Levitan, D. R. Algal-urchin biomass responses following mass mortality of Diadema antillarum Philippi at Saint John, U.S. Virgin Islands. J. Exp. Mar. Biol. Ecol. 119, 167–178 (1988).Article 

    Google Scholar 
    27.Chiappone, M., Rutten, L., Swanson, D. & Miller, S. Population status of the urchin Diadema antillarum in the Florida Keys 25 years after the Caribbean mass mortality. In Proceedings of 11th International Coral Reef Symposium 706–710 (2008).28.Bodmer, M. D. V., Rogers, A., Speight, M. R., Lubbock, N. & Exton, D. A. Using an isolated population boom to explore barriers to recovery in the keystone Caribbean coral reef herbivore Diadema antillarum. Coral Reefs 34, 1011–1021 (2015).ADS 
    Article 

    Google Scholar 
    29.Lessios, H. A., Robertson, D. R. & Cubit, J. D. Spread of Diadema mass mortality through the Caribbean. Science (80-) 226, 335–337 (1984).ADS 
    CAS 
    Article 

    Google Scholar 
    30.Liddell, W. D. & Ohlhorst, S. L. Changes in benthic community composition following the mass mortality of Diadema at Jamaica. J. Exp. Mar. Biol. Ecol. 95, 271–278 (1986).Article 

    Google Scholar 
    31.Betchel, J. D., Gayle, P. & Kaufman, L. The return of Diadema antillarum to Discovery Bay: patterns of distribution and abundance. In Proceedings of 10th International Coral Reef Symposium 367–375 (2006).32.Robertson, D. R. Increases in surgeonfish populations after mass mortality of the sea urchin Diadema antillarum in Panamá indicate food limitation. Mar. Biol. 111, 437–444 (1991).Article 

    Google Scholar 
    33.Lessios, H. A. Diadema antillarum populations in Panama 20 years following mass mortality. Coral Reefs 24, 125–127 (2005).Article 

    Google Scholar 
    34.Hunte, W. & Younglao, D. Recruitment and population recovery of Diadema antillarum (Echinodermata; Echinoidea) in Barbados. Mar. Ecol. Prog. Ser. 45, 109–119 (1988).ADS 
    Article 

    Google Scholar 
    35.Noriega, N., Pauls, S. M. & del Mónaco, C. Abundancia de Diadema antillarum (Echinodermata: Echinoidea) en las costas de Venezuela. Rev. Biol. Trop. 54, 793–802 (2006).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    36.Debrot, A. O. & Nagelkerken, I. Recovery of the long-spined sea urchin Diadema antillarum in Curacao (Netherlands Antilles) linked to lagoonal and wave sheltered shallow rocky habitats. Bull. Mar. Sci. 72, 415–424 (2006).
    Google Scholar 
    37.Vermeij, M. J. A., Debrot, A. O., van der Hal, N., Bakker, J. & Bak, R. P. M. Increased recruitment rates indicate recovering populations of the sea urchin Diadema antillarum on Curaçao. Bull. Mar. Sci. 86, 719–725 (2010).
    Google Scholar 
    38.Carpenter, K. E. et al. One-third of reef-building corals face elevated extinction risk from climate change and local impacts. Science (80-) 321, 560–563 (2008).ADS 
    CAS 
    Article 

    Google Scholar 
    39.Gardner, T. A., Côté, I. M., Gill, J. A., Grant, A. & Watkinson, A. R. Long-term region-wide declines in Caribbean corals. Science (80-) 301, 958–960 (2003).ADS 
    CAS 
    Article 

    Google Scholar 
    40.Pennington, J. T. The ecology of fertilization of echinoid eggs: the consequences of sperm dilution, adult aggregation, and synchronous spawning. Biol. Bull. 169, 417–430 (1985).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    41.Levitan, D. R. Influence of body size and population density on fertilization success and reproductive output in a free-spawning invertebrate. Biol. Bull. 181, 261–268 (1991).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    42.Levitan, D. R., Edmunds, P. J. & Levitan, K. E. What makes a species common? No evidence of density-dependent recruitment or mortality of the sea urchin Diadema antillarum after the 1983–1984 mass mortality. Oecologia 175, 117–128 (2014).ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    43.Lacey, E. A., Fourqurean, J. W. & Collado-Vides, L. Increased algal dominance despite presence of Diadema antillarum populations on a Caribbean coral reef. Bull. Mar. Sci. 89, 603–620 (2013).Article 

    Google Scholar 
    44.Dumas, P., Kulbicki, M., Chifflet, S., Fichez, R. & Ferraris, J. Environmental factors influencing urchin spatial distributions on disturbed coral reefs (New Caledonia, South Pacific). J. Exp. Mar. Biol. Ecol. 344, 88–100 (2007).Article 

    Google Scholar 
    45.Rogers, A. & Lorenzen, K. Does slow and variable recovery of Diadema antillarum on Caribbean fore-reefs reflect density-dependent habitat selection? Front. Mar. Sci. 3, 63 (2016).Article 

    Google Scholar 
    46.Alvarado, J. J., Cortés, J., Guzman, H. & Reyes-Bonilla, H. Density, size, and biomass of Diadema mexicanum (Echinoidea) in Eastern Tropical Pacific coral reefs. Aquat. Biol. 24, 151–161 (2016).Article 

    Google Scholar 
    47.Ogden, J. C. & Carpenter, R. C. Long-spined black sea urchin. Biol. Rep. 82, 1–17 (1987).
    Google Scholar 
    48.Bodmer, M. D. V. et al. Interacting effects of temperature, habitat and phenotype on predator avoidance behaviour in Diadema antillarum: implications for restorative conservation. Mar. Ecol. Prog. Ser. 566, 105–115 (2017).ADS 
    Article 

    Google Scholar 
    49.Andradi-Brown, D. A., Gress, E., Wright, G., Exton, D. A. & Rogers, A. D. Reef fish community biomass and trophic structure changes across shallow to upper-mesophotic reefs in the mesoamerican barrier reef, Caribbean. PLoS ONE 11, 1–19 (2016).
    Google Scholar 
    50.Rodríguez-Barreras, R., Pérez, M. E., Mercado-Molina, A. E. & Sabat, A. M. Arrested recovery of Diadema antillarum population: survival or recruitment limitation? Estuar. Coast. Shelf Sci. 163, 167–174 (2015).ADS 
    Article 

    Google Scholar 
    51.Risk, M. J. Fish diversity on a coral reef in the Virgin Islands. Atoll Res. Bull. 153, 1–4 (1972).Article 

    Google Scholar 
    52.Figueira, W. et al. Accuracy and precision of habitat structural complexity metrics derived from underwater photogrammetry. Remote Sens. 7, 16883–16900 (2015).ADS 
    Article 

    Google Scholar 
    53.Leon, J. X., Roelfsema, C. M., Saunders, M. I. & Phinn, S. R. Measuring coral reef terrain roughness using ‘Structure-from-Motion’ close-range photogrammetry. Geomorphology 242, 21–28 (2015).ADS 
    Article 

    Google Scholar 
    54.Storlazzi, C. D., Dartnell, P., Hatcher, G. A. & Gibbs, A. E. End of the chain? Rugosity and fine-scale bathymetry from existing underwater digital imagery using structure-from-motion (SfM) technology. Coral Reefs 35, 889–894 (2016).ADS 
    Article 

    Google Scholar 
    55.Young, G. C., Dey, S., Rogers, A. D. & Exton, D. A. Cost and time-effective method for multiscale measures of rugosity, fractal dimension, and vector dispersion from coral reef 3D models. PLoS ONE 12, e0175341 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    56.Zawada, D. G. & Brock, J. C. A multiscale analysis of coral reef topographic complexity using lidar-derived bathymetry. J. Coast. Res. 2009, 6–16 (2009).Article 

    Google Scholar 
    57.Randall, J. E., Schroeder, R. E. & Starck, W. A. Notes on the biology of the echinoid Diadema antillarum. Caribb. J. Sci. 4, 421–433 (1964).
    Google Scholar 
    58.Hunt, C. L. et al. Aggregating behaviour in invasive Caribbean lionfish is driven by habitat complexity. Sci. Rep. 9, 783 (2019).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    59.Millott, N. & Yoshida, M. The shadow reaction of Diadema antillarum Philippi I: the spine response and its relation to the stimulus. J. Exp. Biol. 37, 363–375 (1960).Article 

    Google Scholar 
    60.Millott, N. & Yoshida, M. The shadow reaction of Diadema antillarum Philippi II: inhibition by light. J. Exp. Biol. 37, 376–389 (1960).Article 

    Google Scholar 
    61.Raible, F. et al. Opsins and clusters of sensory G-protein-coupled receptors in the sea urchin genome. Dev. Biol. 300, 461–475 (2006).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    62.Ullrich-Lüter, E. M., D’Aniello, S. & Arnone, M. I. C-opsin expressing photoreceptors in echinoderms. Integr. Comp. Biol. 53, 27–38 (2013).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    63.Yoshida, M. On the light response of the chromatophore of the sea-urchin, Diadema setosum (Leske). J. Exp. Biol. 33, 119–123 (1956).Article 

    Google Scholar 
    64.JPL MUR MEaSUREs. GHRSST Level 4 MUR global foundation sea surface temperature analysis. Version 4.1 PO.DAAC, CA, USA. Dataset accessed 23 Jan 2021 at https://doi.org/10.5067/GHGMR-4FJ04 (2015).65.Pickering, H., Whitmarsh, D. & Jensen, A. Artificial reefs as a tool to aid rehabilitation of coastal ecosystems: investigating the potential. Mar. Pollut. Bull. 37, 505–514 (1999).Article 

    Google Scholar 
    66.Fitzhardinge, R. C. & Bailey-Brock, J. H. Colonization of artificial reef materials by corals and other sessile organisms. Bull. Mar. Sci. 44, 567–579 (1989).
    Google Scholar 
    67.R Core Team. R: A Language and Environment for Statistical Computing. Vienna. https://www.r-project.org/. (2016).68.RStudio Team. RStudio: Integrated Development for R (2015).69.Dinno, A. conover.test: Conover-Iman test of multiple comparisons using rank sums. R Package Version 1.1.5. (2017).70.Scheibling, R. E. & Robinson, M. C. Settlement behaviour and early post-settlement predation of the sea urchin Strongylocentrotus droebachiensis. J. Exp. Mar. Biol. Ecol. 365, 59–66 (2008).Article 

    Google Scholar 
    71.Kintzing, M. D. & Butler, M. J. The influence of shelter, conspecifics, and threat of predation on the behavior of the long-spined sea urchin (Diadema antillarum). J. Shellfish Res. 33, 781–785 (2014).Article 

    Google Scholar 
    72.Clemente, S., Hernández, J. C., Toledo, K. & Brito, A. Predation upon Diadema aff. antillarum in barren grounds in the Canary Islands. Sci. Mar. 71, 745–754 (2007).Article 

    Google Scholar 
    73.Jennings, L. B. & Hunt, H. L. Settlement, recruitment and potential predators and competitors of juvenile echinoderms in the rocky subtidal zone. Mar. Biol. 157, 307–316 (2010).Article 

    Google Scholar 
    74.Rodríguez-Barreras, R. Demographic implications of predatory wrasses on low-density Diadema antillarum populations. Mar. Biol. Res. 14, 383–391 (2018).Article 

    Google Scholar 
    75.Delgado, G. A. & Sharp, W. C. Does artificial shelter have a place in Diadema antillarum restoration in the Florida Keys? Tests of habitat manipulation and sheltering behavior. Glob. Ecol. Conserv. 26, e01502 (2021).Article 

    Google Scholar 
    76.Sammarco, P. W. & Williams, A. H. Damselfish territoriality: influence on Diadema antillarum distribution and implications for coral community structure. Mar. Ecol. Prog. Ser. 8, 53–59 (1982).ADS 
    Article 

    Google Scholar 
    77.Nedimyer, K. & Moe, M. A. 2003. Techniques development for the reestablishment of the long-spined sea urchin, Diadema antillarum, on two small patch reefs in the upper Florida Keys. 2002–2003 Sanctuary Science Report: An Ecosystem Report Card After Five Years of Marine Zoning.78.Idjadi, J., Haring, R. & Precht, W. Recovery of the sea urchin Diadema antillarum promotes scleractinian coral growth and survivorship on shallow Jamaican reefs. Mar. Ecol. Prog. Ser. 403, 91–100 (2010).ADS 
    Article 

    Google Scholar 
    79.Macia, S., Robinson, M. P. & Nalevanko, A. Experimental dispersal of recovering Diadema antillarum increases grazing intensity and reduces macroalgal abundance on a coral reef. Mar. Ecol. Prog. Ser. 348, 173–182 (2007).ADS 
    Article 

    Google Scholar  More

  • in

    Comparative study of the environmental footprints of marinas on European Islands

    1.EU. Communication from the Commission. Ports: an engine for growth (2013).2.EU. Directive (EU) 2019/883 of the European Parliament and of the Council of 17 April 2019. 2019(March), 116–142 (2019).3.Chao, M. & Rodríguez, M. New trends in port managing: towards the e-port. J. Marit. Res. 3(2), 35–42 (2006).
    Google Scholar 
    4.Paiano, A., Crovella, T. & Lagioia, G. Managing sustainable practices in cruise tourism: the assessment of carbon footprint and waste of water and beverage packaging. Tour. Manag. 77(October 2019), 104016. https://doi.org/10.1016/j.tourman.2019.104016 (2020).Article 

    Google Scholar 
    5.Kovačić, M. & Silveira, L. Nautical tourism in Croatia and in Portugal in the late 2010’s: issues and perspectives. Pomorstvo 32(2), 281–289. https://doi.org/10.31217/p.32.2.13 (2018).Article 

