More stories

  • in

    Modeling biomass allocation strategy of young planted Zelkova serrata trees in Taiwan with component ratio method and seemingly unrelated regressions

    1.UNFCCC. Adoption of the Paris Agreement. 32 (2015).2.Fuss, S. et al. Negative emissions—Part 2: Costs, potentials and side effects. Environ. Res. Lett. 13, 063002. https://doi.org/10.1088/1748-9326/aabf9f (2018).CAS 
    Article 
    ADS 

    Google Scholar 
    3.Lawrence, M. G. et al. Evaluating climate geoengineering proposals in the context of the Paris Agreement temperature goals. Nat. Commun. 9, 3734. https://doi.org/10.1038/s41467-018-05938-3 (2018).CAS 
    Article 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 
    4.Matovic, D. Biochar as a viable carbon sequestration option: Global and Canadian perspective. Energy 36, 2011–2016. https://doi.org/10.1016/j.energy.2010.09.031 (2011).CAS 
    Article 

    Google Scholar 
    5.Osman, A. I., Hefny, M., Abdel Maksoud, M. I. A., Elgarahy, A. M. & Rooney, D. W. Recent advances in carbon capture storage and utilisation technologies: A review. Environ. Chem. Lett. https://doi.org/10.1007/s10311-020-01133-3 (2020).Article 

    Google Scholar 
    6.Clough, B. J. et al. Testing a new component ratio method for predicting total tree aboveground and component biomass for widespread pine and hardwood species of eastern US. Forestry 91, 575–588. https://doi.org/10.1093/forestry/cpy016 (2018).Article 

    Google Scholar 
    7.Lam, T. Y., Li, X., Kim, R. H., Lee, K. H. & Son, Y. M. Bayesian meta-analysis of regional biomass factors for Quercus mongolica forests in South Korea. J. For. Res. 26, 875–885. https://doi.org/10.1007/s11676-015-0089-x (2015).CAS 
    Article 

    Google Scholar 
    8.Sileshi, G. W. A critical review of forest biomass estimation models, common mistakes and corrective measures. For. Ecol. Manag. 329, 237–254. https://doi.org/10.1016/j.foreco.2014.06.026 (2014).Article 

    Google Scholar 
    9.Ver Planck, N. R. & MacFarlane, D. W. A vertically integrated whole-tree biomass model. Trees 29, 449–460, https://doi.org/10.1007/s00468-014-1123-x (2015).10.Jenkins, J. C., Chojnacky, D. C., Heath, L. S. & Birdsey, R. A. National-scale biomass estimators for United States tree species. For. Sci. 49, 12–35. https://doi.org/10.1093/forestscience/49.1.12 (2003).Article 

    Google Scholar 
    11.Parresol, B. R. Additivity of nonlinear biomass equations. Can. J. For. Res. 31, 865–878. https://doi.org/10.1139/x00-202 (2001).Article 

    Google Scholar 
    12.Parresol, B. R. Assessing tree and stand biomass: A review with examples and critical comparisons. For. Sci. 45, 573–593, https://doi.org/10.1093/forestscience/45.4.573 (1999).13.Radtke, P. et al. Improved accuracy of aboveground biomass and carbon estimates for live trees in forests of the eastern United States. Forestry 90, 32–46. https://doi.org/10.1093/forestry/cpw047 (2017).Article 

    Google Scholar 
    14.Woodall, C. W., Heath, L. S., Domke, G. M. & Nichols, M. C. Methods and equations for estimating aboveground volume, biomass, and carbon for trees in the U.S. forest inventory, 2010. 30, https://doi.org/10.2737/NRS-GTR-88 (2011).15.Chiou, L.-W., Huang, C.-H., Wu, J.-C. & Hsieh, H.-R. Report of the 4th National Forest Resource Inventory in Taiwan. Taiwan For. J. 41, 3–13 (2015).
    Google Scholar 
    16.Yang, T.-R., Lam, T. Y. & Kershaw, J. A. Jr. Developing relative stand density index for structurally complex mixed species cypress and pine forests. For. Ecol. Manag. 409, 425–433. https://doi.org/10.1016/j.foreco.2017.11.043 (2018).Article 

    Google Scholar 
    17.Taiwan Forestry Bureau. The Fourth National Forest Resource Inventory. Vol. 78 (2017).18.Ko, S.-H. Study on the Biomass and Carbon Storage in the Zelkova serrata Plantation. MSc. Thesis, National Chung-Hsing University, https://doi.org/10.6845/NCHU.2006.00871 (2006).19.Lin, J.-C., Jeng, M.-R., Liu, S.-F. & Lee, K. J. Economic benefit evaluation of the potential CO2 sequestration by the National Reforestation Program. Taiwan J. For. Sci. 17, 311–321, https://doi.org/10.7075/TJFS.200209.0311 (2002).20.Lin, K.-C., Huang, C.-M. & Duh, C.-T. Study on estimate of carbon storages and sequestration of planted trees in Zelkova serrata plantations, Taiwan. J. Natl. Park 18, 45–58 (2008).CAS 

    Google Scholar 
    21.Liao, S.-H. & Wang, Y.-N. Study on carbon dioxide fixation efficiency of Cinnamomum camphora and Zelkova serrata in understory planting. Q. J. Chin. For. 35, 361–373 (2002).
    Google Scholar 
    22.Lambert, M. C., Ung, C. H. & Raulier, F. Canadian national tree aboveground biomass equations. Can. J. For. Res. 35, 1996–2018. https://doi.org/10.1139/x05-112 (2005).Article 

