Diapause vs. reproductive programs: transcriptional phenotypes in a keystone copepod
1.Record, N. R. et al. Copepod diapause and the biogeography of the marine lipidscape. J. Biogeogr. 45, 2238–2251 (2018).Article
Google Scholar
2.Conover, R. J. & Corner, E. D. S. Respiration and nitrogen excretion by some marine zooplankton in relation to their life cycles. J. Mar. Biol. Assoc. UK 48, 49–75 (1968).Article
Google Scholar
3.Kattner, G. et al. Perspectives on marine zooplankton lipids. Can. J. Fish. Aquat. Sci. 64, 1628–1639 (2007).CAS
Article
Google Scholar
4.Beaugrand, G., Brander, K. M., Lindley, J. A., Souissi, S. & Reid, P. C. Plankton effect on cod recruitment in the North Sea. Nature 426, 661–664 (2003).CAS
PubMed
Article
Google Scholar
5.Coyle, K. et al. Climate change in the southeastern Bering Sea: impacts on pollock stocks and implications for the oscillating control hypothesis. Fish. Oceanogr. 20, 139–156 (2011).Article
Google Scholar
6.Liu, H., Bi, H. & Peterson, W. T. Large-scale forcing of environmental conditions on subarctic copepods in the northern California Current system. Prog. Oceanogr. 134, 404–412 (2015).Article
Google Scholar
7.Peterson, W. T. et al. The pelagic ecosystem in the Northern California Current off Oregon during the 2014–2016 warm anomalies within the context of the past 20 years. J. Geophys. Res. Oceans 122, 7267–7290 (2017).PubMed
PubMed Central
Article
Google Scholar
8.Bi, H., Peterson, W. T., Lamb, J. & Casillas, E. Copepods and salmon: characterizing the spatial distribution of juvenile salmon along the Washington and Oregon coast, USA. Fish. Oceanogr. 20, 125–138 (2011).Article
Google Scholar
9.Kirby, R. R. & Beaugrand, G. Trophic amplification of climate warming. Proc. R. Soc. B 276, 4095–4103 (2009).PubMed
Article
Google Scholar
10.Hirche, H.-J. Temperature and plankton II. Effect on respiration and swimming activity in copepods from the Greenland Sea. Mar. Biol. 94, 347–356 (1987).Article
Google Scholar
11.Mahara, N., Pakhomov, E. A., Jackson, J. M. & Hunt, B. P. Seasonal zooplankton development in a temperate semi-enclosed basin: two years with different spring bloom timing. J. Plankton Res. 41, 309–328 (2019).CAS
Article
Google Scholar
12.Hooff, R. C. & Peterson, W. T. Copepod biodiversity as an indicator of changes in ocean and climate conditions of the northern California current ecosystem. Limnol. Oceanogr. 51, 2607–2620 (2006).Article
Google Scholar
13.Keister, J. E., Di Lorenzo, E., Morgan, C., Combes, V. & Peterson, W. Zooplankton species composition is linked to ocean transport in the Northern California Current. Glob. Change Biol. 17, 2498–2511 (2011).Article
Google Scholar
14.Johnson, C. L. et al. Characteristics of Calanus finmarchicus dormancy patterns in the Northwest Atlantic. ICES J. Mar. Sci. 65, 339–350 (2008).Article
Google Scholar
15.Ji, R. B., Edwards, M., Mackas, D. L., Runge, J. A. & Thomas, A. C. Marine plankton phenology and life history in a changing climate: current research and future directions. J. Plankton Res. 32, 1355–1368 (2010).PubMed
PubMed Central
Article
Google Scholar
16.Weydmann, A., Walczowski, W., Carstensen, J. & Kwaśniewski, S. Warming of Subarctic waters accelerates development of a key marine zooplankton Calanus finmarchicus. Glob. Change Biol. 24, 172–183 (2018).Article
Google Scholar
17.Niehoff, B., Madsen, S., Hansen, B. & Nielsen, T. Reproductive cycles of three dominant Calanus species in Disko Bay, West Greenland. Mar. Biol. 140, 567–576 (2002).Article
Google Scholar
18.Meise, C. J. & O’Reilly, J. E. Spatial and seasonal patterns in abundance and age-composition of Calanus finmarchicus in the Gulf of Maine and on Georges Bank: 1977–1987. Deep-Sea Res. II 43, 1473–1501 (1996).Article
Google Scholar
19.Fiksen, Ø. The adaptive timing of diapause–a search for evolutionarily robust strategies in Calanus finmarchicus. ICES J. Mar. Sci. 57, 1825–1833 (2000).Article
Google Scholar
20.Miller, C. B., Crain, J. A. & Morgan, C. A. Oil storage variability in Calanus finmarchicus. ICES J. Mar. Sci. 57, 1786–1799 (2000).Article