    Google Scholar 
    6.Pérez Labajos, C. & Blanco Rojo, B. Leisure ports planning. J. Marit. Res. 3(2), 67–82 (2006).
    Google Scholar 
    7.BOE. Real Decreto Legislativo 2/2011, de 5 de septiembre, por el que se aprueba el Texto Refundido de la Ley de Puertos del Estado y de la Marina Mercante. Span. Off. Bull. 255, 11. https://www.boe.es/buscar/pdf/2011/BOE-A-2011-16467-consolidado.pdf (2011).8.Gómez, A. G., Valdor, P. F., Ondiviela, B., Díaz, J. L. & Juanes, J. A. Mapping the environmental risk assessment of marinas on water quality: the Atlas of the Spanish coast. Mar. Pollut. Bull. 139(January), 355–365. https://doi.org/10.1016/j.marpolbul.2019.01.008 (2019).CAS 
    Article 
    PubMed 

    Google Scholar 
    9.Sofiev, M. et al. Cleaner fuels for ships provide public health benefits with climate tradeoffs. Nat. Commun. 9(1), 1–12. https://doi.org/10.1038/s41467-017-02774-9 (2018).CAS 
    Article 

    Google Scholar 
    10.Chen, C., Saikawa, E., Comer, B., Mao, X. & Rutherford, D. Ship emission impacts on air quality and human health in the Pearl River Delta (PRD) Region, China, in 2015, with projections to 2030. GeoHealth 3(9), 284–306. https://doi.org/10.1029/2019GH000183 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    11.Mateos, M. R. Los puertos deportivos como infraestructuras de soporte de las actividades náuticas de recreo en Andalucía. Mar. Infrastruct. Supports Naut. Recreat. Act. Andal. 54, 335–360 (2010).
    Google Scholar 
    12.Nursey-Bray, M. et al. Vulnerabilities and adaptation of ports to climate change. J. Environ. Plan. Manag. 56(7), 1021–1045. https://doi.org/10.1080/09640568.2012.716363 (2013).Article 

    Google Scholar 
    13.Antequera, P. D., Jaime, D. & Abel, L. Tourism, transport and climate change: the carbon footprint of international air traffic on Islands. Sustainability 13(4), 1795. https://doi.org/10.3390/su13041795 (2021).CAS 
    Article 

    Google Scholar 
    14.Hadjikakou, M., Chenoweth, J. & Miller, G. Estimating the direct and indirect water use of tourism in the eastern Mediterranean. J. Environ. Manag. 114, 548–556. https://doi.org/10.1016/j.jenvman.2012.11.002 (2013).Article 

    Google Scholar 
    15.Annis, G. M. et al. Designing coastal conservation to deliver ecosystem and human well-being benefits. PLoS ONE 12(2), 1–21. https://doi.org/10.1371/journal.pone.0172458 (2017).CAS 
    Article 

    Google Scholar 
    16.Kizielewicz, J. & Lukovic, T. The phenomenon of the marina development to support the European model of economic development. TransNav Int. J. Mar. Navig. Saf. Sea Transp. 7(3), 461–466. https://doi.org/10.12716/1001.07.03.19 (2013).Article 

    Google Scholar 
    17.Ridolfi, E., Pujol, D. S., Ippolito, A., Saradakou, E. & Salvati, L. An urban political ecology approach to local development in fast-growing, tourism-specialized coastal cities. Tourismos 12(1), 171–204 (2017).
    Google Scholar 
    18.Sevinç, F. & Güzel, T. Sustainable Yacht tourism practices. Manag. Mark. XV(1), 61–76 (2017).
    Google Scholar 
    19.Lam-González, Y. E., León, C. J. & González-Hernández, M. M. Determinants of the European Yachtsmen´s satisfaction with the ports of call of the Canary Islands (Spain). Études Caribéennes https://doi.org/10.4000/etudescaribeennes.10584 (2017).Article 

    Google Scholar 
    20.Novales, A., Martínez Martín, M. I., Castro Núñez, R. B., Cazcarro Castellano, I. & Santero Sánchez, R. El impacto económico de la Náutica de Recreo 99 (Universidad Complutense de Madrid, 2018).
    Google Scholar 
    21.Cámara de Comercio e Industria de Marsella. Náutica de recreo en el Mediterráneo 114 (Etinet, 2011).
    Google Scholar 
    22.Mensa, J. A., Vasallo, P. & Fabiano, M. JMarinas: a simple tool for the environmentally sound management of small marinas. J. Environ. Manag. 92, 67–77 (2011).CAS 
    Article 

    Google Scholar 
    23.Benton, T. G. From castaways to throwaways: marine litter in the Pitcairn Islands. Biol. J. Lin. Soc. 56, 415–422 (1995).Article 

    Google Scholar 
    24.Chainho, P. et al. Non-indigenous species in Portuguese coastal areas, coastal lagoons, estuaries and islands. Estuar. Coast. Shelf Sci. 167, 199–211. https://doi.org/10.1016/j.ecss.2015.06.019 (2015).ADS 
    Article 

    Google Scholar 
    25.Styhre, L., Winnes, H., Black, J., Lee, J. & Le-Griffin, H. Greenhouse gas emissions from ships in ports: case studies in four continents. Transp. Res. Part D Transp. Environ. 54, 212–224. https://doi.org/10.1016/j.trd.2017.04.033 (2017).Article 

    Google Scholar 
    26.Yang, Y. C. Operating strategies of CO2 reduction for a container terminal based on carbon footprint perspective. J. Clean. Prod. 141, 472–480. https://doi.org/10.1016/j.jclepro.2016.09.132 (2017).CAS 
    Article 

    Google Scholar 
    27.Giunta, M., Bressi, S. & D’Angelo, G. Life cycle cost assessment of bitumen stabilised ballast: a novel maintenance strategy for railway track-bed. Constr. Build. Mater. 172, 751–759. https://doi.org/10.1016/j.conbuildmat.2018.04.020 (2018).Article 

    Google Scholar 
    28.Hickmann, T. Voluntary global business initiatives and the international climate negotiations: a case study of the Greenhouse Gas Protocol. J. Clean. Prod. 169, 94–104. https://doi.org/10.1016/j.jclepro.2017.06.183 (2017).Article 

    Google Scholar 
    29.Garcia, R. & Freire, F. Carbon footprint of particleboard: a comparison between ISO/TS 14067, GHG protocol, PAS 2050 and climate declaration. J. Clean. Prod. 66, 199–209. https://doi.org/10.1016/j.jclepro.2013.11.073 (2014).CAS 
    Article 

    Google Scholar 
    30.Ingrid, M.-M., Pablo, C.-M., Jose, V.-C. & Miguel Ángel, P.-G. Economic impact of a port on the hinterland: application to Santander’s port. Int. J. Shipp. Transp. Logist. 4, 235–249 (2012).Article 

    Google Scholar 
    31.Abdul-azeez, I. A. Development of carbon dioxide emission assessment tool towards promoting sustainability in UTM Malaysia. Open J. Energy Effic. https://doi.org/10.4236/ojee.2018.72004 (2018).Article 

    Google Scholar 
    32.Jeswani, H. K. & Azapagic, A. Water footprint: methodologies and a case study for assessing the impacts of water use. J. Clean. Prod. 19(12), 1288–1299. https://doi.org/10.1016/j.jclepro.2011.04.003 (2011).Article 

    Google Scholar 
    33.Zhuo, La., Mekonnen, M. M. & Hoekstra, A. Y. Consumptive water footprint and virtual water trade scenarios for China: with a focus on crop production, consumption and trade. Environ. Int. 94, 211–223 (2016).Article 

    Google Scholar 
    34.Arto, I., Andreoni, V. & Rueda-Cantuche, J. M. Global use of water resources: a multiregional analysis of water use, water footprint and water trade balance. Water Resour. Econ. 15, 1–14. https://doi.org/10.1016/j.wre.2016.04.002 (2016).Article 

    Google Scholar 
    35.Zhi, Y., Yang, Z., Yin, X., Hamilton, P. B. & Zhang, L. Using gray water footprint to verify economic sectors’ consumption of assimilative capacity in a river basin: model and a case study in the Haihe River Basin, China. J. Clean. Prod. 92, 267–273. https://doi.org/10.1016/j.jclepro.2014.12.058 (2015).Article 

    Google Scholar 
    36.Norén, A., Karlfeldt Fedje, K., Strömvall, A. M., Rauch, S. & Andersson-Sköld, Y. Integrated assessment of management strategies for metal-contaminated dredged sediments: what are the best approaches for ports, marinas and waterways?. Sci. Total Environ. https://doi.org/10.1016/j.scitotenv.2019.135510 (2020).Article 
    PubMed 

    Google Scholar 
    37.Kenworthy, J. M., Rolland, G., Samadi, S. & Lejeusne, C. Local variation within marinas: effects of pollutants and implications for invasive species. Mar. Pollut. Bull. 133(March), 96–106. https://doi.org/10.1016/j.marpolbul.2018.05.001 (2018).CAS 
    Article 
    PubMed 

    Google Scholar 
    38.Veettil, A. V. & Mishra, A. K. Water security assessment using blue and green water footprint concepts. J. Hydrol. 542, 589–602. https://doi.org/10.1016/j.jhydrol.2016.09.032 (2016).ADS 
    Article 

    Google Scholar 
    39.Gu, Y., Li, Y., Wang, H. & Li, F. Gray water footprint: taking quality, quantity, and time effect into consideration. Water Resour. Manag. 28(11), 3871–3874. https://doi.org/10.1007/s11269-014-0695-y (2014).Article 

    Google Scholar 
    40.Duvat, V. K. E. et al. Trajectories of exposure and vulnerability of small islands to climate change. Rev. Clim. Change https://doi.org/10.1002/wcc.478 (2017).Article 

    Google Scholar 
    41.Millán, M. M. Extreme hydrometeorological events and climate change predictions in Europe. J. Hydrol. 518(PB), 206–224. https://doi.org/10.1016/j.jhydrol.2013.12.041 (2014).ADS 
    CAS 
    Article 

    Google Scholar 
    42.Smith, J. B. et al. Assessing dangerous climate change through an update of the Intergovernmental Panel on Climate Change (IPCC) “‘reasons for concern’”. Proc. Natl. Acad. Sci. U.S.A. 106(11), 4133–4137. https://doi.org/10.1073/pnas.0812355106 (2009).ADS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    43.IPCC. Climate change 2014: impacts, adaptation and vulnerability (2014).44.Ciscar, J. C. et al. Physical and economic consequences of climate change in Europe. Proc. Natl. Acad. Sci. U.S.A. 108(7), 2678–2683. https://doi.org/10.1073/pnas.1011612108 (2011).ADS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    45.Melo, N., Santos, B. F. & Leandro, J. A prototype tool for dynamic pluvial-flood emergency planning. Urban Water J. 12(1), 79–88. https://doi.org/10.1080/1573062X.2014.975725 (2015).Article 

    Google Scholar 
    46.Lazrus, H. Sea change: Island communities and climate change. Annu. Rev. Anthropol. 41, 285–301. https://doi.org/10.1146/annurev-anthro-092611-145730 (2012).Article 

    Google Scholar 
    47.Reid, S., Johnston, N. & Patiar, A. Coastal resorts setting the pace: an evaluation of sustainable hotel practices. J. Hosp. Tour. Manag. 33, 11–22. https://doi.org/10.1016/j.jhtm.2017.07.001 (2017).Article 

    Google Scholar 
    48.Vargas-Amelin, E. & Pindado, P. The challenge of climate change in Spain: water resources, agriculture and land. J. Hydrol. 518(PB), 243–249. https://doi.org/10.1016/j.jhydrol.2013.11.035 (2014).ADS 
    Article 

    Google Scholar 
    49.Fagerberg, J., Laestadius, S. & Martin, B. R. The triple challenge for Europe: the economy, climate change, and governance. Innov. Econ. Dev. Policy Sel. Essays 59(3), 384–410. https://doi.org/10.1080/05775132.2016.1171668 (2018).Article 

    Google Scholar 
    50.UNCTAD. Maritime transport in small island developing states. Rev. Marit. Transp. https://doi.org/10.1017/CBO9781107415324.004 (2014).Article 

    Google Scholar 
    51.Hinkey, L. M., Zaidi, B. R., Volson, B. & Rodriguez, N. J. Identifying sources and distributions of sediment contaminants at two US Virgin Islands marinas. Mar. Pollut. Bull. 50, 1244–1250. https://doi.org/10.1016/j.marpolbul.2005.04.035 (2005).CAS 
    Article 
    PubMed 

    Google Scholar 
    52.Marín, J. C. et al. Properties of particulate pollution in the port city of Valparaiso, Chile. Atmos. Environ. 171, 301–316. https://doi.org/10.1016/j.atmosenv.2017.09.044 (2017).ADS 
    CAS 
    Article 

    Google Scholar 
    53.Tóvar-Sánchez, A., Sánchez-Quiles, D. & Rodríguez-Romero, A. Massive coastal tourism influx to the Mediterranean Sea: the environmental risk of sunscreens. Sci. Total Environ. 656, 316–321 (2019).ADS 
    Article 

    Google Scholar 
    54.Uche-Soria, M. & Rodríguez-Monroy, C. Solutions to marine pollution in Canary Islands’ ports: alternatives and optimization of energy management. Resources https://doi.org/10.3390/resources8020059 (2019).Article 

    Google Scholar 
    55.Bosch, N. E., Gonçalves, J. M. S., Tuya, F. & Erzini, K. Marinas as habitats for nearshore fish assemblages: comparative analysis of underwater visual census, baited cameras and fish traps. Sci. Mar. 81(2), 159. https://doi.org/10.3989/scimar.04540.20a (2017).Article 

    Google Scholar 
    56.Di Franco, A. et al. Do small marinas drive habitat specific impacts? A case study from Mediterranean Sea. Mar. Pollut. Bull. 62, 926–933. https://doi.org/10.1016/j.marpolbul.2011.02.053 (2011).CAS 
    Article 
    PubMed 

    Google Scholar 
    57.Pasetto, M. & Partl, M. N. in Lecture Notes in Civil Engineering Proceedings of the 5th International Symposium on Asphalt Pavements & Environment (APE). http://www.springer.com/series/15087 (2020)58.Praticò, F. G., Giunta, M., Mistretta, M. & Gulotta, T. M. Energy and environmental life cycle assessment of sustainable pavement materials and technologies for urban roads. Sustainability (Switzerland) https://doi.org/10.3390/su12020704 (2020).Article 