    Google Scholar 
    23.Zellner, A. An efficient method of estimating seemingly unrelated regressions and tests for aggregation bias. J. Am. Stat. Assoc. 57, 348–368. https://doi.org/10.2307/2281644 (1962).MathSciNet 
    Article 
    MATH 

    Google Scholar 
    24.Henningsen, A. & Hamann, J. D. systemfit: A package for estimating systems of simultaneous equations in R. J. Stat. Softw. 23, 1–40, https://doi.org/10.18637/jss.v023.i04 (2007).25.R Core Team. R: A Language and Environment for Statistical Computing. (R Foundation for Statistical Computing, 2020).26.Nelson, A. S., Weiskittel, A. R., Wagner, R. G. & Saunders, M. R. Development and evaluation of aboveground small tree biomass models for naturally regenerated and planted species in eastern Maine, U.S.A. Biomass Bioenergy 68, 215–227, https://doi.org/10.1016/j.biombioe.2014.06.015 (2014).27.Poudel, K. P., Temesgen, H., Radtke, P. J. & Gray, A. N. Estimating individual-tree aboveground biomass of tree species in the western U.S.A. Can. J. For. Res. 49, 701–714, https://doi.org/10.1139/cjfr-2018-0361 (2019).28.Carvalho, J. P. & Parresol, B. R. Additivity in tree biomass components of Pyrenean oak (Quercus pyrenaica Willd.). For. Ecol. Manag. 179, 269–276, https://doi.org/10.1016/S0378-1127(02)00549-2 (2003).29.He, H. et al. Allometric biomass equations for 12 tree species in coniferous and broadleaved mixed forests, Northeastern China. PLoS ONE 13, e0186226. https://doi.org/10.1371/journal.pone.0186226 (2018).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    30.Cheng, C.-H., Huang, Y.-H., Menyailo, O. V. & Chen, C.-T. Stand development and aboveground biomass carbon accumulation with cropland afforestation in Taiwan. Taiwan J. For. Sci. 31, 105–118 (2016).
    Google Scholar 
    31.Lee, J.-H., Ko, Y. & McPherson, E. G. The feasibility of remotely sensed data to estimate urban tree dimensions and biomass. Urban For. Urban Green. 16, 208–220. https://doi.org/10.1016/j.ufug.2016.02.010 (2016).Article 

    Google Scholar 
    32.Park, J. H., Baek, S. G., Kwon, M. Y., Je, S. M. & Woo, S. Y. Volumetric equation development and carbon storage estimation of urban forest in Daejeon, Korea. For. Sci. Technol. 14, 97–104. https://doi.org/10.1080/21580103.2018.1452799 (2018).Article 

    Google Scholar 
    33.Yoon, T. K. et al. Allometric equations for estimating the aboveground volume of five common urban street tree species in Daegu, Korea. Urban For. Urban Green. 12, 344–349. https://doi.org/10.1016/j.ufug.2013.03.006 (2013).Article 

    Google Scholar 
    34.Chiu, C. M., Lo-Cho, C.-N. & Suen, M.-Y. Pruning method and knot wound analysis of Taiwan zelkova (Zelkova serrata Hay.) plantations. Taiwan J. For. Sci. 17, 503–513, https://doi.org/10.7075/TJFS.200212.0503 (2002).35.Lo-Cho, C.-N., Chung, H.-H. & Chiu, C.-M. Effects of pruning on the growth and the branch occlusion tendency of Taiwan Zelkova (Zelkova serrata Hay.) young plantations. Bull. Taiwan For. Res. Inst. 10, 315–323, https://doi.org/10.7075/BTFRI.199509.0315 (1995).36.Shepherd, K. R. Plantation Silviculture (Springer, 1986).
    Google Scholar 
    37.Chiou, C.-R., Lin, J.-C. & Liu, W.-Y. The carbon benefit of thinned wood for bioenergy in Taiwan. Forests 10, 255. https://doi.org/10.3390/f10030255 (2019).Article 

    Google Scholar 
    38.Liu, W.-Y., Lin, C.-C. & Su, K.-H. Modelling the spatial forest-thinning planning problem considering carbon sequestration and emissions. For. Policy Econ. 78, 51–66. https://doi.org/10.1016/j.forpol.2017.01.002 (2017).Article 

    Google Scholar 
    39.Rais, A., Poschenrieder, W., van de Kuilen, J.-W.G. & Pretzsch, H. Impact of spacing and pruning on quantity, quality and economics of Douglas-fir sawn timber: Scenario and sensitivity analysis. Eur. J. For. Res. 139, 747–758. https://doi.org/10.1007/s10342-020-01282-8 (2020).Article 

    Google Scholar 
    40.Kershaw, J. A., Ducey, M. J., Beers, T. W. & Husch, B. Forest Mensuration. (John Wiley & Sons Ltd, 2016). More

  • in

    Testing average wind speed using sampling plan for Weibull distribution under indeterminacy

    1.Ajayi, O. O., Fagbenle, R. O., Katende, J., Aasa, S. A. & Okeniyi, J. O. Wind profile characteristics and turbine performance analysis in Kano, north-western Nigeria. Int. J. Energy Environ. Eng. 4, 1–15 (2013).Article 

    Google Scholar 
    2.Yan, A., Liu, S. & Dong, X. Variables two stage sampling plans based on the coefficient of variation. J. Adv. Mech. Des. Syst. Manuf. 10, JAMDSM0002 (2016).Article 

    Google Scholar 
    3.Yen, C.-H., Lee, C.-C., Lo, K.-H., Shiue, Y.-R. & Li, S.-H. A rectifying acceptance sampling plan based on the process capability index. Mathematics 8, 141 (2020).Article 