Google Scholar
21.Miller, C. B., Cowles, T. J., Wiebe, P. H., Copley, N. J. & Grigg, H. Phenology in Calanus finmarchicus – Hypotheses about control mechanisms. Mar. Ecol. Prog. Ser. 72, 79–91 (1991).Article
Google Scholar
22.Speirs, D. C. et al. Ocean-scale modelling of the distribution, abundance, and seasonal dynamics of the copepod Calanus finmarchicus. Mar. Ecol. Prog. Ser. 313, 173–192 (2006).Article
Google Scholar
23.Tarrant, A. M. et al. Transcriptional profiling of metabolic transitions during development and diapause preparation in the copepod Calanus finmarchicus. Integr. Comp. Biol. 56, 1157–1169 (2016).CAS
PubMed
Article
Google Scholar
24.Baumgartner, M. F. & Tarrant, A. M. The physiology and ecology of diapause in marine copepods. Annu. Rev. Mar. Sci. 9, 387–411 (2017).Article
Google Scholar
25.Wilson, R. J., Banas, N. S., Heath, M. R. & Speirs, D. C. Projected impacts of 21st century climate change on diapause in Calanus finmarchicus. Glob. Change Biol. 22, 3332–3340 (2016).Article
Google Scholar
26.Jónasdóttir, S. H., Visser, A. W., Richardson, K. & Heath, M. R. Seasonal copepod lipid pump promotes carbon sequestration in the deep North Atlantic. Proc. Natl Acad. Sci. USA. 112, 12122–12126 (2015).PubMed
Article
CAS
Google Scholar
27.Jónasdóttir, S. H., Wilson, R. J., Gislason, A. & Heath, M. R. Lipid content in overwintering Calanus finmarchicus across the Subpolar Eastern North Atlantic Ocean. Limnol. Oceanogr. 64, 2029–2043 (2019).Article
CAS
Google Scholar
28.Varpe, Ø. Fitness and phenology: annual routines and zooplankton adaptations to seasonal cycles. J. Plankton Res. 34, 267–276 (2012).Article
Google Scholar
29.Denlinger, D. L., Yocum, G. D. & Rinehart, J. P. in Insect Endocrinology (ed Gilbert, L. I.) 430–463 (Academic Press, 2012).30.Hirche, H. J. Diapause in the marine copepod, Calanus finmarchicus – a review. Ophelia 44, 129–143 (1996).Article
Google Scholar
31.Häfker, N. S. et al. Calanus finmarchicus seasonal cycle and diapause in relation to gene expression, physiology, and endogenous clocks. Limnol. Oceanogr. 63, 2815–2838 (2018).Article
Google Scholar
32.Roncalli, V. et al. Physiological characterization of the emergence from diapause: a transcriptomics approach. Sci. Rep. 8, 12577 (2018).PubMed
PubMed Central
Article
CAS
Google Scholar
33.Roncalli, V., Cieslak, M. C., Hopcroft, R. R. & Lenz, P. H. Capital breeding in a diapausing copepod: a transcriptomics analysis. Front. Mar. Sci. 7, 56 (2020).Article
Google Scholar
34.MacRae, T. H. Gene expression, metabolic regulation and stress tolerance during diapause. Cell. Mol. Life Sci. 67, 2405–2424 (2010).CAS
PubMed
Article
PubMed Central
Google Scholar
35.Poelchau, M. F., Reynolds, J. A., Elsik, C. G., Denlinger, D. L. & Armbruster, P. A. Deep sequencing reveals complex mechanisms of diapause preparation in the invasive mosquito, Aedes albopictus. Proc. R. Soc. B 280 (2013).36.Ragland, G. J. & Keep, E. Comparative transcriptomics support evolutionary convergence of diapause responses across Insecta. Physiol. Entomol. 42, 246–256 (2017).CAS
Article
Google Scholar
37.Koštál, V. Eco-physiological phases of insect diapause. J. Insect Physiol. 52, 113–127 (2006).PubMed
Article
CAS
PubMed Central
Google Scholar
38.Tarrant, A. M. et al. Transcriptional profiling of reproductive development, lipid storage and molting throughout the last juvenile stage of the marine copepod Calanus finmarchicus. Front. Zool. 11, 1 (2014).Article
CAS
Google Scholar
39.Jensen, L. K. et al. A multi-generation Calanus finmarchicus culturing system for use in long-term oil exposure experiments. J. Exp. Mar. Biol. Ecol. 333, 71–78 (2006).CAS
Article
Google Scholar
40.Cieslak, M. C., Castelfranco, A. M., Roncalli, V., Lenz, P. H. & Hartline, D. K. t-Distributed Stochastic Neighbor Embedding (t-SNE): a tool for eco-physiological transcriptomic analysis. Mar. Genomics 51, 100723 (2020).PubMed
Article
Google Scholar
41.van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. J. Mach. Learn. Res. 9, 2579–2605 (2008).