    Google Scholar 
    59.Hertwich, E. G. & Wood, R. The growing importance of scope 3 greenhouse gas emissions from industry. Environ. Res. Lett. https://doi.org/10.1088/1748-9326/aae19a (2018).Article 

    Google Scholar 
    60.Di Vaio, A., Varriale, L. & Alvino, F. Key performance indicators for developing environmentally sustainable and energy efficient ports: evidence from Italy. Energy Policy 122(July), 229–240. https://doi.org/10.1016/j.enpol.2018.07.046 (2018).Article 

    Google Scholar 
    61.Corrigan, S., Kay, A., Ryan, M., Brazil, B. & Ward, M. E. Human factors & safety culture: challenges & opportunities for the port environment. Saf. Sci. 125, 14. https://doi.org/10.1016/j.ssci.2018.02.030 (2020).Article 

    Google Scholar 
    62.Mali, M., Dell’Anna, M. M., Mastrorilli, P., Damiani, L. & Piccinni, A. F. Assessment and source identification of pollution risk for touristic ports: heavy metals and polycyclic aromatic hydrocarbons in sediments of 4 marinas of the Apulia region (Italy). Mar. Pollut. Bull. 114(2), 768–777. https://doi.org/10.1016/j.marpolbul.2016.10.063 (2017).CAS 
    Article 
    PubMed 

    Google Scholar 
    63.Cutroneo, L., Reboa, A., Besio, G., Borgogno, F., Canesi, L., Canuto, S., Dara, M., Enrile, F., Forioso, I., Greco, G., Lenoble, V., Malatesta, A., Mounier, S., Petrillo, M., Rovetta, R., Stocchino, A., Tesan, J., Vagge, G., & Capello, M. Correction to: Microplastics in seawater: sampling strategies, laboratory methodologies, and identification techniques applied to port environment (Environmental Science and Pollution Research, (2020), 27, 9, (8938–8952), https://doi.org/10.1007/s11356-020-07783-8). Environ. Sci. Pollut. Res. 27(16), 20571. https://doi.org/https://doi.org/10.1007/s11356-020-08704-5 (2020)64.Kotowska, I. & Kubowicz, D. The role of ports in reduction of road transport pollution in port cities. Transp. Res. Procedia 39, 212–220. https://doi.org/10.1016/j.trpro.2019.06.023 (2019).Article 

    Google Scholar 
    65.Coronado Mondragon, A. E., Lalwani, C. S., Coronado Mondragon, E. S., Coronado Mondragon, C. E. & Pawar, K. S. Intelligent transport systems in multimodal logistics: a case of role and contribution through wireless vehicular networks in a sea port location. Int. J. Prod. Econ. 137, 165–175. https://doi.org/10.1016/j.ijpe.2011.11.006 (2012).Article 

    Google Scholar 
    66.Caballini, C., Rebecchi, I. & Sacone, S. Combining multiple trips in a port environment for empty movements minimization. Transp. Res. Procedia 10, 694–703. https://doi.org/10.1016/j.trpro.2015.09.023 (2015).Article 

    Google Scholar 
    67.Sifakis, N. & Tsoutsos, T. Planning zero-emissions ports through the nearly zero energy port concept. J. Clean. Prod. 286, 20. https://doi.org/10.1016/j.jclepro.2020.125448 (2021).Article 

    Google Scholar 
    68.Karimpour, R., Ballini, F. & Ölcer, A. I. Circular economy approach to facilitate the transition of the port cities into self-sustainable energy ports: a case study in Copenhagen-Malmö Port (CMP). WMU J. Marit. Aff. 18(2), 225–247. https://doi.org/10.1007/s13437-019-00170-2 (2019).Article 

    Google Scholar 
    69.Babrowski, S., Heinrichs, H., Jochem, P. & Fichtner, W. Load shift potential of electric vehicles in Europe. J. Power Sources 255, 283–293. https://doi.org/10.1016/j.jpowsour.2014.01.019 (2014).ADS 
    CAS 
    Article 

    Google Scholar 
    70.Azarkamand, S., Ferré, G. & Darbra, R. M. Calculating the carbon footprint in ports by using a standardized tool. Sci. Total Environ. 734, 139407. https://doi.org/10.1016/j.scitotenv.2020.139407 (2020).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    71.Carballo-Penela, A., Mateo-Mantecón, I., Doménech, J. L. & Coto-Millán, P. From the motorways of the sea to the green corridors’ carbon footprint: the case of a port in Spain. J. Environ. Plan. Manag. 55(6), 765–782. https://doi.org/10.1080/09640568.2011.627422 (2012).Article 

    Google Scholar 
    72.Paska, J. & Surma, T. Electricity generation from renewable energy sources in Poland. Renew. Energy 71, 286–294 (2014).Article 

    Google Scholar 
    73.Trujillo-Baute, E., del Río, P. & Mir-Artigues, P. Analysing the impact of renewable energy regulation on retail electricity prices. Energy Policy 114, 153–164 (2018).Article 

    Google Scholar 
    74.Ruiz-Romero, S., Colmenar-Santos, A., Gil-Ortego, R. & Molina-Bonilla, A. Distributed generation: the definitive boost for renewable energy in Spain. Renew. Energy 53, 354–364 (2013).Article 

    Google Scholar 
    75.Burgos-Payán, M., Roldán-Fernández, J. M., Trigo-García, Á. L., Bermúdez-Ríos, J. M. & Riquelme-Santos, J. M. Costs and benefits of the renewable production of electricity in Spain. Energy Policy 56, 259–270 (2013).Article 

    Google Scholar 
    76.Taliotis, C. et al. Renewable energy technology integration for the island of Cyprus: a cost-optimization approach. Energy 137(2017), 31–41. https://doi.org/10.1016/j.energy.2017.07.015 (2017).Article 

    Google Scholar 
    77.Deyà-Tortella, B., Garcia, C., Nilsson, W. & Tirado, D. The effect of the water tariff structures on the water consumption in Mallorcan hotels. Water Resour. Res. 52(8), 6386–6403. https://doi.org/10.1002/2016WR018621 (2016).ADS 
    Article 

    Google Scholar 
    78.Liu, J. et al. A global and spatially explicit assessment of climate change impacts on crop production and consumptive water use. PLoS ONE https://doi.org/10.1371/journal.pone.0057750 (2013).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    79.Hof, A. & Schmitt, T. Urban and tourist land use patterns and water consumption: evidence from Mallorca, Balearic Islands. Land Use Policy 28, 792–804 (2011).Article 

    Google Scholar 
    80.Urban water consumption in the Balearic islands. The water portal: http://www.caib.es/sites/aigua/es/consumo_agua/81.García, C., Mestre-Runge, C., Morán-Tejeda, E., Lorenzo-Lacruz, J., Tirado, D. (2020). Impact of Cruise Activity on Freshwater Use in the Port of Palma (Mallorca, Spain): Water 12, 1088.82.Yves Tramblay, Aristeidis Koutroulis, Luis Samaniego, Sergio Vicente-Serrano, Florence Volaire, et al. Challenges for drought assessment in the Mediterranean region under future climate scenarios. EarthScience Reviews, Elsevier, 2020, 210, pp.103348. https://doi.org/10.1016/j.earscirev.2020.103348f More

  • in

    Migratory strategy drives species-level variation in bird sensitivity to vegetation green-up

    1.Parmesan, C. & Yohe, G. A globally coherent fingerprint of climate change impacts across natural systems. Nature 421, 37–42 (2003).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    2.Cohen, J. M., Lajeunesse, M. J. & Rohr, J. R. A global synthesis of animal phenological responses to climate change. Nat. Clim. Change 8, 224–228 (2018).Article 

    Google Scholar 
    3.Thackeray, S. J. et al. Phenological sensitivity to climate across taxa and trophic levels. Nature 535, 241–245 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    4.Both, C., van Asch, M., Bijlsma, R. G., van den Burg, A. B. & Visser, M. E. Climate change and unequal phenological changes across four trophic levels: constraints or adaptations? J. Anim. Ecol. 78, 73–83 (2009).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    5.Visser, M. E., van Noordwijk, A. J., Tinbergen, J. M. & Lessells, C. M. Warmer springs lead to mistimed reproduction in great tits (Parus major). Proc. R. Soc. B 265, 1867–1870 (1998).Article 

    Google Scholar 
    6.Stenseth, N. C. & Mysterud, A. Climate, changing phenology, and other life history traits: nonlinearity and match–mismatch to the environment. Proc. Natl Acad. Sci. USA 99, 13379–13381 (2002).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    7.Blackford, C., Germain, R. M. & Gilbert, B. Species differences in phenology shape coexistence. Am. Nat. 195, E168–E180 (2020).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    8.Møller, A. P., Rubolini, D. & Lehikoinen, E. Populations of migratory bird species that did not show a phenological response to climate change are declining. Proc. Natl Acad. Sci. USA 105, 16195–16200 (2008).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    9.Rudolf, V. H. W. The role of seasonal timing and phenological shifts for species coexistence. Ecol. Lett. 22, 1324–1338 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    10.Mynott, J. Birds in the Ancient World: Winged Words (Oxford Univ. Press, 2018).11.Hurlbert, A. H. & Liang, Z. Spatiotemporal variation in avian migration phenology: citizen science reveals effects of climate change. PLoS ONE 7, e31662 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    12.Mayor, S. J. et al. Increasing phenological asynchrony between spring green-up and arrival of migratory birds. Sci. Rep. 7, 1902 (2017).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    13.Horton, K. G. et al. Phenology of nocturnal avian migration has shifted at the continental scale. Nat. Clim. Change 10, 63–68 (2020).Article 

    Google Scholar 
    14.Rosenberg, K. V. et al. Decline of the North American avifauna. Science 366, 120–124 (2019).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    15.Sullivan, B. L. et al. The eBird enterprise: an integrated approach to development and application of citizen science. Biol. Conserv. 169, 31–40 (2014).Article 

    Google Scholar 
    16.Friedl, M., Gray, J. & Sulla-Menashe, D. MCD12Q2 MODIS/Terra+Aqua Land Cover Dynamics Yearly L3 Global 500m SIN Grid v.6 (NASA EOSDIS Land Processes DAAC, accessed 26 March 2020); https://doi.org/10.5067/MODIS/MCD12Q2.00617.Richardson, A. D., Hufkens, K., Milliman, T. & Frolking, S. Intercomparison of phenological transition dates derived from the PhenoCam Dataset V1.0 and MODIS satellite remote sensing. Sci. Rep. 8, 5679 (2018).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    18.Cole, E. F., Long, P. R., Zelazowski, P., Szulkin, M. & Sheldon, B. C. Predicting bird phenology from space: satellite-derived vegetation green-up signal uncovers spatial variation in phenological synchrony between birds and their environment. Ecol. Evol. 5, 5057–5074 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    19.Pettorelli, N. et al. The normalized difference vegetation index (NDVI): unforeseen successes in animal ecology. Clim. Res. 46, 15–27 (2011).Article 

    Google Scholar 
    20.Winger, B. M., Auteri, G. G., Pegan, T. M. & Weeks, B. C. A long winter for the Red Queen: rethinking the evolution of seasonal migration. Biol. Rev. 94, 737–752 (2019).21.Åkesson, S. et al. Timing avian long-distance migration: from internal clock mechanisms to global flights. Philos. Trans. R. Soc. B 372, 20160252 (2017).Article 

    Google Scholar 
    22.Helm, B. et al. Two sides of a coin: ecological and chronobiological perspectives of timing in the wild. Philos. Trans. R. Soc. B 372, 20160246 (2017).Article 

    Google Scholar 
    23.Haest, B., Hüppop, O. & Bairlein, F. The influence of weather on avian spring migration phenology: what, where and when? Glob. Change Biol. 24, 5769–5788 (2018).Article 

    Google Scholar 
    24.Studds, C. E. & Marra, P. P. Rainfall-induced changes in food availability modify the spring departure programme of a migratory bird. Proc. R. Soc. B 278, 3437–3443 (2011).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    25.Thorup, K. et al. Resource tracking within and across continents in long-distance bird migrants. Sci. Adv. 3, e1601360 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    26.Post, E., Steinman, B. A. & Mann, M. E. Acceleration of phenological advance and warming with latitude over the past century. Sci. Rep. 8, 3927 (2018).27.Van der Graaf, A., Stahl, J., Klimkowska, A., Bakker, J. P. & Drent, R. H. Surfing on a green wave—how plant growth drives spring migration in the Barnacle Goose Branta leucopsis. Ardea Wagening. 94, 567 (2006).
    Google Scholar 
    28.Schmaljohann, H. & Both, C. The limits of modifying migration speed to adjust to climate change. Nat. Clim. Change 7, 573–576 (2017).Article 

    Google Scholar 
    29.Marra, P. P., Francis, C. M., Mulvihill, R. S. & Moore, F. R. The influence of climate on the timing and rate of spring bird migration. Oecologia 142, 307–315 (2005).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    30.Zurell, D., Gallien, L., Graham, C. H. & Zimmermann, N. E. Do long-distance migratory birds track their niche through seasons? J. Biogeogr. 45, 1459–1468 (2018).Article 

    Google Scholar 
    31.Horton, K. G. et al. Holding steady: little change in intensity or timing of bird migration over the Gulf of Mexico. Glob. Change Biol. 25, 1106–1118 (2019).Article 

    Google Scholar 
    32.Charmantier, A. et al. Adaptive phenotypic plasticity in response to climate change in a wild bird population. Science 320, 800–803 (2008).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    33.Curley, S. R., Manne, L. L. & Veit, R. R. Differential winter and breeding range shifts: implications for avian migration distances. Divers. Distrib. 26, 415–425 (2020).Article 

    Google Scholar 
    34.Root, T. Energy constraints on avian distributions and abundances. Ecology 69, 330–339 (1988).Article 

    Google Scholar 
    35.La Sorte, F. A., Fink, D., Hochachka, W. M., DeLong, J. P. & Kelling, S. Population-level scaling of avian migration speed with body size and migration distance for powered fliers. Ecology 94, 1839–1847 (2013).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    36.Somveille, M., Manica, A. & Rodrigues, A. S. L. Where the wild birds go: explaining the differences in migratory destinations across terrestrial bird species. Ecography 42, 225–236 (2019).Article 