    Google Scholar 
    4.Akpinar, E. K. & Akpinar, S. A statistical analysis of wind speed data used in installation of wind energy conversion systems. Energy Convers. Manag. 46, 515–532 (2005).Article 

    Google Scholar 
    5.Yilmaz, V. & Çelik, H. E. A statistical approach to estimate the wind speed distribution: the case of Gelibolu region. Doğuş Üniversitesi Dergisi 9, 122–132 (2011).
    Google Scholar 
    6.Ali, S., Lee, S.-M. & Jang, C.-M. Statistical analysis of wind characteristics using Weibull and Rayleigh distributions in Deokjeok-do Island-Incheon, South Korea. Renew. Energy 123, 652–663 (2018).Article 

    Google Scholar 
    7.Arias-Rosales, A. & Osorio-Gómez, G. Wind turbine selection method based on the statistical analysis of nominal specifications for estimating the cost of energy. Appl. Energy 228, 980–998 (2018).Article 

    Google Scholar 
    8.Akgül, F. G. & Şenoğlu, B. Comparison of wind speed distributions: a case study for Aegean coast of Turkey. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 1–18 (2019).9.Ozay, C. & Celiktas, M. S. Statistical analysis of wind speed using two-parameter Weibull distribution in Alaçatı region. Energy Convers. Manag. 121, 49–54 (2016).Article 

    Google Scholar 
    10.Qing, X. Statistical analysis of wind energy characteristics in Santiago island, Cape Verde. Renew. Energy 115, 448–461 (2018).Article 

    Google Scholar 
    11.Mahmood, F. H., Resen, A. K. & Khamees, A. B. Wind Characteristic Analysis Based on Weibull Distribution of Al-Salman site (Iraq, 2019).
    Google Scholar 
    12.Campisi-Pinto, S., Gianchandani, K. & Ashkenazy, Y. Statistical tests for the distribution of surface wind and current speeds across the globe. Renew. Energy 149, 861–876 (2020).Article 

    Google Scholar 
    13.ul Haq, M. A., Rao, G. S., Albassam, M. & Aslam, M. Marshall-Olkin Power Lomax distribution for modeling of wind speed data. Energy Rep. 6, 1118–1123 (2020).Article 

    Google Scholar 
    14.Bludszuweit, H., Domínguez-Navarro, J. A. & Llombart, A. Statistical analysis of wind power forecast error. IEEE Trans. Power Syst. 23, 983–991 (2008).ADS 
    Article 

    Google Scholar 
    15.Brano, V. L., Orioli, A., Ciulla, G. & Culotta, S. Quality of wind speed fitting distributions for the urban area of Palermo, Italy. Renew. Energy 36, 1026–1039 (2011).Article 

    Google Scholar 
    16.Katinas, V., Gecevicius, G. & Marciukaitis, M. An investigation of wind power density distribution at location with low and high wind speeds using statistical model. Appl. Energy 218, 442–451 (2018).Article 

    Google Scholar 
    17.Zaman, B., Lee, M. H. & Riaz, M. An improved process monitoring by mixed multivariate memory control charts: an application in wind turbine field. Comput. Ind. Eng. 142, 106343 (2020).Article 

    Google Scholar 
    18.Jamkhaneh, E. B., Sadeghpour-Gildeh, B. & Yari, G. Important criteria of rectifying inspection for single sampling plan with fuzzy parameter. Int. J. Contemp. Math. Sci. 4, 1791–1801 (2009).MATH 

    Google Scholar 
    19.Jamkhaneh, E. B., Sadeghpour-Gildeh, B. & Yari, G. Inspection error and its effects on single sampling plans with fuzzy parameters. Struct. Multidiscip. Optim. 43, 555–560 (2011).MATH 
    Article 

    Google Scholar 
    20.Sadeghpour Gildeh, B., Baloui Jamkhaneh, E. & Yari, G. Acceptance single sampling plan with fuzzy parameter. Iran. J. Fuzzy Syst. 8, 47–55 (2011).MathSciNet 
    MATH 

    Google Scholar 
    21.Afshari, R. & Sadeghpour Gildeh, B. Designing a multiple deferred state attribute sampling plan in a fuzzy environment. Am. J. Math. Manag. Sci. 36, 328–345 (2017).MATH 

    Google Scholar 
    22.Tong, X. & Wang, Z. Fuzzy acceptance sampling plans for inspection of geospatial data with ambiguity in quality characteristics. Comput. Geosci. 48, 256–266 (2012).ADS 
    Article 

    Google Scholar 
    23.Uma, G. & Ramya, K. Impact of fuzzy logic on acceptance sampling plans–a review. Autom. Auton. Syst. 7, 181–185 (2015).
    Google Scholar 
    24.Smarandache, F. Neutrosophy. Neutrosophic probability, set, and logic, proquest information & learning. Ann Arbor, Michigan, USA 105, 118–123 (1998).25.Smarandache, F. & Khalid, H. E. Neutrosophic Precalculus and Neutrosophic Calculus. (Infinite Study, 2015).26.Peng, X. & Dai, J. Approaches to single-valued neutrosophic MADM based on MABAC, TOPSIS and new similarity measure with score function. Neural Comput. Appl. 29, 939–954 (2018).Article 

    Google Scholar 
    27.Abdel-Basset, M., Mohamed, M., Elhoseny, M., Chiclana, F. & Zaied, A.E.-N.H. Cosine similarity measures of bipolar neutrosophic set for diagnosis of bipolar disorder diseases. Artif. Intell. Med. 101, 101735 (2019).PubMed 
    Article 

