Modeling biomass allocation strategy of young planted Zelkova serrata trees in Taiwan with component ratio method and seemingly unrelated regressions
1.UNFCCC. Adoption of the Paris Agreement. 32 (2015).2.Fuss, S. et al. Negative emissions—Part 2: Costs, potentials and side effects. Environ. Res. Lett. 13, 063002. https://doi.org/10.1088/1748-9326/aabf9f (2018).CAS
Article
ADS
Google Scholar
3.Lawrence, M. G. et al. Evaluating climate geoengineering proposals in the context of the Paris Agreement temperature goals. Nat. Commun. 9, 3734. https://doi.org/10.1038/s41467-018-05938-3 (2018).CAS
Article
PubMed
PubMed Central
ADS
Google Scholar
4.Matovic, D. Biochar as a viable carbon sequestration option: Global and Canadian perspective. Energy 36, 2011–2016. https://doi.org/10.1016/j.energy.2010.09.031 (2011).CAS
Article
Google Scholar
5.Osman, A. I., Hefny, M., Abdel Maksoud, M. I. A., Elgarahy, A. M. & Rooney, D. W. Recent advances in carbon capture storage and utilisation technologies: A review. Environ. Chem. Lett. https://doi.org/10.1007/s10311-020-01133-3 (2020).Article
Google Scholar
6.Clough, B. J. et al. Testing a new component ratio method for predicting total tree aboveground and component biomass for widespread pine and hardwood species of eastern US. Forestry 91, 575–588. https://doi.org/10.1093/forestry/cpy016 (2018).Article
Google Scholar
7.Lam, T. Y., Li, X., Kim, R. H., Lee, K. H. & Son, Y. M. Bayesian meta-analysis of regional biomass factors for Quercus mongolica forests in South Korea. J. For. Res. 26, 875–885. https://doi.org/10.1007/s11676-015-0089-x (2015).CAS
Article
Google Scholar
8.Sileshi, G. W. A critical review of forest biomass estimation models, common mistakes and corrective measures. For. Ecol. Manag. 329, 237–254. https://doi.org/10.1016/j.foreco.2014.06.026 (2014).Article
Google Scholar
9.Ver Planck, N. R. & MacFarlane, D. W. A vertically integrated whole-tree biomass model. Trees 29, 449–460, https://doi.org/10.1007/s00468-014-1123-x (2015).10.Jenkins, J. C., Chojnacky, D. C., Heath, L. S. & Birdsey, R. A. National-scale biomass estimators for United States tree species. For. Sci. 49, 12–35. https://doi.org/10.1093/forestscience/49.1.12 (2003).Article
Google Scholar
11.Parresol, B. R. Additivity of nonlinear biomass equations. Can. J. For. Res. 31, 865–878. https://doi.org/10.1139/x00-202 (2001).Article
Google Scholar
12.Parresol, B. R. Assessing tree and stand biomass: A review with examples and critical comparisons. For. Sci. 45, 573–593, https://doi.org/10.1093/forestscience/45.4.573 (1999).13.Radtke, P. et al. Improved accuracy of aboveground biomass and carbon estimates for live trees in forests of the eastern United States. Forestry 90, 32–46. https://doi.org/10.1093/forestry/cpw047 (2017).Article
Google Scholar
14.Woodall, C. W., Heath, L. S., Domke, G. M. & Nichols, M. C. Methods and equations for estimating aboveground volume, biomass, and carbon for trees in the U.S. forest inventory, 2010. 30, https://doi.org/10.2737/NRS-GTR-88 (2011).15.Chiou, L.-W., Huang, C.-H., Wu, J.-C. & Hsieh, H.-R. Report of the 4th National Forest Resource Inventory in Taiwan. Taiwan For. J. 41, 3–13 (2015).
Google Scholar
16.Yang, T.-R., Lam, T. Y. & Kershaw, J. A. Jr. Developing relative stand density index for structurally complex mixed species cypress and pine forests. For. Ecol. Manag. 409, 425–433. https://doi.org/10.1016/j.foreco.2017.11.043 (2018).Article
Google Scholar
17.Taiwan Forestry Bureau. The Fourth National Forest Resource Inventory. Vol. 78 (2017).18.Ko, S.-H. Study on the Biomass and Carbon Storage in the Zelkova serrata Plantation. MSc. Thesis, National Chung-Hsing University, https://doi.org/10.6845/NCHU.2006.00871 (2006).19.Lin, J.-C., Jeng, M.-R., Liu, S.-F. & Lee, K. J. Economic benefit evaluation of the potential CO2 sequestration by the National Reforestation Program. Taiwan J. For. Sci. 17, 311–321, https://doi.org/10.7075/TJFS.200209.0311 (2002).20.Lin, K.-C., Huang, C.-M. & Duh, C.-T. Study on estimate of carbon storages and sequestration of planted trees in Zelkova serrata plantations, Taiwan. J. Natl. Park 18, 45–58 (2008).CAS
Google Scholar
21.Liao, S.-H. & Wang, Y.-N. Study on carbon dioxide fixation efficiency of Cinnamomum camphora and Zelkova serrata in understory planting. Q. J. Chin. For. 35, 361–373 (2002).