    Google Scholar 
    37.Knudsen, E. et al. Challenging claims in the study of migratory birds and climate change. Biol. Rev. 86, 928–946 (2011).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    38.Allstadt, A. J. et al. Spring plant phenology and false springs in the conterminous US during the 21st century. Environ. Res. Lett. 10, 104008 (2015).Article 

    Google Scholar 
    39.Franks, S. E. et al. The sensitivity of breeding songbirds to changes in seasonal timing is linked to population change but cannot be directly attributed to the effects of trophic asynchrony on productivity. Glob. Change Biol. 24, 957–971 (2018).Article 

    Google Scholar 
    40.Both, C., Bouwhuis, S., Lessells, C. M. & Visser, M. E. Climate change and population declines in a long-distance migratory bird. Nature 441, 81–83 (2006).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    41.Kharouba, H. M. & Wolkovich, E. M. Disconnects between ecological theory and data in phenological mismatch research. Nat. Clim. Change 10, 406–415 (2020).Article 

    Google Scholar 
    42.Samplonius, J. M. et al. Strengthening the evidence base for temperature-mediated phenological asynchrony and its impacts. Nat. Ecol. Evol. 5, 155–164 (2021).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    43.Abdala‐Roberts, L. et al. Tri‐trophic interactions: bridging species, communities and ecosystems. Ecol. Lett. 22, 2151–2167 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    44.Burgess, M. D. et al. Tritrophic phenological match–mismatch in space and time. Nat. Ecol. Evol. 2, 970–975 (2018).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    45.Helm, B., Van Doren, B. M., Hoffmann, D. & Hoffmann, U. Evolutionary response to climate change in migratory pied flycatchers. Curr. Biol. 29, 3714–3719 (2019).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    46.Newson, S. E. et al. Long-term changes in the migration phenology of UK breeding birds detected by large-scale citizen science recording schemes. Ibis 158, 481–495 (2016).Article 

    Google Scholar 
    47.Townsend, A. K. et al. The interacting effects of food, spring temperature, and global climate cycles on population dynamics of a migratory songbird. Glob. Change Biol. 22, 544–555 (2016).Article 

    Google Scholar 
    48.Grüebler, M. U. & Naef-Daenzer, B. Fitness consequences of pre- and post-fledging timing decisions in a double-brooded passerine. Ecology 89, 2736–2745 (2008).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    49.Lany, N. K. et al. Breeding timed to maximumimize reproductive success for a migratory songbird: the importance of phenological asynchrony. Oikos 125, 656–666 (2016).Article 

    Google Scholar 
    50.Samplonius, J. M. & Both, C. Climate change may affect fatal competition between two bird species. Curr. Biol. 29, 327–331 (2019).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    51.Potvin, D. A., Välimäki, K. & Lehikoinen, A. Differences in shifts of wintering and breeding ranges lead to changing migration distances in European birds. J. Avian Biol. 47, 619–628 (2016).Article 

    Google Scholar 
    52.Bassett, F. & Cubie, D. Wintering hummingbirds in Alabama and Florida: species diversity, sex and age ratios, and site fidelity. J. Field Ornithol. 80, 154–162 (2009).Article 

    Google Scholar 
    53.Socolar, J. B., Epanchin, P. N., Beissinger, S. R. & Tingley, M. W. Phenological shifts conserve thermal niches in North American birds and reshape expectations for climate-driven range shifts. Proc. Natl Acad. Sci. USA 114, 12976–12981 (2017).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    54.Chmura, H. E. et al. The mechanisms of phenology: the patterns and processes of phenological shifts. Ecol. Monogr. 89, e01337 (2019).Article 

    Google Scholar 
    55.Kharouba, H. M. et al. Global shifts in the phenological synchrony of species interactions over recent decades. Proc. Natl Acad. Sci. USA 115, 5211–5216 (2018).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    56.Cressie, N., Calder, C. A., Clark, J. S., Hoef, J. M. V. & Wikle, C. K. Accounting for uncertainty in ecological analysis: the strengths and limitations of hierarchical statistical modeling. Ecol. Appl. 19, 553–570 (2009).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    57.Miller-Rushing, A. J., Inouye, D. W. & Primack, R. B. How well do first flowering dates measure plant responses to climate change? The effects of population size and sampling frequency. J. Ecol. 96, 1289–1296 (2008).Article 

    Google Scholar 
    58.Miller-Rushing, A. J., Lloyd-Evans, T. L., Primack, R. B. & Satzinger, P. Bird migration times, climate change, and changing population sizes. Glob. Change Biol. 14, 1959–1972 (2008).Article 

    Google Scholar 
    59.Barnes, R. dggridR: Discrete global grids for R. R package version 0.1.12 https://github.com/r-barnes/dggri (2017).60.Data Zone (BirdLife International, 2019); http://datazone.birdlife.org/species/requestdis61.Sulla-Menashe, D. et al. Hierarchical mapping of Northern Eurasian land cover using MODIS data. Remote Sens. Environ. 115, 392–403 (2011).Article 

    Google Scholar 
    62.Friedl, M. & Sulla-Menashe, D. MCD12Q1 MODIS/Terra+Aqua Land Cover Type Yearly L3 Global 500m SIN Grid v.6 (NASA EOSDIS Land Processes DAAC, accessed 26 February 2020); https://doi.org/10.5067/MODIS/MCD12Q2.00663.Wood, S. N. & Augustin, N. H. GAMs with integrated model selection using penalized regression splines and applications to environmental modelling. Ecol. Model. 157, 157–177 (2002).Article 

    Google Scholar 
    64.Fink, D. et al. Spatiotemporal exploratory models for broad-scale survey data. Ecol. Appl. 20, 2131–2147 (2010).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    65.Wood, S. N. Thin plate regression splines. J. R. Stat. Soc. B 65, 95–114 (2003).Article 

    Google Scholar 
    66.Lindén, A., Meller, K. & Knape, J. An empirical comparison of models for the phenology of bird migration. J. Avian Biol. 48, 255–265 (2017).Article 

    Google Scholar 
    67.Goodrich, B., Gabry, J., Ali, I. & Brilleman, S. rstanarm: Bayesian applied regression modeling via Stan. R package version 2.21.1 https://mc-stan.org/rstanarm (2020).68.Carpenter, B. et al. Stan: a probabilistic programming language. J. Stat. Softw. https://www.jstatsoft.org/v076/i01 (2017).69.Brooks, S. P. & Gelman, A. General methods for monitoring convergence of iterative simulations. J. Comput. Graph. Stat. 7, 434 (1998).
    Google Scholar 
    70.Besag, J. & Kooperberg, C. On conditional and intrinsic autoregression. Biometrika 82, 733 (1995).
    Google Scholar 
    71.Banerjee, S., Carlin, B. P. & Gelfand, A. E. Hierarchical Modeling and Analysis for Spatial Data (Chapman & Hall/CRC, 2004).72.Morris, M. et al. Bayesian hierarchical spatial models: implementing the Besag York Mollié model in stan. Spat. Spatiotemporal Epidemiol. 31, 100301 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    73.Stan Development Team. RStan: the R interface to Stan. R package version 2.17.3 http://mc-stan.org (2018).74.R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2019).75.Monnahan, C. C., Thorson, J. T. & Branch, T. A. Faster estimation of Bayesian models in ecology using Hamiltonian Monte Carlo. Methods Ecol. Evol. 8, 339–348 (2017).Article 

    Google Scholar 
    76.Gabry, J., Simpson, D., Vehtari, A., Betancourt, M. & Gelman, A. Visualization in Bayesian workflow. J. R. Stat. Soc. A 182, 389–402 (2019).Article 

    Google Scholar 
    77.Gelman, A., Carlin, J. B, Stern, H. S. & Rubin, D. B. Bayesian Data Analysis (Chapman & Hall/CRC, 2014).78.Finley, A. O. Comparing spatially-varying coefficients models for analysis of ecological data with non-stationary and anisotropic residual dependence: spatially-varying coefficients models. Methods Ecol. Evol. 2, 143–154 (2011).Article 

    Google Scholar 
    79.Stan Modeling Language Users Guide and Reference Manual v. 2.18.0 (Stan Development Team, 2018).80.Menzel, A., von Vopelius, J., Estrella, N., Schleip, C. & Dose, V. Farmers’ annual activities are not tracking the speed of climate change. Clim. Res. 32, 201–207 (2006).
    Google Scholar  More

  • in

    Distribution, associations and role in the biological carbon pump of Pyrosoma atlanticum (Tunicata, Thaliacea) off Cabo Verde, NE Atlantic

    1.Pugh, P. Gelatinous zooplankton: the forgotten fauna. Sci. Prog. 14, 67–78 (1989).
    Google Scholar 
    2.Robison, B. H. Deep pelagic biology. J. Exp. Mar. Biol. Ecol. 300, 253–272. https://doi.org/10.1016/j.jembe.2004.01.012 (2004).Article 

    Google Scholar 
    3.Condon, R. H. et al. Questioning the rise of gelatinous zooplankton in the world’s oceans. Bioscience 62, 160–169. https://doi.org/10.1525/bio.2012.62.2.9 (2012).Article 

    Google Scholar 
    4.Haddock, S. H. D. A golden age of gelata: past and future research on planktonic ctenophores and cnidarians. Hydrobiologia 530, 549–556. https://doi.org/10.1007/s10750-004-2653-9 (2004).Article 

    Google Scholar 
    5.Lebrato, M. et al. Sinking of gelatinous zooplankton biomass increases deep carbon transfer efficiency globally. Glob. Biogeochem. Cycles 33, 1764–1783. https://doi.org/10.1029/2019GB006265 (2019).ADS 
    CAS 
    Article 

    Google Scholar 
    6.Luo, J. Y. et al. Gelatinous zooplankton-mediated carbon flows in the global oceans: a data-driven modeling study. Glob. Biogeochem. Cycles https://doi.org/10.1029/2020GB006704 (2020).Article 

    Google Scholar 
    7.Lucas, C. H. et al. Gelatinous zooplankton biomass in the global oceans: geographic variation and environmental drivers. Glob. Ecol. Biogeogr. 23, 701–714. https://doi.org/10.1111/geb.12169 (2014).Article 

    Google Scholar 
    8.Robison, B. H. Conservation of deep pelagic biodiversity. Conserv. Biol. 23, 847–858 (2009).Article 

    Google Scholar 
    9.Décima, M., Stukel, M. R., López-López, L. & Landry, M. R. The unique ecological role of pyrosomes in the Eastern Tropical Pacific. Limnol. Oceanogr. 64, 728–743. https://doi.org/10.1002/lno.11071 (2019).ADS 
    Article 

    Google Scholar 
    10.Henschke, N. et al. Large vertical migrations of Pyrosoma atlanticum play an important role in active carbon transport. J. Geophys. Res. Biogeosci. https://doi.org/10.1029/2018jg004918 (2019).Article 

    Google Scholar 
    11.Sutherland, K. R., Sorensen, H. L., Blondheim, O. N., Brodeur, R. D. & Galloway, A. W. E. Range expansion of tropical pyrosomes in the northeast Pacific Ocean. Ecology 99, 2397–2399. https://doi.org/10.1002/ecy.2429 (2018).Article 
    PubMed 

    Google Scholar 
    12.Perissinotto, R., Mayzaud, P., Nichols, P. D. & Labat, J. P. Grazing by Pyrosoma atlanticum (Tunicata, Thaliacea) in the south Indian Ocean. Mar. Ecol. Prog. Ser. 330, 1–11 (2007).ADS 
    CAS 
    Article 

    Google Scholar 
    13.van Soest, R. W. M. A monograph of the order Pyrosomatida (Tunicata, Thaliacea). J. Plankton Res. 3, 603–631. https://doi.org/10.1093/plankt/3.4.603 (1981).Article 

    Google Scholar 
    14.Drits, A. V., Arashkevich, E. G. & Semenova, T. N. Pyrosoma atlanticum (Tunicata, Thaliacea): grazing impact on phytoplankton standing stock and role in organic carbon flux. J. Plankton Res. 14, 799–809. https://doi.org/10.1093/plankt/14.6.799 (1992).Article 

    Google Scholar 
    15.Lebrato, M. & Jones, D. O. B. Mass deposition event of Pyrosoma atlanticum carcasses off Ivory Coast (West Africa). Limnol. Oceanogr. 54, 1197–1209. https://doi.org/10.4319/lo.2009.54.4.1197 (2009).ADS 
    CAS 
    Article 

    Google Scholar 
    16.Lebrato, M. et al. Sinking jelly-carbon unveils potential environmental variability along a continental margin. PLoS ONE 8, e82070. https://doi.org/10.1371/journal.pone.0082070 (2013).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    17.Archer, S. K. et al. Pyrosome consumption by benthic organisms during blooms in the northeast Pacific and Gulf of Mexico. Ecology 99, 981–984. https://doi.org/10.1002/ecy.2097 (2018).Article 
    PubMed 

    Google Scholar 
    18.Harbison, G. R. in The Biology of Pelagic Tunicates (ed Q. Bone) Ch. 12, 186–214 (Oxford University Press, 1998).19.James, G. D. & Stahl, J. C. Diet of southern Buller’s albatross (Diomedea bulleri bulleri) and the importance of fishery discards during chick rearing. NZ J. Mar. Freshwat. Res. 34, 435–454. https://doi.org/10.1080/00288330.2000.9516946 (2000).Article 

    Google Scholar 
    20.Hedd, A. & Gales, R. The diet of shy albatrosses (Thalassarche cauta) at Albatross Island, Tasmania. J. Zool. 253, 69–90. https://doi.org/10.1017/S0952836901000073 (2001).Article 

    Google Scholar 
    21.Brodeur, R. et al. An unusual gelatinous plankton event in the NE Pacific: the great pyrosome bloom of 2017. PICES Press 26, 22–27 (2018).
    Google Scholar 
    22.Childerhouse, S., Dix, B. & Gales, N. Diet of New Zealand sea lions at the Auckland Islands. Wildl. Res. 28, 291–298. https://doi.org/10.1071/WR00063 (2001).Article 