    Google Scholar 
    28.Nabeeh, N. A., Smarandache, F., Abdel-Basset, M., El-Ghareeb, H. A. & Aboelfetouh, A. An integrated neutrosophic-topsis approach and its application to personnel selection: a new trend in brain processing and analysis. IEEE Access 7, 29734–29744 (2019).Article 

    Google Scholar 
    29.Pratihar, J., Kumar, R., Dey, A. & Broumi, S. In Neutrosophic Graph Theory and Algorithms 180–212 (IGI Global, 2020).30.Pratihar, J., Kumar, R., Edalatpanah, S. & Dey, A. Modified Vogel’s approximation method for transportation problem under uncertain environment. Complex Intell. Syst. 7, 1–12 (2020).
    Google Scholar 
    31.Smarandache, F. Introduction to neutrosophic statistics. (Infinite Study, 2014).32.Chen, J., Ye, J. & Du, S. Scale effect and anisotropy analyzed for neutrosophic numbers of rock joint roughness coefficient based on neutrosophic statistics. Symmetry 9, 208 (2017).Article 

    Google Scholar 
    33.Chen, J., Ye, J., Du, S. & Yong, R. Expressions of rock joint roughness coefficient using neutrosophic interval statistical numbers. Symmetry 9, 123 (2017).Article 

    Google Scholar 
    34.Aslam, M. Introducing Kolmogorov–Smirnov tests under uncertainty: an application to radioactive data. ACS Omega 5, 9914–9917 (2019).
    Google Scholar 
    35.Aslam, M. A new sampling plan using neutrosophic process loss consideration. Symmetry 10, 132 (2018).Article 

    Google Scholar 
    36.Aslam, M. Design of sampling plan for exponential distribution under neutrosophic statistical interval method. IEEE Access 6, 64153–64158 (2018).Article 

    Google Scholar 
    37.Aslam, M. A new attribute sampling plan using neutrosophic statistical interval method. Complex Intell. Syst. 11, 1–6 (2019).
    Google Scholar 
    38.Aslam, M., Jeyadurga, P., Balamurali, S. & Marshadi, A. H. Time-Truncated Group Plan under a Weibull Distribution based on Neutrosophic Statistics. Mathematics 7, 905 (2019).Article 

    Google Scholar 
    39.Alhasan, K. F. H. & Smarandache, F. Neutrosophic Weibull distribution and Neutrosophic Family Weibull Distribution. (Infinite Study, 2019).40.Cheema, A. N., Aslam, M., Almanjahie, I. M. & Ahmad, I. Mixture modeling of exponentiated pareto distribution in bayesian framework with applications of wind-speed and tensile strength of carbon fiber. IEEE Access 8, 178514–178525 (2020).Article 

    Google Scholar 
    41.Deep, S., Sarkar, A., Ghawat, M. & Rajak, M. K. Estimation of the wind energy potential for coastal locations in India using the Weibull model. Renew. Energy 161, 319–339 (2020).Article 

    Google Scholar 
    42.Gugliani, G., Sarkar, A., Ley, C. & Mandal, S. New methods to assess wind resources in terms of wind speed, load, power and direction. Renew. Energy 129, 168–182 (2018).Article 

    Google Scholar  More

  • in

    Lightning threatens permafrost

    1.Veraverbeke, S. et al. Nat. Clim. Change 7, 529–534 (2017).Article 

    Google Scholar 
    2.Murray, L. T. Nat. Clim. Change 8, 191–192 (2018).Article 

    Google Scholar 
    3.Chen, Y. et al. Nat. Clim. Change https://doi.org/10.1038/s41558-021-01011-y (2021).Article 

    Google Scholar 
    4.Witze, A. Nature 585, 336–337 (2020).CAS 
    Article 

    Google Scholar 
    5.Holzworth, R. H. et al. Geophys. Res. Lett. (in the press).6.Finney, D. L. et al. Geophys. Res. Lett. 47, e2020GL088163 (2020).Article 

    Google Scholar 
    7.Thornhill, G. et al. Atmos. Chem. Phys. 21, 1105–1126 (2021).CAS 
    Article 

    Google Scholar 
    8.Bonan, G. B. & Doney, S. C. Science 359, eaam8328 (2018).Article 

    Google Scholar  More

  • in

    Studies of insect temporal trends must account for the complex sampling histories inherent to many long-term monitoring efforts

    S. LaDeau, S. Earl, S. Barrott, E. Borer and S. Pennings aided in identifying errors in Crossley et al.’s online data. K. Roeder provided comments on an early draft of this manuscript. J. Taylor aided in identifying changes in Konza watershed names. We thank all LTER information managers and principal investigators who help keep online metadata updated. We thank P. Montz, J. Haarstad, A. Kuhl, M. Ayres, R. Holmes and the numerous others who did the hard work to generate these long-term datasets. NSF DEB-1556280 to M.K. and Konza Prairie LTER NSF DEB-1440484 supported this work. More

  • in

    Disentangling biology from mathematical necessity in twentieth-century gymnosperm resilience trends

    1.Li, X. et al. Temporal trade-off between gymnosperm resistance and resilience increases forest sensitivity to extreme drought. Nat. Ecol. Evol. 4, 1075–1083 (2020).Article 

    Google Scholar 
    2.Goulden, M. L. & Bales, R. C. California forest die-off linked to multi-year deep soil drying in 2012–2015 drought. Nat. Geosci. 12, 632–637 (2019).CAS 
    Article 