Google Scholar
22.Lambert, M. C., Ung, C. H. & Raulier, F. Canadian national tree aboveground biomass equations. Can. J. For. Res. 35, 1996–2018. https://doi.org/10.1139/x05-112 (2005).Article
Google Scholar
23.Zellner, A. An efficient method of estimating seemingly unrelated regressions and tests for aggregation bias. J. Am. Stat. Assoc. 57, 348–368. https://doi.org/10.2307/2281644 (1962).MathSciNet
Article
MATH
Google Scholar
24.Henningsen, A. & Hamann, J. D. systemfit: A package for estimating systems of simultaneous equations in R. J. Stat. Softw. 23, 1–40, https://doi.org/10.18637/jss.v023.i04 (2007).25.R Core Team. R: A Language and Environment for Statistical Computing. (R Foundation for Statistical Computing, 2020).26.Nelson, A. S., Weiskittel, A. R., Wagner, R. G. & Saunders, M. R. Development and evaluation of aboveground small tree biomass models for naturally regenerated and planted species in eastern Maine, U.S.A. Biomass Bioenergy 68, 215–227, https://doi.org/10.1016/j.biombioe.2014.06.015 (2014).27.Poudel, K. P., Temesgen, H., Radtke, P. J. & Gray, A. N. Estimating individual-tree aboveground biomass of tree species in the western U.S.A. Can. J. For. Res. 49, 701–714, https://doi.org/10.1139/cjfr-2018-0361 (2019).28.Carvalho, J. P. & Parresol, B. R. Additivity in tree biomass components of Pyrenean oak (Quercus pyrenaica Willd.). For. Ecol. Manag. 179, 269–276, https://doi.org/10.1016/S0378-1127(02)00549-2 (2003).29.He, H. et al. Allometric biomass equations for 12 tree species in coniferous and broadleaved mixed forests, Northeastern China. PLoS ONE 13, e0186226. https://doi.org/10.1371/journal.pone.0186226 (2018).CAS
Article
PubMed
PubMed Central
Google Scholar
30.Cheng, C.-H., Huang, Y.-H., Menyailo, O. V. & Chen, C.-T. Stand development and aboveground biomass carbon accumulation with cropland afforestation in Taiwan. Taiwan J. For. Sci. 31, 105–118 (2016).
Google Scholar
31.Lee, J.-H., Ko, Y. & McPherson, E. G. The feasibility of remotely sensed data to estimate urban tree dimensions and biomass. Urban For. Urban Green. 16, 208–220. https://doi.org/10.1016/j.ufug.2016.02.010 (2016).Article
Google Scholar
32.Park, J. H., Baek, S. G., Kwon, M. Y., Je, S. M. & Woo, S. Y. Volumetric equation development and carbon storage estimation of urban forest in Daejeon, Korea. For. Sci. Technol. 14, 97–104. https://doi.org/10.1080/21580103.2018.1452799 (2018).Article
Google Scholar
33.Yoon, T. K. et al. Allometric equations for estimating the aboveground volume of five common urban street tree species in Daegu, Korea. Urban For. Urban Green. 12, 344–349. https://doi.org/10.1016/j.ufug.2013.03.006 (2013).Article
Google Scholar
34.Chiu, C. M., Lo-Cho, C.-N. & Suen, M.-Y. Pruning method and knot wound analysis of Taiwan zelkova (Zelkova serrata Hay.) plantations. Taiwan J. For. Sci. 17, 503–513, https://doi.org/10.7075/TJFS.200212.0503 (2002).35.Lo-Cho, C.-N., Chung, H.-H. & Chiu, C.-M. Effects of pruning on the growth and the branch occlusion tendency of Taiwan Zelkova (Zelkova serrata Hay.) young plantations. Bull. Taiwan For. Res. Inst. 10, 315–323, https://doi.org/10.7075/BTFRI.199509.0315 (1995).36.Shepherd, K. R. Plantation Silviculture (Springer, 1986).
Google Scholar
37.Chiou, C.-R., Lin, J.-C. & Liu, W.-Y. The carbon benefit of thinned wood for bioenergy in Taiwan. Forests 10, 255. https://doi.org/10.3390/f10030255 (2019).Article
Google Scholar
38.Liu, W.-Y., Lin, C.-C. & Su, K.-H. Modelling the spatial forest-thinning planning problem considering carbon sequestration and emissions. For. Policy Econ. 78, 51–66. https://doi.org/10.1016/j.forpol.2017.01.002 (2017).Article
Google Scholar
39.Rais, A., Poschenrieder, W., van de Kuilen, J.-W.G. & Pretzsch, H. Impact of spacing and pruning on quantity, quality and economics of Douglas-fir sawn timber: Scenario and sensitivity analysis. Eur. J. For. Res. 139, 747–758. https://doi.org/10.1007/s10342-020-01282-8 (2020).Article
Google Scholar
40.Kershaw, J. A., Ducey, M. J., Beers, T. W. & Husch, B. Forest Mensuration. (John Wiley & Sons Ltd, 2016). More