    Google Scholar 
    23.Lindsay, D., Hunt, J. & Hayashi, K.-I. Associations in the midwater zone: The penaeid shrimp Funchalia sagamiensis FUJINO 1975 and pelagic tunicates (Order: Pyrosomatida). Marine Freshwater Behav. Phys. 34, 157–170. https://doi.org/10.1080/10236240109379069 (2001).Article 

    Google Scholar 
    24.Andersen, V. in The Biology of Pleagic Tunicates (ed Q. Bone) Ch. 7, 125–137 (Oxford University Press, 1998).25.Madin, L. P. Production, composition and sedimentation of salp fecal pellets in oceanic waters. Mar. Biol. 67, 39–45. https://doi.org/10.1007/BF00397092 (1982).Article 

    Google Scholar 
    26.Thomsen, P. F. & Willerslev, E. Environmental DNA: an emerging tool in conservation for monitoring past and present biodiversity. Biol. Cons. 183, 4–18. https://doi.org/10.1016/j.biocon.2014.11.019 (2015).Article 

    Google Scholar 
    27.Andruszkiewicz, E. A. et al. Biomonitoring of marine vertebrates in Monterey Bay using eDNA metabarcoding. PLoS ONE 12, e0176343. https://doi.org/10.1371/journal.pone.0176343 (2017).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    28.Doty, M. S. & Oguri, M. The Island mass effect. ICES J. Mar. Sci. 22, 33–37. https://doi.org/10.1093/icesjms/22.1.33 (1956).Article 

    Google Scholar 
    29.Gove, J. M. et al. Near-island biological hotspots in barren ocean basins. Nat. Commun. 7, 10581. https://doi.org/10.1038/ncomms10581 (2016).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    30.Faye, S., Lazar, A., Sow, B. & Gaye, A. A model study of the seasonality of sea surface temperature and circulation in the Atlantic North-eastern tropical upwelling system. Front. Phys. https://doi.org/10.3389/fphy.2015.00076 (2015).Article 

    Google Scholar 
    31.Schütte, F., Brandt, P. & Karstensen, J. Occurrence and characteristics of mesoscale eddies in the tropical northeastern Atlantic Ocean. Ocean Sci. 12, 663–685. https://doi.org/10.5194/os-12-663-2016 (2016).ADS 
    Article 

    Google Scholar 
    32.Gilly, W. F., Beman, J. M., Litvin, S. Y. & Robison, B. H. Oceanographic and biological effects of shoaling of the oxygen minimum zone. Ann. Rev. Mar. Sci. 5, 393–420. https://doi.org/10.1146/annurev-marine-120710-100849 (2013).Article 
    PubMed 

    Google Scholar 
    33.Schütte, F. et al. Characterization of “dead-zone” eddies in the eastern tropical North Atlantic. Biogeosciences 13, 5865–5881. https://doi.org/10.5194/bg-13-5865-2016 (2016).ADS 
    Article 

    Google Scholar 
    34.GEOMAR Helmholtz-Zentrum für Ozeanforschung. CVOO Cape Verde Ocean Observatory, http://cvoo.geomar.de/ (n.d.).35.NASA Goddard Space Flight Center, O. E. L., Ocean Biology Processing Group. Moderate-resolution Imaging Spectroradiometer (MODIS) Aqua Chlorophyll Data. https://doi.org/10.5067/AQUA/MODIS/L3B/CHL/2018 (2019).36.Hoving, H. J. et al. The Pelagic in situ observation system (PELAGIOS) to reveal biodiversity, behavior, and ecology of elusive oceanic fauna. Ocean Sci. 15, 1327–1340. https://doi.org/10.5194/os-15-1327-2019 (2019).ADS 
    CAS 
    Article 

    Google Scholar 
    37.Schlining, B. & Stout, N. MBARI’s Video Annotation and reference system. Vol. 2006 (2006).38.O’Loughlin, J. H. et al. Implications of Pyrosoma atlanticum range expansion on phytoplankton standing stocks in the Northern California Current. Prog. Oceanogr. 188, 102424. https://doi.org/10.1016/j.pocean.2020.102424 (2020).Article 

    Google Scholar 
    39.Al-Mutairi, H. & Landry, M. R. Active export of carbon and nitrogen at Station ALOHA by diel migrant zooplankton. Deep Sea Res. Part II Top. Stud. Ocean. 48, 2083–2103. https://doi.org/10.1016/S0967-0645(00)00174-0 (2001).ADS 
    CAS 
    Article 

    Google Scholar 
    40.Mayzaud, P., Boutoute, M., Gasparini, S., Mousseau, L. & Lefevre, D. Respiration in marine zooplankton—the other side of the coin: CO2 production. Limnol. Oceanogr. 50, 291–298. https://doi.org/10.4319/lo.2005.50.1.0291 (2005).ADS 
    CAS 
    Article 

    Google Scholar 
    41.GEOMAR Helmholtz-Zentrum für Ozeanforschung, Hissmann, K. & Schauer, J. Manned submersible JAGO. J. Large-Scale Res. Facil. 3, 1–12, https://doi.org/10.17815/jlsrf-3-157 (2017).42.Lavaniegos, B. E. & Ohman, M. D. Long-term changes in pelagic tunicates of the California current. Deep Sea Res. Part II Top. Stud. Ocen. 50, 2473–2498. https://doi.org/10.1016/S0967-0645(03)00132-2 (2003).ADS 
    CAS 
    Article 

    Google Scholar 
    43.GEBCO Compilation Group. GEBCO 2019 Grid. https://doi.org/10.5285/836f016a-33be-6ddc-e053-6c86abc0788e (2019).44.Schram, J. B., Sorensen, H. L., Brodeur, R. D., Galloway, A. W. E. & Sutherland, K. R. Abundance, distribution, and feeding ecology of Pyrosoma atlanticum in the Northern California current. Mar. Ecol. Prog. Ser. 651, 97–110 (2020).ADS 
    CAS 
    Article 

    Google Scholar 
    45.Goy, J. Vertical migration of zooplankton. Résultats des Campagnes à la mer, GNEXO 13, 71–73 (1977).
    Google Scholar 
    46.Andersen, V. & Sardou, J. Pyrosoma atlanticum (Tunicata, Thaliacea): diel migration and vertical distribution as a function of colony size. J. Plankton Res. 16, 337–349. https://doi.org/10.1093/plankt/16.4.337 (1994).Article 

    Google Scholar 
    47.Andersen, V., Sardou, J. & Nival, P. The diel migrations and vertical distributions of zooplankton and micronekton in the Northwestern Mediterranean Sea. 2. Siphonophores, hydromedusae and pyrosomids. J. Plankton Res. 14, 1155–1169. https://doi.org/10.1093/plankt/14.8.1155 (1992).Article 

    Google Scholar 
    48.Roe, H. S. J. et al. Great Meteor East: a biological characterisation (Wormley, 1987).
    Google Scholar 
    49.Williamson, C. E., Fischer, J. M., Bollens, S. M., Overholt, E. P. & Breckenridge, J. K. Toward a more comprehensive theory of zooplankton diel vertical migration: Integrating ultraviolet radiation and water transparency into the biotic paradigm. Limnol. Oceanogr. 56, 1603–1623. https://doi.org/10.4319/lo.2011.56.5.1603 (2011).ADS 
    Article 

    Google Scholar 
    50.Bianchi, D., Galbraith, E. D., Carozza, D. A., Mislan, K. A. S. & Stock, C. A. Intensification of open-ocean oxygen depletion by vertically migrating animals. Nat. Geosci. 6, 545–548. https://doi.org/10.1038/ngeo1837 (2013).ADS 
    CAS 
    Article 

    Google Scholar 
    51.Purcell, J. et al. in Coastal Hypoxia: Consequences for Living Resources and Ecosystems Vol. 58 77–100 (2001).52.Neitzel, P. The impact of the oxygen minimum zone on the vertical distribution and abundance of gelatinous macrozooplankton in the Eastern Tropical Atlantic, Christian-Albrechts-Universität Kiel, (2017).53.Hoving, H. J. T. et al. In situ observations show vertical community structure of pelagic fauna in the eastern tropical North Atlantic off Cape Verde. Sci. Rep. 10, 21798. https://doi.org/10.1038/s41598-020-78255-9 (2020).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    54.Thuesen, E. V. et al. Intragel oxygen promotes hypoxia tolerance of scyphomedusae. J. Exp. Biol. 208, 2475. https://doi.org/10.1242/jeb.01655 (2005).Article 
    PubMed 

    Google Scholar 
    55.Keeling, R. F., Körtzinger, A. & Gruber, N. Ocean deoxygenation in a warming world. Ann. Rev. Mar. Sci. 2, 199–229. https://doi.org/10.1146/annurev.marine.010908.163855 (2009).Article 

    Google Scholar 
    56.Wiebe, P. H., Madin, L. P., Haury, L. R., Harbison, G. R. & Philbin, L. M. Diel vertical migration by Salpa aspera and its potential for large-scale particulate organic matter transport to the deep-sea. Mar. Biol. 53, 249–255. https://doi.org/10.1007/BF00952433 (1979).Article 

    Google Scholar 
    57.Ariza, A., Garijo, J. C., Landeira, J. M., Bordes, F. & Hernández-León, S. Migrant biomass and respiratory carbon flux by zooplankton and micronekton in the subtropical northeast Atlantic Ocean (Canary Islands). Prog. Oceanogr. 134, 330–342. https://doi.org/10.1016/j.pocean.2015.03.003 (2015).ADS 
    Article 

    Google Scholar 
    58.Hernández-León, S. et al. Zooplankton and micronekton active flux across the tropical and subtropical Atlantic Ocean. Front. Mar. Sci. https://doi.org/10.3389/fmars.2019.00535 (2019).Article 

    Google Scholar 
    59.Kiko, R. et al. Zooplankton-mediated fluxes in the eastern tropical North Atlantic. Front. Mar. Sci. https://doi.org/10.3389/fmars.2020.00358 (2020).Article 

    Google Scholar 
    60.Cascão, I., Domokos, R. K., Lammers, M. O., Santos, R. S. & Silva, M. N. A. Seamount effects on the diel vertical migration and spatial structure of micronekton. Prog. Ocean. 175, 1–13. https://doi.org/10.1016/j.pocean.2019.03.008 (2019).Article 

    Google Scholar 
    61.Fock, H., Matthiessen, B., Zidowitz, H. & Westernhagen, H. Diel and habitat-dependent resource utilisation of deep-sea fishes at the Great Meteor seamount (subtropical NE Atlantic): niche overlap and support for the sound-scattering layer-interception hypothesis. Mar. Ecol. Progr. Ser. 244, 219–233. https://doi.org/10.3354/meps244219 (2002).ADS 
    Article 

    Google Scholar 
    62.Laval, P. Hyperiid amphipods as crustacean parasitoids associated with gelatinous zooplankton. Oceanogr. Mar. Biol. Annu. Rev. 18, 11–56 (1980).
    Google Scholar 
    63.Madin, L. P. & Harbison, G. R. The associations of Amphipoda Hyperiidea with gelatinous zooplankton—I Associations with Salpidae. Deep-Sea Res. 24, 449–463. https://doi.org/10.1016/0146-6291(77)90483-0 (1977).ADS 
    Article 

    Google Scholar 
    64.Gasca, R., Hoover, R. & Haddock, S. H. D. New symbiotic associations of hyperiid amphipods (Peracarida) with gelatinous zooplankton in deep waters off California. J. Mar. Biol. Assoc. UK 95, 503–511. https://doi.org/10.1017/S0025315414001416 (2015).Article 

    Google Scholar 
    65.Harbison, G. R., Biggs, D. C. & Madin, L. P. The associations of Amphipoda Hyperiidea with gelatinous zooplankton—II. Associations with Cnidaria, Ctenophora and Radiolaria. Deep Sea Res. 24, 465–488. https://doi.org/10.1016/0146-6291(77)90484-2 (1977).ADS 
    Article 

    Google Scholar 
    66.Harbison, G. R., Madin, L. P. & Swanberg, N. R. On the natural history and distribution of oceanic ctenophores. Deep-Sea Res. 25, 233–256 (1978).ADS 
    Article 

    Google Scholar 
    67.Laval, P. The barrel of the pelagic amphipod Phronima sedentaria (Forsk.) (Crustacea: hyperiidea). J. Exp. Mar. Biol. Ecol. 33, 187–211. https://doi.org/10.1016/0022-0981(78)90008-4 (1978).Article 

    Google Scholar 
    68.Desmarest, A.-G. in Dictionnaire des Sciences Naturelles, 28. (ed F.G. Levrault) 138–425 (Paris and Strasbourg, 1823).69.Laval, P. Observations on biology of Phronima curvipes Voss (Amphipoda Hyperidae) and description of adult male. Cah. Biol. Mar. 9, 347–362 (1968).
    Google Scholar 
    70.Janssen, J. & Harbison, G. R. Fish in Salps: the Association of Squaretails (Tetragonurus Spp) with Pelagic Tunicates. J. Mar. Biol. Assoc. UK. 61, 917–927. https://doi.org/10.1017/S0025315400023055 (1981).Article 

    Google Scholar 
    71.Choy, C. A., Haddock, S. H. D. & Robison, B. H. Deep pelagic food web structure as revealed by in situ feeding observations. Proc. R. Soc. B Biol. Sci. 284, 20172116. https://doi.org/10.1098/rspb.2017.2116 (2017).Article 

    Google Scholar 
    72.Robison, B. H., Sherlock, R. E., Reisenbichler, K. R. & McGill, P. R. Running the gauntlet: assessing the threats to vertical migrators. Front. Mar. Sci. https://doi.org/10.3389/fmars.2020.00064 (2020).Article 

    Google Scholar 
    73.Hoving, H. J., Neitzel, P. & Robison, B. In situ observations lead to the discovery of the large ctenophore Kiyohimea usagi (Lobata: Eurhamphaeidae) in the eastern tropical Atlantic. Zootaxa 4526, 232–238. https://doi.org/10.11646/zootaxa.4526.2.8 (2018).Article 
    PubMed 

    Google Scholar 
    74.Arai, M. N. Predation on pelagic coelenterates: a review. J. Mar. Biol. Assoc. UK. 85, 523–536. https://doi.org/10.1017/S0025315405011458 (2005).Article 