    Google Scholar 
    3.Hodgson, D., McDonald, J. L. & Hosken, D. J. What do you mean, ‘resilient’? Trends Ecol. Evol. 30, 503–506 (2015).Article 

    Google Scholar 
    4.Lloret, F., Keeling, E. G. & Sala, A. Components of tree resilience: effects of successive low-growth episodes in old ponderosa pine forests. Oikos 120, 1909–1920 (2011).Article 

    Google Scholar 
    5.Zhao, S. et al. The International Tree-Ring Data Bank (ITRDB) revisited: data availability and global ecological representativity. J. Biogeogr. 46, 355–368 (2019).Article 

    Google Scholar 
    6.Isbell, F. et al. Biodiversity increases the resistance of ecosystem productivity to climate extremes. Nature 526, 574–577 (2015).CAS 
    Article 

    Google Scholar 
    7.Ingrisch, J. & Bahn, M. Towards a comparable quantification of resilience. Trends Ecol. Evol. 33, 251–259 (2018).Article 

    Google Scholar 
    8.Van der Maaten-Theunissen, M., van der Maaten, E. & Bouriaud, O. pointRes: an R package to analyze pointer years and components of resilience. Dendrochronologia 35, 34–38 (2015).Article 

    Google Scholar 
    9.Gazol, A. et al. Forest resilience to drought varies across biomes. Glob. Change Biol. 24, 2143–2158 (2018).Article 

    Google Scholar 
    10.Serra-Maluquer, X., Mencuccini, M. & Martínez-Vilalta, J. Changes in tree resistance, recovery and resilience across three successive extreme droughts in the northeast Iberian Peninsula. Oecologia 187, 343–354 (2018).CAS 
    Article 

    Google Scholar 
    11.DeSoto, L. et al. Low growth resilience to drought is related to future mortality risk in trees. Nat. Commun. 11, 545 (2020).CAS 
    Article 

    Google Scholar 
    12.Anderegg, W. R. L., Anderegg, L. D. L., Kerr, K. L. & Trugman, A. T. Widespread drought‐induced tree mortality at dry range edges indicates that climate stress exceeds species’ compensating mechanisms. Glob. Change Biol. 25, 3793–3802 (2019).Article 

    Google Scholar 
    13.Sperry, J. S. et al. The impact of rising CO2 and acclimation on the response of US forests to global warming. Proc. Natl Acad. Sci. USA 116, 25734–25744 (2019).CAS 
    Article 

    Google Scholar 
    14.Peterson, R. A. & Cavanaugh, J. E. Ordered quantile normalization: a semiparametric transformation built for the cross-validation era. J. Appl. Stat. 47, 2312–2327 (2020).Article 

    Google Scholar  More

  • in

    M. S. Crossley et al. reply

    Peer review information Nature Ecology & Evolution thanks Nick Isaac, Manu Saunders and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations. More

  • in

    Future increases in Arctic lightning and fire risk for permafrost carbon

    1.Hugelius, G. et al. Estimated stocks of circumpolar permafrost carbon with quantified uncertainty ranges and identified data gaps. Biogeosciences 11, 6573–6593 (2014).Article 

    Google Scholar 
    2.Mishra, U. et al. Empirical estimates to reduce modeling uncertainties of soil organic carbon in permafrost regions: a review of recent progress and remaining challenges. Environ. Res. Lett. https://doi.org/10.1088/1748-9326/8/3/035020 (2013).3.Scharlemann, J. P. W., Tanner, E. V. J., Hiederer, R. & Kapos, V. Global soil carbon: understanding and managing the largest terrestrial carbon pool. Carbon Manage. 5, 81–91 (2014).CAS 
    Article 

    Google Scholar 
    4.Pan, Y. D. et al. A large and persistent carbon sink in the world’s forests. Science 333, 988–993 (2011).CAS 
    Article 

    Google Scholar 
    5.Hugelius, G. et al. The Northern Circumpolar Soil Carbon Database: spatially distributed datasets of soil coverage and soil carbon storage in the northern permafrost regions. Earth Syst. Sci. Data 5, 3–13 (2013).Article 

    Google Scholar 
    6.Schuur, E. A. G. et al. Climate change and the permafrost carbon feedback. Nature 520, 171–179 (2015).CAS 
    Article 

    Google Scholar 
    7.Turetsky, M. R. et al. Carbon release through abrupt permafrost thaw. Nat. Geosci. 13, 138–143 (2020).CAS 
    Article 

    Google Scholar 
    8.McGuire, A. D. et al. Sensitivity of the carbon cycle in the Arctic to climate change. Ecol. Monogr. 79, 523–555 (2009).Article 

    Google Scholar 
    9.Strauss, J. et al. Deep Yedoma permafrost: a synthesis of depositional characteristics and carbon vulnerability. Earth Sci. Rev. 172, 75–86 (2017).CAS 
    Article 

    Google Scholar 
    10.Koven, C. D., Lawrence, D. M. & Riley, W. J. Permafrost carbon−climate feedback is sensitive to deep soil carbon decomposability but not deep soil nitrogen dynamics. Proc. Natl Acad. Sci. USA 112, 3752–3757 (2015).CAS 
    Article 

    Google Scholar 
    11.Lawrence, D. M., Koven, C. D., Swenson, S. C., Riley, W. J. & Slater, A. G. Permafrost thaw and resulting soil moisture changes regulate projected high-latitude CO2 and CH4 emissions. Environ. Res. Lett. 10, 094011 (2015).Article 
    CAS 

    Google Scholar 
    12.McGuire, A. D. et al. Dependence of the evolution of carbon dynamics in the northern permafrost region on the trajectory of climate change. Proc. Natl Acad. Sci. USA 115, 3882–3887 (2018).Article 
    CAS 

    Google Scholar 
    13.Mekonnen, Z. A., Riley, W. J. & Grant, R. F. 21st century tundra shrubification could enhance net carbon uptake of North America Arctic tundra under an RCP8.5 climate trajectory. Environ. Res. Lett. https://doi.org/10.1088/1748-9326/aabf28 (2018).14.Schädel, C. et al. Potential carbon emissions dominated by carbon dioxide from thawed permafrost soils. Nat. Clim. Change 6, 950–953 (2016).Article 
    CAS 

    Google Scholar 
    15.Turetsky, M. R. et al. Recent acceleration of biomass burning and carbon losses in Alaskan forests and peatlands. Nat. Geosci. 4, 27–31 (2011).CAS 
    Article 

    Google Scholar 
    16.Veraverbeke, S., Rogers, B. M. & Randerson, J. T. Daily burned area and carbon emissions from boreal fires in Alaska. Biogeosciences 12, 3579–3601 (2015).CAS 
    Article 

    Google Scholar 
    17.Hu, F. S. et al. Arctic tundra fires: natural variability and responses to climate change. Front. Ecol. Environ. 13, 369–377 (2015).Article 

    Google Scholar 
    18.Rogers, B. M., Balch, J. K., Goetz, S. J., Lehmann, C. E. R. & Turetsky, M. Focus on changing fire regimes: interactions with climate, ecosystems, and society. Environ. Res. Lett. https://doi.org/10.1088/1748-9326/ab6d3a (2020).19.Walker, X. J. et al. Increasing wildfires threaten historic carbon sink of boreal forest soils. Nature 572, 520–523 (2019).CAS 
    Article 

    Google Scholar 
    20.Mack, M. C. et al. Carbon loss from an unprecedented Arctic tundra wildfire. Nature 475, 489–492 (2011).CAS 
    Article 

    Google Scholar 
    21.Harsch, M. A., Hulme, P. E., McGlone, M. S. & Duncan, R. P. Are treelines advancing? A global meta-analysis of treeline response to climate warming. Ecol. Lett. 12, 1040–1049 (2009).Article 

    Google Scholar 
    22.Rocha, A. V. et al. The footprint of Alaskan tundra fires during the past half-century: implications for surface properties and radiative forcing. Environ. Res. Lett. 7, 044039 (2012).Article 

    Google Scholar 
    23.Chambers, S. D., Beringer, J., Randerson, J. T. & Chapin, F. S. III Fire effects on net radiation and energy partitioning: contrasting responses of tundra and boreal forest ecosystems. J. Geophys. Res. Atmos. https://doi.org/10.1029/2004jd005299 (2005).24.Genet, H. et al. Modeling the effects of fire severity and climate warming on active layer thickness and soil carbon storage of black spruce forests across the landscape in interior Alaska. Environ. Res. Lett. 8, 045016 (2013).Article 
    CAS 

    Google Scholar 
    25.Mekonnen, Z. A., Riley, W. J., Randerson, J. T., Grant, R. F. & Rogers, B. M. Expansion of high-latitude deciduous forests driven by interactions between climate warming and fire. Nat. Plants 5, 952–958 (2019).Article 

    Google Scholar 
    26.Johnstone, J. F., Hollingworth, T. N., Chapin, F. S. III & Mack, M. C. Changes in fire regime break the legacy lock on successional trajectories in Alaskan boreal forest. Glob. Change Biol. 16, 1281–1295 (2010).Article 

    Google Scholar 
    27.Christian, H. J. et al. Global frequency and distribution of lightning as observed from space by the Optical Transient Detector. J. Geophys. Res. Atmos. https://doi.org/10.1029/2002jd002347 (2003).28.Cecil, D. J., Buechler, D. E. & Blakeslee, R. J. Gridded lightning climatology from TRMM-LIS and OTD: dataset description. Atmos. Res. 135, 404–414 (2014).Article 

    Google Scholar 
    29.Veraverbeke, S. et al. Lightning as a major driver of recent large fire years in North American boreal forests. Nat. Clim. Change 7, 529–534 (2017).Article 

    Google Scholar 
    30.Krause, A., Kloster, S., Wilkenskjeld, S. & Paeth, H. The sensitivity of global wildfires to simulated past, present, and future lightning frequency. J. Geophys. Res. Biogeosci. 119, 312–322 (2014).Article 

    Google Scholar 
    31.Price, C. Lightning applications in weather and climate research. Surv. Geophys. 34, 755–767 (2013).Article 

    Google Scholar 
    32.Williams, E. R. Lightning and climate: a review. Atmos. Res. 76, 272–287 (2005).Article 

    Google Scholar 
    33.Albrecht, R. I., Goodman, S. J., Buechler, D. E., Blakeslee, R. J. & Christian, H. J. Where are the lightning hotspots on Earth? Bull. Am. Meteorol. Soc. 97, 2051–2068 (2016).Article 

    Google Scholar 
    34.Price, C. & Rind, D. Possible implications of global climate change on global lightning distributions and frequencies. J. Geophys. Res. Atmos. 99, 10823–10831 (1994).Article 

    Google Scholar 
    35.Jayaratne, E. R. & Kuleshov, Y. The relationship between lightning activity and surface wet bulb temperature and its variation with latitude in Australia. Meteorol. Atmos. Phys. 91, 17–24 (2006).Article 

    Google Scholar 
    36.Romps, D. M., Seeley, J. T., Vollaro, D. & Molinari, J. Projected increase in lightning strikes in the United States due to global warming. Science 346, 851–854 (2014).CAS 
    Article 