    Google Scholar  More

  • in

    Carbon stocks of homestead forests have a mitigation potential to climate change in Bangladesh

    1.IEA. Renewables information 2019 overview. Clim. Change 2013 Phys. Sci. Basis 53, 1–30 (2019).
    Google Scholar 
    2.IPCC. Summary for Policymakers. In: Global warming of 1.5°C. An IPCC Special Report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty. [V. Masson-Delmotte, P. Zhai, H. O. Pörtner, D. Roberts, J. Skea, P. R. Shukla, A. Pirani, W. Moufouma-Okia, C. Péan, R. Pidcock, S. Connors, J. B. R. Matthews, Y. Chen, X. Zhou, M. I. Gomis, E. Lonnoy, T. Maycock, M. Tignor, T. Waterfield (eds.)]. (2018).3.IPCC. Foreword, Preface, Dedication and In Memoriam. Clim. Chang. 2014 Mitig. Clim. Chang. Contrib. Work. Gr. III to Fifth Assess. Rep. Intergov. Panel Clim. Chang. 1454 (2014).4.Shakoor, A. et al. Biogeochemical transformation of greenhouse gas emissions from terrestrial to atmospheric environment and potential feedback to climate forcing. Environ. Sci. Pollut. Res. 27, 38513–38536 (2020).CAS 
    Article 

    Google Scholar 
    5.Mani, M., Bandyopadhyay, S., Chonabayashi, S., Markandya, A. & Mosier, T. South Asia’s Hotspots: The Impact of Temperature and Precipitation Changes on Living Standards. South Asia’s Hotspots: The Impact of Temperature and Precipitation Changes on Living Standards (2018). https://doi.org/10.1596/978-1-4648-1155-5.6.Sarkar, M. S. K., Sadeka, S., Sikdar, M. M. H. & Badiuzzaman. Energy consumption and CO2 emission in Bangladesh: Trends and policy implications. Asia Pac. J. Energy Environ. 5, 41–48 (2018).Article 

    Google Scholar 
    7.Mitchard, E. T. A. The tropical forest carbon cycle and climate change. Nature 559, 527–534 (2018).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    8.Dixon, R. K. et al. Carbon pools and flux of global forest ecosystems. Science 263, 185–190 (1994).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    9.Adame, M. F. et al. Carbon stocks of tropical coastal wetlands within the Karstic landscape of the Mexican Caribbean. PLoS ONE 8, e56569 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    10.Bonan, G. B. Forests and climate change: Forcings, feedbacks, and the climate benefits of forests. Science 320, 1444–1449 (2008).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    11.Henry, M. et al. Biodiversity, carbon stocks and sequestration potential in aboveground biomass in smallholder farming systems of western Kenya. Agric. Ecosyst. Environ. 129, 238–252 (2009).CAS 
    Article 

    Google Scholar 
    12.Kumar, B. M. Species richness and aboveground carbon stocks in the homegardens of central Kerala, India. Agric. Ecosyst. Environ. 140, 430–440 (2011).Article 

    Google Scholar 
    13.Mattsson, E., Ostwald, M., Nissanka, S. P. & Pushpakumara, D. K. N. G. Quantification of carbon stock and tree diversity of homegardens in a dry zone area of Moneragala district, Sri Lanka. Agrofor. Syst. 89, 435–445 (2015).Article 

    Google Scholar 
    14.Nair, P. K. R., Kumar, B. M. & Nair, V. D. Agroforestry as a strategy for carbon sequestration. J. Plant Nutr. Soil Sci. 172, 10–23 (2009).CAS 
    Article 

    Google Scholar 
    15.Murthy, I. K. Carbon sequestration potential of agroforestry systems in India. J. Earth Sci. Clim. Change 4, 1–7 (2013).Article 
    CAS 

    Google Scholar 
    16.Delgado, J. A. et al. Conservation practices to mitigate and adapt to climate change. J. Soil Water Conserv. 66, 118–129 (2011).Article 

    Google Scholar 
    17.Kabir, M. E. & Webb, E. L. Can homegardens conserve biodiversity in Bangladesh?. Biotropica 40, 95–103 (2008).
    Google Scholar 
    18.FD [Forest Department]. Bangladesh Forestry Master Plan 2017–2036, 2036 (2017).19.Mather, A. Global forest resources assessment 2000 main report. Land Use Policy 20, 195 (2003).Article 

    Google Scholar 
    20.FD [Forest Department]. District wise forest area of Bangladesh 2016. Preprint at http://www.bforest.gov.bd/ (2020).21.Mukul, S. A. et al. A new estimate of carbon for Bangladesh forest ecosystems with their spatial distribution and REDD+ implications. Int. J. Res. Land-use Sustain. 1, 33–41 (2014).
    Google Scholar 
    22.Nath, T. K., Aziz, N. & Inoue, M. Contribution of homestead forests to rural economy and climate change mitigation: A study from the ecologically critical area of Cox’s Bazar—Teknaf Peninsula, Bangladesh. Small-scale For. 14, 1–18 (2015).Article 

    Google Scholar 
    23.Jaman, M. S. et al. Quantification of carbon stock and tree diversity of homegardens in Rangpur District, Bangladesh. Int. J. Agric. For. 6, 169–180 (2016).
    Google Scholar 
    24.Wang, S. & Huang, Y. Determinants of soil organic carbon sequestration and its contribution to ecosystem carbon sinks of planted forests. Glob. Change Biol. 26, 3163–3173 (2020).ADS 
    Article 

    Google Scholar 
    25.Khan, M. N. I. et al. Allometric relationships of stand level carbon stocks to basal area, tree height and wood density of nine tree species in Bangladesh. Glob. Ecol. Conserv. 22, e01025 (2020).Article 

    Google Scholar 
    26.Shen, Y. et al. Tree aboveground carbon storage correlates with environmental gradients and functional diversity in a tropical forest. Sci. Rep. 6, 25304 (2016).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    27.Petrokofsky, G. et al. Comparison of methods for measuring and assessing carbon stocks and carbon stock changes in terrestrial carbon pools. How do the accuracy and precision of current methods compare? A systematic review protocol. Environ. Evid. 1, 1–21 (2012).Article 

    Google Scholar 
    28.Dondini, M., Hastings, A., Saiz, G., Jones, M. B. & Smith, P. The potential of Miscanthus to sequester carbon in soils: Comparing field measurements in Carlow, Ireland to model predictions. GCB Bioenergy 1, 413–425 (2009).CAS 
    Article 

    Google Scholar 
    29.Ullah, M. R. & Al-Amin, M. Above- and below-ground carbon stock estimation in a natural forest of Bangladesh. J. For. Sci. 58, 372–379 (2012).Article 

    Google Scholar 
    30.Nouvellon, Y. et al. Age-related changes in litter inputs explain annual trends in soil CO2 effluxes over a full Eucalyptus rotation after afforestation of a tropical savannah. Biogeochemistry 111, 515–533 (2012).CAS 
    Article 

    Google Scholar 
    31.Krishna, M. P. & Mohan, M. Litter decomposition in forest ecosystems: A review. Energy Ecol. Environ. 2, 236–249 (2017).Article 

    Google Scholar 
    32.Patra, P. K. et al. The carbon budget of South Asia. Biogeosciences 10, 513–527 (2013).ADS 
    Article 

    Google Scholar 
    33.Ostertag, R., Marín-Spiotta, E., Silver, W. L. & Schulten, J. Litterfall and decomposition in relation to soil carbon pools along a secondary forest chronosequence in Puerto Rico. Ecosystems 11, 701–714 (2008).CAS 
    Article 

    Google Scholar 
    34.Nair, P. K. R. & Garrity, D. Afroforestry—The Future of Global Land Use, Advances in Agroforestry (Springer, 2012) https://doi.org/10.1007/978-94-007-4676-3_1.Book 

    Google Scholar 
    35.Abrar, M. M. et al. Variations in the profile distribution and protection mechanisms of organic carbon under long-term fertilization in a Chinese Mollisol. Sci. Total Environ. 723, 138181 (2020).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    36.Baul, T. K., Datta, D. & Alam, A. A comparative study on household level energy consumption and related emissions from renewable (biomass) and non-renewable energy sources in Bangladesh. Energy Policy https://doi.org/10.1016/j.enpol.2017.12.037 (2018).Article 

    Google Scholar 
    37.Mackey, B. et al. Understanding the importance of primary tropical forest protection as a mitigation strategy. Mitig. Adapt. Strateg. Glob. Change 25, 763–787 (2020).Article 

    Google Scholar 
    38.Zaman, M. A., Osman, K. T. & Sirajul Haque, S. M. Comparative study of some soil properties in forested and deforested areas in Cox’s Bazar and Rangamati Districts, Bangladesh. J. For. Res. 21, 319–322 (2010).CAS 
    Article 

    Google Scholar 
    39.Akhtaruzzaman, M., Osman, K. T. & Sirajul Haque, S. M. Soil properties in two forest sites in Cox’s Bazar, Bangladesh. J. For. Environ. Sci. 31, 280–287 (2015).
    Google Scholar 
    40.Islam, M., Deb, G. P. & Rahman, M. Forest fragmentation reduced carbon storage in a moist tropical forest in Bangladesh: Implications for policy development. Land Use Policy 65, 15–25 (2017).Article 

    Google Scholar 
    41.Nair, P. K. R., Nair, V. D., Kumar, B. M. & Haile, S. G. Soil carbon sequestration in tropical agroforestry systems: A feasibility appraisal. Environ. Sci. Policy 12, 1099–1111 (2009).CAS 
    Article 

    Google Scholar 
    42.Aryal, D. R., Gómez-González, R. R., Hernández-Nuriasmú, R. & Morales-Ruiz, D. E. Carbon stocks and tree diversity in scattered tree silvopastoral systems in Chiapas, Mexico. Agrofor. Syst. 93, 213–227 (2019).Article 

    Google Scholar 
    43.Islam, M., Dey, A. & Rahman, M. Effect of tree diversity on soil organic carbon content in the homegarden agroforestry system of North-Eastern Bangladesh. Small-scale For. 14, 91–101 (2015).Article 

    Google Scholar 
    44.Saha, S. K., Nair, P. K. R., Nair, V. D. & Kumar, B. M. Soil carbon stock in relation to plant diversity of homegardens in Kerala, India. Agrofor. Syst. 76, 53–65 (2009).Article 

    Google Scholar 
    45.Kothandaraman, S., Dar, J. A., Sundarapandian, S., Dayanandan, S. & Khan, M. L. Ecosystem-level carbon storage and its links to diversity, structural and environmental drivers in tropical forests of Western Ghats, India. Sci. Rep. 10, 1–15 (2020).Article 
    CAS 

    Google Scholar 
    46.Youkhana, A. & Idol, T. Tree pruning mulch increases soil C and N in a shaded coffee agroecosystem in Hawaii. Soil Biol. Biochem. 41, 2527–2534 (2009).CAS 
    Article 

    Google Scholar 
    47.Flessa, H. et al. Storage and stability of organic matter and fossil carbon in a Luvisol and Phaeozem with continuous maize cropping: A synthesis. J. Plant Nutr. Soil Sci. 171, 36–51 (2008).CAS 
    Article 

    Google Scholar 
    48.Semere, M. Biomass and soil carbon stocks assessment of agroforestry systems and adjacent cultivated land, in Cheha Wereda, Gurage Zone, Ethiopia. Int. J. Environ. Sci. Nat. Resour. 20, 119–125 (2019).
    Google Scholar 
    49.Ramachandran Nair, P. K., Nair, V. D., Mohan Kumar, B. & Showalter, J. M. Carbon sequestration in agroforestry systems. Adv. Agron. 108, 237–307 (2010).Article 
    CAS 

    Google Scholar 
    50.Mustafa, A. et al. Soil aggregation and soil aggregate stability regulate organic carbon and nitrogen storage in a red soil of southern China. J. Environ. Manag. 270, 110894 (2020).CAS 
    Article 

    Google Scholar 
    51.Sayer, E. J. et al. Tropical forest soil carbon stocks do not increase despite 15 years of doubled litter inputs. Sci. Rep. 9, 1–9 (2019).ADS 
    Article 
    CAS 

    Google Scholar 
    52.Rahman, M., Biswas, J., Maniruzzaman, M., Choudhury, A. & Ahmed, F. Effect of tillage practices and rice straw management on soil environment and carbon dioxide emission. Agriculture 15, 127–142 (2017).
    Google Scholar 
    53.Day, M., Baldauf, C., Rutishauser, E. & Sunderland, T. C. H. Relationships between tree species diversity and above-ground biomass in Central African rainforests: Implications for REDD. Environ. Conserv. 41, 64–72 (2014).Article 

    Google Scholar 
    54.Poorter, L. et al. Diversity enhances carbon storage in tropical forests. Glob. Ecol. Biogeogr. 24, 1314–1328 (2015).Article 

    Google Scholar 
    55.Rahman, M. M., Kabir, M. E., Jahir Uddin Akon, A. S. M. & Ando, K. High carbon stocks in roadside plantations under participatory management in Bangladesh. Glob. Ecol. Conserv. 3, 412–423 (2015).Article 

    Google Scholar 
    56.Kamruzzaman, M., Ahmed, S., Paul, S., Rahman, M. M. & Osawa, A. Stand structure and carbon storage in the oligohaline zone of the Sundarbans mangrove forest, Bangladesh. For. Sci. Technol. 14, 23–28 (2018).
    Google Scholar 
    57.Asok, S. & Sobha, V. Analysis of variation of soil bulk densities with respect to different vegetation classes, in a tropical rain forest—A study in Shendurney Wildlife Sanctuary, S. Kerala, India. Glob. J. Environ. Res. 8, 17–20 (2014).
    Google Scholar 
    58.Périé, C. & Ouimet, R. Organic carbon, organic matter and bulk density relationships in boreal forest soils. Can. J. Soil Sci. 88, 315–325 (2008).Article 

    Google Scholar 
    59.Biswas, A., Alamgir, M., Haque, S. M. S. & Osman, K. T. Study on soils under shifting cultivation and other land use categories in Chittagong Hill Tracts, Bangladesh. J. For. Res. 23, 261–265 (2012).CAS 
    Article 