    Google Scholar 
    37.Romps, D. M. Evaluating the future of lightning in cloud-resolving models. Geophys. Res. Lett. 46, 14863–14871 (2019).Article 

    Google Scholar 
    38.Finney, D. L. et al. A projected decrease in lightning under climate change. Nat. Clim. Change 8, 210–213 (2018).Article 

    Google Scholar 
    39.Bieniek, P. A. et al. Lightning variability in dynamically downscaled simulations of Alaska’s present and future summer climate. J. Appl. Meteorol. Climatol. 59, 1139–1152 (2020).Article 

    Google Scholar 
    40.Price, C. & Rind, D. A simple lightning parameterization for calculating global lightning distributions. J. Geophys. Res. Atmos. 97, 9919–9933 (1992).Article 

    Google Scholar 
    41.Reeve, N. & Toumi, R. Lightning activity as an indicator of climate change. Q. J. R. Meteorol. Soc. 125, 893–903 (1999).Article 

    Google Scholar 
    42.Petersen, W. A. & Rutledge, S. A. On the relationship between cloud-to-ground lightning and convective rainfall. J. Geophys. Res. Atmos. 103, 14025–14040 (1998).Article 

    Google Scholar 
    43.Allen, D. J. & Pickering, K. E. Evaluation of lightning flash rate parameterizations for use in a global chemical transport model. J. Geophys. Res. Atmos. 107, ACH 15-1–ACH 15-21 (2002).Article 
    CAS 

    Google Scholar 
    44.IPCC Climate Change 2014: Synthesis Report (eds Core Writing Team, Pachauri, R. K. & Meyer L. A.) (IPCC, 2014).45.Price, C. Global surface temperatures and the atmospheric electrical circuit. Geophys. Res. Lett. 20, 1363–1366 (1993).Article 

    Google Scholar 
    46.Michalon, N., Nassif, A., Saouri, T., Royer, J. F. & Pontikis, C. A. Contribution to the climatological study of lightning. Geophys. Res. Lett. 26, 3097–3100 (1999).Article 

    Google Scholar 
    47.Peterson, D., Wang, J., Ichoku, C. & Remer, L. A. Effects of lightning and other meteorological factors on fire activity in the North American boreal forest: implications for fire weather forecasting. Atmos. Chem. Phys. 10, 6873–6888 (2010).CAS 
    Article 

    Google Scholar 
    48.Kasischke, E. S., Williams, D. & Barry, D. Analysis of the patterns of large fires in the boreal forest region of Alaska. Int. J. Wildland Fire 11, 131–144 (2002).Article 

    Google Scholar 
    49.Stocks, B. J. et al. Large forest fires in Canada, 1959–1997. J. Geophys. Res. Atmos. https://doi.org/10.1029/2001jd000484 (2002).50.Rogers, B. M., Soja, A. J., Goulden, M. L. & Randerson, J. T. Influence of tree species on continental differences in boreal fires and climate feedbacks. Nat. Geosci. 8, 228–234 (2015).CAS 
    Article 

    Google Scholar 
    51.McGuire, A. D., Chapin, F. S., Walsh, J. E. & Wirth, C. Integrated regional changes in Arctic climate feedbacks: implications for the global climate system. Annu. Rev. Environ. Resour. 31, 61–91 (2006).Article 

    Google Scholar 
    52.Euskirchen, E. S., McGuire, A. D., Chapin, F. S. III, Yi, S. & Thompson, C. C. Changes in vegetation in northern Alaska under scenarios of climate change, 2003–2100: implications for climate feedbacks. Ecol. Appl. 19, 1022–1043 (2009).CAS 
    Article 

    Google Scholar 
    53.Higuera, P. E. et al. Frequent fires in ancient shrub tundra: implications of paleorecords for Arctic environmental change. PLoS ONE 3, e0001744 (2008).Article 
    CAS 

    Google Scholar 
    54.Trugman, A. et al. Climate, soil organic layer, and nitrogen jointly drive forest development after fire in the North American boreal zone. J. Adv. Model. Earth Syst. 8, 1180–1209 (2016).Article 

    Google Scholar 
    55.Bret-Harte, M. S. et al. The response of Arctic vegetation and soils following an unusually severe tundra fire. Phil. Trans. R. Soc. B https://doi.org/10.1098/rstb.2012.0490 (2013).56.Turner, M. G. Disturbance and landscape dynamics in a changing world. Ecology 91, 2833–2849 (2010).Article 

    Google Scholar 
    57.Dissing, D. & Verbyla, D. L. Spatial patterns of lightning strikes in interior Alaska and their relations to elevation and vegetation. Can. J. For. Res. 33, 770–782 (2003).Article 

    Google Scholar 
    58.Sedano, F. & Randerson, J. T. Multi-scale influence of vapor pressure deficit on fire ignition and spread in boreal forest ecosystems. Biogeosciences 11, 3739–3755 (2014).Article 

    Google Scholar 
    59.Yi, S. H., Woo, M. K. & Arain, M. A. Impacts of peat and vegetation on permafrost degradation under climate warming. Geophys. Res. Lett. 34, L16504 (2007).Article 

    Google Scholar 
    60.Jones, B. M. et al. Recent Arctic tundra fire initiates widespread thermokarst development. Sci. Rep. https://doi.org/10.1038/srep15865 (2015).61.Brown, D. R. N. et al. Landscape effects of wildfire on permafrost distribution in interior Alaska derived from remote sensing. Remote Sens. https://doi.org/10.3390/rs8080654 (2016).62.Walker, G. A world melting from the top down. Nature 446, 718–721 (2007).CAS 
    Article 