    Google Scholar 
    60.Leff, J. W. et al. Experimental litterfall manipulation drives large and rapid changes in soil carbon cycling in a wet tropical forest. Glob. Change Biol. 18, 2969–2979 (2012).ADS 
    Article 

    Google Scholar 
    61.Wang, Q., He, T., Wang, S. & Liu, L. Carbon input manipulation affects soil respiration and microbial community composition in a subtropical coniferous forest. Agric. For. Meteorol. 178–179, 152–160 (2013).ADS 
    Article 

    Google Scholar 
    62.Ali Shah, S. A. et al. Long-term fertilization affects functional soil organic carbon protection mechanisms in a profile of Chinese loess plateau soil. Chemosphere 267, 128897 (2021).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    63.Miah, D., Uddin, M. F., Bhuiyan, M. K., Koike, M. & Shin, M. Y. Carbon sequestration by the indigenous tree species in the reforestation program in Bangladesh-aphanamixis polystachya Wall. and Parker. Forest Sci. Technol. 5, 62–65 (2009).Article 

    Google Scholar 
    64.Kibria, M. G. & Saha, N. Analysis of existing agroforestry practices in Madhupur Sal forest: An assessment based on ecological and economic perspectives. J. For. Res. 22, 533–542 (2011).
    CAS 
    Article 

    Google Scholar 
    65.Mikrewongel Tadesse, A. B. Estimation of carbon stored in agroforestry practices in Gununo Watershed, Wolayitta Zone, Ethiopia. J. Ecosyst. Ecogr. 05, 1–5 (2015).Article 

    Google Scholar 
    66.Abrar, M. M. et al. Carbon, nitrogen, and phosphorus stoichiometry mediate sensitivity of carbon stabilization mechanisms along with surface layers of a Mollisol after long-term fertilization in Northeast China. J. Soils Sediments 21, 705–723 (2021).CAS 
    Article 

    Google Scholar 
    67.Ahmed, N. & Glaser, M. Coastal aquaculture, mangrove deforestation and blue carbon emissions: Is REDD+ a solution?. Mar. Policy 66, 58–66 (2016).Article 

    Google Scholar 
    68.BBS [Bangladesh Bureau of Statistics]. Statistical yearbook of Bangladesh 2018. Statistics Division, Ministry of Planning, Government of the People’s Republic of Bangladesh (2019).69.BMD [Bangladesh Metereological Department]. Cox’s Bazar region, Chittagong, Bangladesh (2020).70.Osman, K. S., Jashimuddin, M., Haque, S. M. S. & Miah, S. Effect of shifting cultivation on soil physical and chemical properties in Bandarban hill district, Bangladesh. J. For. Res. 24, 791–795 (2013).CAS 
    Article 

    Google Scholar 
    71.SRDI. Soil resource development institute. Annu. Report. Soil Resour. Dev. Institute, Dhaka, Bangladesh (2018).72.Upazila Parishad Office. Bandarban Sadar Upazila, Bandarban District, Chittagong Hill Trcats, Bangladesh (2019).73.Blake, G. R. Bulk density. In Methods of Soil Analysis. Part 1 (eds Black, C. A. et al.) 894–895 (American Society of Agronomy Inc., 1965).
    Google Scholar 
    74.Chave, J. et al. Improved allometric models to estimate the aboveground biomass of tropical trees. Glob. Change Biol. 20, 3177–3190 (2014).ADS 
    Article 

    Google Scholar 
    75.Macdicken, K. G. A guide to monitoring carbon storage in forestry and agroforestry projects (2015).76.Sattar, M. A., Bhattacharje, D. K. & Kabir, M. F. Physical and Mechanical Properties and Uses of Timbers of Bangladesh (Bangladesh Forest Research Institute, 1999).
    Google Scholar 
    77.Chave, J. et al. Towards a worldwide wood economics spectrum. Ecol. Lett. 12, 351–366 (2009).Article 

    Google Scholar 
    78.Data Set. Definitions (2020). https://doi.org/10.32388/5b0dft.79.Hairiah, K. Measuring carbon stocks: Across land use systems: a manual. Published in close cooperation with Brawijaya University and ICALRRD (Indonesian Center for Agricultural Land Resources Research and Development) (2011).80.Frangi, J. L., Lugo, A. E., Forest, F., Frangi, J. L. & Service, F. Ecosystem dynamics of a subtropical floodplain forest published by: Ecological Society of America. Ecosyst. Dyn. Subtrop. 55, 351–369 (2016).
    Google Scholar 
    81.Issa, S., Dahy, B., Ksiksi, T. & Saleous, N. Development of a new allometric equation correlated WTH RS variables for the assessment of date palm biomass. Proc. 39th Asian Conf. Remote Sens. Remote Sens. Enabling Prosper. ACRS 2018 2, 730–739 (2018).82.Brown, S. Estimating biomass and biomass change of tropical forests: A Primer. FAO For. Pap. 134, 13–33 (1997).
    Google Scholar 
    83.Margalef, R. Information theory in ecology. Gen. Syst. 3, 36–71 (1958).
    Google Scholar 
    84.Michael, P. Ecological Methods for Field and Laboratory Investigation (Tata Mc Graw Hill, 1990).
    Google Scholar 
    85.Shukla, R. S. & Chandel, P. S. Plant Ecology and Soil Science 9th edn. (S. Chand and Company, 2000).
    Google Scholar 
    86.Ball, D. F. Loss-on-ignition as an estimate. J. Soil Sci. 15, 84–92 (1964).CAS 
    Article 

    Google Scholar 
    87.Pearson, T., Walker, S. & Brown, S. Sourcebook for Land Use, Land-Use Change and Forestry Projects 29 (Winrock International and the BioCarbon Fund of the World Bank, 2005).
    Google Scholar 
    88.Pearson, T. R. H., Brown, S. L. & Birdsey, R. A. Measurement guidelines for the sequestration of forest carbon. Gen. Tech. Rep. NRS-18. Delaware United States Dep. Agric. For. Serv. 18, 42 (2007).89.Coleman, D. C. Soil carbon balance in a successional grassland. Oikos 24, 195–199. https://doi.org/10.2307/3543875 (1973).CAS 
    Article 

    Google Scholar  More

  • in

    Landscape resistance constrains hybridization across contact zones in a reproductively and morphologically polymorphic salamander

    1.Abbott, R. J., Barton, N. H. & Good, J. M. Genomics of hybridization and its evolutionary consequences. Mol. Ecol. 25, 2325–2332 (2016).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    2.Harrison, R. G. & Larson, E. L. Heterogeneous genome divergence, differential introgression, and the origin and structure of hybrid zones. Mol. Ecol. 25, 2454–2466 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    3.Gompert, Z., Mandeville, E. G. & Buerkle, C. A. Analysis of population genomic data from hybrid zones. Annu. Rev. Ecol. Evol. Syst. 48, 207–229 (2017).Article 

    Google Scholar 
    4.Jiggins, C. D. & Mallet, J. Bimodal hybrid zones and speciation. Trends Ecol. Evol. 15, 250–255 (2000).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    5.Doebeli, M. & Dieckmann, U. Speciation along environmental gradients. Nature 421, 259–264 (2003).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    6.Wang, I. J. & Bradburd, G. S. Isolation by environment. Mol. Ecol. 23, 5649–5662 (2014).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    7.Tarroso, P., Pereira, R. J., Martínez-Freiría, F., Godinho, R. & Brito, J. C. Hybridization at an ecotone: Ecological and genetic barriers between three Iberian vipers. Mol. Ecol. 23, 1108–1123 (2014).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    8.Newman, C. E. & Rissler, L. J. Phylogeographic analyses of the southern leopard frog: The impact of geography and climate on the distribution of genetic lineages vs. subspecies. Mol. Ecol. 20, 5295–5312 (2011).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    9.Smith, K. L. et al. Spatio-temporal changes in the structure of an Australian frog hybrid zone: A 40-year perspective. Evolution 67, 3442–3454 (2013).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    10.Visser, M., Leeuw, M. D., Zuiderwijk, A. & Arntzen, J. W. Stabilization of a salamander moving hybrid zone. Ecol. Evol. 7, 689–696 (2017).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    11.Carneiro, M. et al. Steep clines within a highly permeable genome across a hybrid zone between two subspecies of the European rabbit. Mol. Ecol. 22, 2511–2525 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    12.Gompert, Z., Parchman, T. L. & Buerkle, C. A. Genomics of isolation in hybrids. Philos. Trans. R. Soc. B 367, 439–450 (2012).Article 

    Google Scholar 
    13.Zieliński, P. et al. Differential introgression across newt hybrid zones–evidence from replicated transects. Mol. Ecol. 28, 4811–4824 (2019).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    14.Hewitt, G. M. Quaternary phylogeography: The roots of hybrid zones. Genetica 139, 617–638 (2011).Article 

    Google Scholar 
    15.Naciri, Y. & Linder, H. P. The genetics of evolutionary radiations. Biol. Rev. 95, 1055–1072 (2020).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    16.Kearns, A. M. et al. Genomic evidence of speciation reversal in ravens. Nat. Commun. 9, 1–13 (2018).CAS 
    Article 

    Google Scholar 
    17.Butlin, R. Speciation by reinforcement. Trends Ecol. Evol. 2, 8–13 (1987).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    18.Arntzen, J. W., de Vries, W., Canestrelli, D. & Martínez-Solano, I. Hybrid zone formation and contrasting outcomes of secondary contact over transects in common toads. Mol. Ecol. 26, 5663–5675 (2017).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    19.Zamudio, K. R., Bell, R. C. & Mason, N. A. Phenotypes in phylogeography: Species’ traits, environmental variation, and vertebrate diversification. Proc. Natl. Acad. Sci. 113, 8041–8048 (2016).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    20.Devitt, T. J., Baird, S. J. & Moritz, C. Asymmetric reproductive isolation between terminal forms of the salamander ring species Ensatina eschscholtzii revealed by fine-scale genetic analysis of a hybrid zone. BMC Evol. Biol. 11, 245 (2011).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    21.Melo, M. C., Salazar, C., Jiggins, C. D. & Linares, M. Assortative mating preferences among hybrids offers a route to hybrid speciation. Evolution 63, 1660–1665 (2009).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    22.Cornetti, L. et al. Reproductive isolation between oviparous and viviparous lineages of the Eurasian common lizard Zootoca vivipara in a contact zone. Biol. J. Linn. Soc. 114, 566–573 (2015).Article 

    Google Scholar 
    23.Rafati, N. et al. A genomic map of clinal variation across the European rabbit hybrid zone. Mol. Ecol. 27, 1457–1478 (2018).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    24.Shipilina, D., Serbyn, M., Ivanitskii, V., Marova, I. & Backström, N. Patterns of genetic, phenotypic, and acoustic variation across a chiffchaff (Phylloscopus collybita abietinus/tristis) hybrid zone. Ecol. Evol. 7(7), 2169–2180 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    25.Grabenstein, K. C. & Taylor, S. A. Breaking barriers: Causes, consequences, and experimental utility of human-mediated hybridization. Trends Ecol. Evol. 33(3), 198–212 (2018).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    26.Coates, D. J., Byrne, M. & Moritz, C. Genetic diversity and conservation units: Dealing with the species-population continuum in the age of genomics. Front. Ecol. Evol. 6, 165 (2018).Article 

    Google Scholar 
    27.Velo-Antón, G., Santos, X., Sanmartín-Villar, I., Cordero-Rivera, A. & Buckley, D. Intraspecific variation in clutch size and maternal investment in pueriparous and larviparous Salamandra salamandra females. Evol. Ecol. 29(1), 185–204 (2015).Article 

    Google Scholar 
    28.Beukema, W., Nicieza, A. G., Lourenço, A. & Velo-Antón, G. Colour polymorphism in Salamandra salamandra (Amphibia: Urodela), revealed by a lack of genetic and environmental differentiation between distinct phenotypes. J. Zool. Syst. Evol. Res. 54(2), 127–136 (2016).Article 

    Google Scholar 
    29.Alarcón-Ríos, L., Nicieza, A. G., Kaliontzopoulou, A., Buckley, D. & Velo-Antón, G. Evolutionary history and not heterochronic modifications associated with viviparity drive head shape differentiation in a reproductive polymorphic species, Salamandra salamandra. Evol. Biol. 47(1), 43–55 (2020).Article 

    Google Scholar 
    30.Burgon, J. D. et al. Phylogenomic inference of species and subspecies diversity in the Palearctic salamander genus Salamandra. Mol. Phylogenet. Evol. 157, 107063 (2021).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    31.García-París, M., Alcobendas, M., Buckley, D. & Wake, D. Dispersal of viviparity across contact zones in Iberian populations of Fire salamanders (Salamandra) inferred from discordance of genetic and morphological traits. Evolution 57(1), 129–143 (2003).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    32.Velo-Antón, G., García-París, M., Galán, P. & CorderoRivera, A. The evolution of viviparity in holocene islands: ecological adaptation versus phylogenetic descent along the transition from aquatic to terrestrial environments. J. Zool. Syst. Evol. Res. 45(4), 345–352 (2007).Article 

    Google Scholar 
    33.Velo-Antón, G., Zamudio, K. R. & Cordero-Rivera, A. Genetic drift and rapid evolution of viviparity in insular fire salamanders (Salamandra salamandra). Heredity 108(4), 410–418 (2012).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    34.Uotila, E., Díaz, A. C., Azkue, I. S. & Rubio Pilarte, X. Variation in the reproductive strategies of Salamandra salamandra (Linnaeus, 1758) populations in the province of Gipuzkoa (Basque Country). Munibe Cienc. Nat. Nat. Zientziak 61, 91–101 (2013).
    Google Scholar 
    35.Galán, P. Viviparismo y distribución de Salamandra salamandra bernardezi en el norte de Galicia. Bol. Asoc. Herpetol. Esp. 18, 44–49 (2007).
    Google Scholar 
    36.Alcobendas, M., Dopazo, H. & Alberch, P. Geographic variation in allozymes of populations of Salamandra salamandra (Amphibia: Urodela) exhibiting distinct reproductive modes. J. Evol. Biol. 9(1), 83–102 (1996).Article 

    Google Scholar 
    37.Alarcón-Ríos, L., Nicieza, A. G., Lourenço, A. & Velo-Antón, G. The evolution of pueriparity maintains multiple paternity in a polymorphic viviparous salamander. Sci. Rep. 10, 14744 (2020).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    38.Lourenço, A., Gonçalves, J., Carvalho, F., Wang, I. J. & Velo-Antón, G. Comparative landscape genetics reveals the evolution of viviparity reduces genetic connectivity in fire salamanders. Mol. Ecol. 28(20), 4573–4591 (2019).PubMed 
    Article 
    CAS 

    Google Scholar 
    39.Velo-Antón, G., & Buckley, D. Salamandra común—Salamandra salamandra. in Enciclopedia Virtual de los Vertebrados Españoles (L.M. Carrascal, A Salvador, Eds.) (Museo Nacional de Ciencias Naturales, 2015). Retrieved from http://www.vertebradosibericos.org/anfibios/salsal.html40.Cordero, A., Velo-Antón, G. & Galán, P. Ecology of amphibians in small coastal Holocene islands: Local adaptations and the effect of exotic tree plantations. Munibe 25, 94–103 (2007).
    Google Scholar 
    41.Antunes, B. et al. Combining phylogeography and landscape genetics to infer the evolutionary history of a short-range Mediterranean relict, Salamandra salamandra longirostris. Conserv. Genet. 19(6), 1411–1424 (2018).CAS 
    Article 

    Google Scholar 
    42.Lourenço, A., Álvarez, D., Wang, I. J. & Velo-Antón, G. Trapped within the city: Integrating demography, time since isolation and population-specific traits to assess the genetic effects of urbanization. Mol. Ecol. 26(6), 1498–1514 (2017).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    43.Landguth, E. L., Cushman, S. A., Murphy, M. A. & Luikart, G. Relationships between migration rates and landscape resistance assessed using individual-based simulations. Mol. Ecol. Resour. 10(5), 854–862 (2010).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    44.Zhang, P., Papenfuss, T. J., Wake, M. H., Qu, L. & Wake, D. B. Phylogeny and biogeography of the family Salamandridae (Amphibia: Caudata) inferred from complete mitochondrial genomes. Mol. Phylogenet. Evol. 49(2), 586–597 (2008).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    45.Hendrix, R., Hauswaldt, S., Veith, M. & Steinfartz, S. Strong correlation between cross-amplification success and genetic distance across all members of ‘True Salamanders’ (Amphibia: Salamandridae) revealed by Salamandra salamandra-specific microsatellite loci. Mol. Ecol. Resour. 10(6), 1038–1047 (2010).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    46.Steinfartz, S., Kuesters, D. & Tautz, D. Isolation and characterization of polymorphic tetranucleotide microsatellite loci in the Fire salamander Salamandra salamandra (Amphibia: Caudata). Mol. Ecol. Notes 4(4), 626–628 (2004).CAS 
    Article 

    Google Scholar 
    47.Álvarez, D., Lourenço, A., Oro, D. & Velo-Antón, G. Assessment of census (N) and effective population size (N e) reveals consistency of N e single-sample estimators and a high N e/N ratio in an urban and isolated population of fire salamanders. Conserv. Genet. Resour. 7(3), 705–712 (2015).Article 

    Google Scholar 
    48.Antunes, B., Velo-Antón, G., Buckley, D., Pereira, R. & Martínez-Solano, I. Physical and ecological isolation contribute to maintain genetic differentiation between fire salamander subspecies. Heredity. https://doi.org/10.1038/s41437-021-00405-0 (2021). 49.Lourenço, A., Sequeira, F., Buckley, D. & Velo-Antón, G. Role of colonization history and species-specific traits on contemporary genetic variation of two salamander species in a Holocene island-mainland system. J. Biogeogr. 45(5), 1054–1066 (2018).Article 

    Google Scholar 
    50.Lourenço, A., Antunes, B., Wang, I. J. & Velo-Antón, G. Fine-scale genetic structure in a salamander with two reproductive modes: Does reproductive mode affect dispersal?. Evol. Ecol. 32(6), 699–732 (2018).Article 

    Google Scholar 
    51.Drummond, A. J., Suchard, M. A., Xie, D. & Rambaut, A. Bayesian phylogenetics with BEAUti and the BEAST 17. Mol. Biol. Evol. 29(8), 1969–1973 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    52.Darriba, D., Taboada, G. L., Doallo, R. & Posada, D. jModelTest 2: More models, new heuristics and parallel computing. Nat. Methods 9(8), 772 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    53.Ehl, S., Vences, M. & Veith, M. Reconstructing evolution at the community level: A case study on Mediterranean amphibians. Mol. Phylogenet. Evol. 134, 211–225 (2019).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    54.Miller, M. A., Pfeiffer, W., & Schwartz, T. Creating the CIPRES Science Gateway for inference of large phylogenetic trees. in 2010 gateway computing environments workshop (GCE pp. 1–8) (2010).55.Pritchard, J. K., Stephens, M. & Donnelly, P. Inference of population structure using multilocus genotype data. Genetics 155(2), 945–959 (2000).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    56.Jakobsson, M. & Rosenberg, N. A. CLUMPP: A cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. Bioinformatics 23(14), 1801–1806 (2007).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    57.Jombart, T. adegenet: A R package for the multivariate analysis of genetic markers. Bioinformatics 24, 1403–1405 (2008).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    58.Anderson, E. C. & Thompson, E. A. A model-based method for identifying species hybrids using multilocus genetic data. Genetics 160(3), 1217–1229 (2002).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    59.Anderson, E. C. Bayesian inference of species hybrids using multilocus dominant genetic markers. Philos. Trans. R. Soc. B 363(1505), 2841–2850 (2008).Article 

    Google Scholar 
    60.Shurtliff, Q. R., Murphy, P. J. & Matocq, M. D. Ecological segregation in a small mammal hybrid zone: Habitat-specific mating opportunities and selection against hybrids restrict gene flow on a fine spatial scale. Evolution 68(3), 729–742 (2014).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    61.Shirk, A. J., Landguth, E. L. & Cushman, S. A. A comparison of individual-based genetic distance metrics for landscape genetics. Mol. Ecol. Resour. 17(6), 1308–1317 (2017).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    62.Wang, J. COANCESTRY: A program for simulating, estimating and analysing relatedness and inbreeding coefficients. Mol. Ecol. Resour. 11(1), 141–145 (2011).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    63.Queller, D. C. & Goodnight, K. F. Estimating relatedness using genetic markers. Evolution 43, 258–275 (1989).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    64.Wang, J. Triadic IBD coefficients and applications to estimating pairwise relatedness. Genet. Res. 89, 135–153 (2007).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    65.Estrada-Peña, A., Estrada-Sánchez, A. & de la Fuente, J. A global set of Fourier-transformed remotely sensed covariates for the description of abiotic niche in epidemiological studies of tick vector species. Parasit. Vectors 7(1), 302 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    66.Karger, D. N. et al. Climatologies at high resolution for the earth’s land surface areas. Sci. Data 4, 170122 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    67.Nosil, P., Egan, S. P. & Funk, D. J. Heterogeneous genomic differentiation between walking-stick ecotypes: “Isolation by adaptation” and multiple roles for divergent selection. Evolution 62, 316–336 (2008).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    68.Graves, T. A., Beier, P. & Royle, J. A. Current approaches using genetic distances produce poor estimates of landscape resistance to interindividual dispersal. Mol. Ecol. 22(15), 3888–3903 (2013).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    69.Peterman, W. E., Connette, G. M., Semlitsch, R. D. & Eggert, L. S. Ecological resistance surfaces predict fine-scale genetic differentiation in a terrestrial woodland salamander. Mol. Ecol. 23(10), 2402–2413 (2014).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    70.Tarroso, P., Carvalho, S. B. & Velo-Antón, G. Phylin 2.0: Extending the phylogeographical interpolation method to include uncertainty and user-defined distance metrics. Mol. Ecol. Resour. 19(4), 1081–1094 (2019).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    71.Peterman, W. E. ResistanceGA: An R package for the optimization of resistance surfaces using genetic algorithms. Methods Ecol. Evol. 9(6), 1638–1647 (2018).Article 

    Google Scholar 
    72.Hutchison, D. W. & Templeton, A. R. Correlation of pairwise genetic and geographic distance measures: Inferring the relative influences of gene flow and drift on the distribution of genetic variability. Evolution 53(6), 1898–1914 (1999).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    73.Horreo, J. L. et al. Genetic introgression among differentiated clades is lower among clades exhibiting different parity modes. Heredity 123(2), 264–272 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    74.Sota, T. & Tanabe, T. Multiple speciation events in an arthropod with divergent evolution in sexual morphology. Proc. R. Soc. B 277(1682), 689–696 (2010).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    75.Merrill, R. M., Van Schooten, B., Scott, J. A. & Jiggins, C. D. Pervasive genetic associations between traits causing reproductive isolation in Heliconius butterflies. Proc. R. Soc. B 278(1705), 511–518 (2011).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    76.Singhal, S. & Moritz, C. Reproductive isolation between phylogeographic lineages scales with divergence. Proc. R. Soc. B 280(1772), 20132246 (2013).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    77.Donaire, D. & Rivera, X. L. salamandra común Salamandra salamandra (Linnaeus, 1758) en el subcantábrico: Origen, dispersión, subspecies y zonas de introgresión. Bull. Soc. Catal. Herpetol. 23, 7–38 (2016).
    Google Scholar 
    78.Recuero, E. & García-París, M. Evolutionary history of Lissotriton helveticus: multilocus assessment of ancestral vs. recent colonization of the Iberian Peninsula. Mol. Phylogenet. Evol. 60(1), 170–182 (2011).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    79.Dufresnes, C. et al. Are glacial refugia hotspots of speciation and cyto-nuclear discordances? Answers from the genomic phylogeography of Spanish common frogs. Mol. Ecol. 29, 986–1000 (2020).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    80.Toews, D. P. & Brelsford, A. The biogeography of mitochondrial and nuclear discordance in animals. Mol. Ecol. 21(16), 3907–3930 (2012).CAS 
    Article 

    Google Scholar 
    81.Bisconti, R., Porretta, D., Arduino, P., Nascetti, G. & Canestrelli, D. Hybridization and extensive mitochondrial introgression among fire salamanders in peninsular Italy. Sci. Rep. 8(1), 1–10 (2018).CAS 
    Article 

    Google Scholar 
    82.Dinis, M. et al. Allopatric diversification and evolutionary melting pot in a North African Palearctic relict: The biogeographic history of Salamandra algira. Mol. Phylogenet. Evol. 130, 81–91 (2019).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    83.Buckley, D., Alcobendas, M., García-París, M. & Wake, M. H. Heterochrony, cannibalism, and the evolution of viviparity in Salamandra salamandra. Evol. Dev. 9(1), 105–115 (2007).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    84.Helfer, V., Broquet, T. & Fumagalli, L. Sex-specific estimates of dispersal show female philopatry and male dispersal in a promiscuous amphibian, the alpine salamander (Salamandra atra). Mol. Ecol. 21(19), 4706–4720 (2012).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    85.Vörös, J. et al. Increased genetic structuring of isolated Salamandra salamandra populations (Caudata: Salamandridae) at the margins of the Carpathian Mountains. J. Zool. Syst. Evol. Res. 55(2), 138–149 (2017).Article 

    Google Scholar 
    86.Dudaniec, R. Y., Spear, S. F., Richardson, J. S. & Storfer, A. Current and historical drivers of landscape genetic structure differ in core and peripheral salamander populations. PLoS ONE 7(5), e36769 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    87.Richardson, J. L. Divergent landscape effects on population connectivity in two co-occurring amphibian species. Mol. Ecol. 21(18), 4437–4451 (2012).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    88.Mulder, K. P., Cortes-Rodriguez, N., Campbell Grant, E. H., Brand, A. & Fleischer, R. C. North-facing slopes and elevation shape asymmetric genetic structure in the range-restricted salamander Plethodon shenandoah. Ecol. Evol. 9(9), 5094–5105 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    89.Velo-Antón, G., Parra, J. L., Parra-Olea, G. & Zamudio, K. R. Tracking climate change in a dispersal-limited species: Reduced spatial and genetic connectivity in a montane salamander. Mol. Ecol. 22(12), 3261–3278 (2013).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    90.Sánchez-Montes, G., Wang, J., Ariño, A. H. & Martínez-Solano, Í. Mountains as barriers to gene flow in amphibians: Quantifying the differential effect of a major mountain ridge on the genetic structure of four sympatric species with different life history traits. J. Biogeogr. 45(2), 318–331 (2018).Article 

    Google Scholar 
    91.Figueiredo-Vázquez, C., Lourenço, A. & Velo-Antón, G. Riverine barriers to gene flow in a salamander with both aquatic and terrestrial reproduction. Evol Ecol https://doi.org/10.1007/s10682-021-10114-z (2021). 92.Czypionka, T., Goedbloed, D. J., Steinfartz, S. & Nolte, A. W. Plasticity and evolutionary divergence in gene expression associated with alternative habitat use in larvae of the European Fire Salamander. Mol. Ecol. 27(12), 2698–2713 (2018).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    93.Arntzen, J. W. & van Belkom, J. ‘Mainland-island’population structure of a terrestrial salamander in a forest-bocage landscape with little evidence for in situ ecological speciation. Sci. Rep. 10(1), 1–15 (2020).Article 
    CAS 

    Google Scholar 
    94.Burgon, J. D. et al. Functional colour genes and signals of selection in colour-polymorphic salamanders. Mol. Ecol. 29(7), 1284–1299 (2020).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    95.Velo-Antón, G. & Cordero-Rivera, A. Ethological and phenotypic divergence in insular fire salamanders: Diurnal activity mediated by predation?. Acta Ethol. 20(3), 243–253 (2017).Article 

    Google Scholar 
    96.González, T. E. D., & Penas, Á. The high mountain area of Northwestern Spain: The Cantabrian Range, the Galician-Leonese Mountains and the Bierzo Trench. In The vegetation of the Iberian Peninsula (pp. 251–321). (Springer, 2017). More