    Google Scholar 
    63.Bonfils, C. J. W. et al. On the influence of shrub height and expansion on northern high latitude climate. Environ. Res. Lett. https://doi.org/10.1088/1748-9326/7/1/015503 (2012).64.McConnell, J. R. et al. 20th-century industrial black carbon emissions altered Arctic climate forcing. Science 317, 1381–1384 (2007).CAS 
    Article 

    Google Scholar 
    65.Swann, A. L., Fung, I. Y., Levis, S., Bonan, G. B. & Doney, S. C. Changes in Arctic vegetation amplify high-latitude warming through the greenhouse effect. Proc. Natl Acad. Sci. USA 107, 1295–1300 (2010).CAS 
    Article 

    Google Scholar 
    66.Keuper, F. et al. Carbon loss from northern circumpolar permafrost soils amplified by rhizosphere priming. Nat. Geosci. 13, 560–565 (2020).CAS 
    Article 

    Google Scholar 
    67.Bonan, G. B. & Doney, S. C. Climate, ecosystems, and planetary futures: the challenge to predict life in Earth system models. Science https://doi.org/10.1126/science.aam8328 (2018).68.Magi, B. I. Global lightning parameterization from CMIP5 climate model output. J. Atmos. Ocean. Technol. 32, 434–452 (2015).Article 

    Google Scholar 
    69.Kloster, S. & Lasslop, G. Historical and future fire occurrence (1850 to 2100) simulated in CMIP5 Earth System Models. Glob. Planet. Change 150, 58–69 (2017).Article 

    Google Scholar 
    70.Orville, R. E., Huffines, G. R., Burrows, W. R. & Cummins, K. L. The North American Lightning Detection Network (NALDN)—analysis of flash data: 2001–09. Mon. Weather Rev. 139, 1305–1322 (2011).Article 

    Google Scholar 
    71.Virts, K. S., Wallace, J. M., Hutchins, M. L. & Holzworth, R. H. Highlights of a new ground-based, hourly global lightning climatology. Bull. Am. Meteorol. Soc. 94, 1381–1391 (2013).Article 

    Google Scholar 
    72.Pohjola, H. & Makela, A. The comparison of GLD360 and EUCLID lightning location systems in Europe. Atmos. Res. 123, 117–128 (2013).Article 

    Google Scholar 
    73.Collins, M. et al. in Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.) Ch. 12 (IPCC, Cambridge Univ. Press, 2013).74.Screen, J. A. & Simmonds, I. The central role of diminishing sea ice in recent Arctic temperature amplification. Nature 464, 1334–1337 (2010).CAS 
    Article 

    Google Scholar 
    75.Chapin, F. S. et al. Role of land-surface changes in Arctic summer warming. Science 310, 657–660 (2005).CAS 
    Article 

    Google Scholar 
    76.Foley, J. A. Tipping points in the tundra. Science 310, 627–628 (2005).CAS 
    Article 

    Google Scholar 
    77.Friedl, M. A. et al. MODIS Collection 5 global land cover: algorithm refinements and characterization of new datasets. Remote Sens. Environ. 114, 168–182 (2010).Article 

    Google Scholar 
    78.Mach, D. M. et al. Performance assessment of the Optical Transient Detector and Lightning Imaging Sensor. J. Geophys. Res. 112, D09210 (2007).
    Google Scholar 
    79.Mackerras, D., Darveniza, M., Orville, R. E., Williams, E. R. & Goodman, S. J. Global lightning: total, cloud and ground flash estimates. J. Geophys. Res. Atmos. 103, 19791–19809 (1998).Article 

    Google Scholar 
    80.Farukh, M. A. & Hayasaka, H. Active forest fire occurrences in severe lightning years in Alaska. J. Nat. Disaster Sci. 33, 71–84 (2012).Article 

    Google Scholar 
    81.Hersbach, H. et al. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 146, 1999–2049 (2020).Article 

    Google Scholar 
    82.Taylor, K. E., Stouffer, R. J. & Meehl, G. A. An overview of CMIP5 and the experiment design. Bull. Am. Meteorol. Soc. 93, 485–498 (2012).Article 

    Google Scholar 
    83.Seeley, J. T. & Romps, D. M. The effect of global warming on severe thunderstorms in the United States. J. Clim. 28, 2443–2458 (2015).Article 

    Google Scholar 
    84.van Vuuren, D. P. et al. The representative concentration pathways: an overview. Climatic Change 109, 5–31 (2011).Article 

    Google Scholar 
    85.Chronis, T. G. et al. Global lightning activity from the ENSO perspective. Geophys. Res. Lett. 35, L19804 (2008).Article 

    Google Scholar 
    86.Satori, G., Williams, E. & Lemperger, I. Variability of global lightning activity on the ENSO time scale. Atmos. Res. 91, 500–507 (2009).Article 

    Google Scholar 
    87.Randerson, J. T., Chen, Y., van der Werf, G. R., Rogers, B. M. & Morton, D. C. Global burned area and biomass burning emissions from small fires. J. Geophys. Res. Biogeosci. 117, G04012 (2012).Article 
    CAS 

    Google Scholar 
    88.van der Werf, G. R. et al. Global fire emissions estimates during 1997–2016. Earth Syst. Sci. Data 9, 697–720 (2017).Article 

    Google Scholar 
    89.Walker, D. A. et al. The circumpolar Arctic vegetation map. J. Veg. Sci. 16, 267–282 (2005).Article 

    Google Scholar  More