Google Scholar
42.Roncalli, V., Cieslak, M. C., Germano, M., Hopcroft, R. R. & Lenz, P. H. Regional heterogeneity impacts gene expression in the sub-arctic zooplankter Neocalanus flemingeri in the northern Gulf of Alaska. Commun. Biol. 2, 1–13 (2019).CAS
Article
Google Scholar
43.Johnson, K. M., Wong, J. M., Hoshijima, U., Sugano, C. S. & Hofmann, G. E. Seasonal transcriptomes of the Antarctic pteropod Limacina helicina antarctica. Mar. Env. Res. 143, 49–59 (2019).CAS
Article
Google Scholar
44.Denlinger, D. L. Regulation of diapause. Annu. Rev. Entomol. 47, 93–122 (2002).CAS
PubMed
Article
Google Scholar
45.Denlinger, D. L. & Armbruster, P. A. Mosquito diapause. Annu. Rev. Entomol. 59, 73–93 (2014).CAS
PubMed
Article
Google Scholar
46.Hahn, D. A. & Denlinger, D. L. Energetics of insect diapause. Annu. Rev. Entomol. 56, 103–121 (2011).CAS
PubMed
Article
Google Scholar
47.Sim, C. & Denlinger, D. L. Transcription profiling and regulation of fat metabolism genes in diapausing adults of the mosquito Culex pipiens. Physiol. Genomics 39, 202–209 (2009).CAS
PubMed
PubMed Central
Article
Google Scholar
48.Sim, C. & Denlinger, D. L. Insulin signaling and the regulation of insect diapause. Front. Physiol. 4, 189 (2013).49.Andrews, T. S. & Hemberg, M. Identifying cell populations with scRNASeq. Mol. Asp. Med. 59, 114–122 (2018).CAS
Article
Google Scholar
50.Habib, N. et al. Div-Seq: single-nucleus RNA-Seq reveals dynamics of rare adult newborn neurons. Science 353, 925–928 (2016).CAS
PubMed
PubMed Central
Article
Google Scholar
51.Arrese, E. L. & Soulages, J. L. Insect fat body: energy, metabolism, and regulation. Annu. Rev. Entomol. 55, 207–225 (2010).CAS
PubMed
PubMed Central
Article
Google Scholar
52.Hahn, D. A. & Denlinger, D. L. Meeting the energetic demands of insect diapause: nutrient storage and utilization. J. Insect Physiol. 53, 760–773 (2007).CAS
PubMed
Article
Google Scholar
53.Lee, R. F., Hagen, W. & Kattner, G. Lipid storage in marine zooplankton. Mar. Ecol. Prog. Ser. 307, 273–306 (2006).CAS
Article
Google Scholar
54.Kattner, G. & Hagen, W. Polar herbivorous copepods–different pathways in lipid biosynthesis. ICES J. Mar. Sci. 52, 329–335 (1995).Article
Google Scholar
55.Miller, C. B., Morgan, C. A., Prahl, F. G. & Sparrow, M. A. Storage lipids of the copepod Calanus finmarchicus from Georges Bank and the Gulf of Maine. Limnol. Oceanogr. 43, 488–497 (1998).CAS
Article
Google Scholar
56.Hirche, H. J. & Niehoff, B. Reproduction of the Arctic copepod Calanus hyperboreus in the Greenland Sea-field and laboratory observations. Pol. Biol. 16, 209–219 (1996).Article
Google Scholar
57.Niehoff, B. & Hirche, H.-J. Oogenesis and gonad maturation in the copepod Calanus finmarchicus and the prediction of egg production from preserved samples. Pol. Biol. 16, 601–612 (1996).Article
Google Scholar
58.Koštál, V., Štětina, T., Poupardin, R., Korbelová, J. & Bruce, A. W. Conceptual framework of the eco-physiological phases of insect diapause development justified by transcriptomic profiling. Proc. Natl Acad. Sci. USA. 114, 8532–8537 (2017).PubMed
Article
CAS
Google Scholar
59.Aruda, A. M., Baumgartner, M. F., Reitzel, A. M. & Tarrant, A. M. Heat shock protein expression during stress and diapause in the marine copepod Calanus finmarchicus. J. Insect Physiol. 57, 665–675 (2011).CAS
PubMed
Article
Google Scholar
60.Unal, E., Bucklin, A., Lenz, P. H. & Towle, D. W. Gene expression of the marine copepod Calanus finmarchicus: responses to small-scale environmental variation in the Gulf of Maine (NW Atlantic Ocean). J. Exp. Mar. Biol. Ecol. 446, 76–85 (2013).CAS
Article
Google Scholar
61.Ning, J., Wang, M. X., Li, C. L. & Sun, S. Transcriptome sequencing and de novo analysis of the copepod Calanus sinicus using 454 GS FLX. PLoS ONE 8, e63741 (2013).CAS
PubMed
PubMed Central
Article
Google Scholar
62.Zhang, Q., Lu, Y.-X. & Xu, W.-H. Proteomic and metabolomic profiles of larval hemolymph associated with diapause in the cotton bollworm, Helicoverpa armigera. BMC Genomics 14, 751 (2013).CAS
PubMed
PubMed Central
Article
Google Scholar
63.Hansen, M. et al. A role for autophagy in the extension of lifespan by dietary restriction in C. elegans. PLoS Genet. 4, e24 (2008).64.Qiu, Z. & MacRae, T. H. ArHsp21, a developmentally regulated small heat-shock protein synthesized in diapausing embryos of Artemia franciscana. Biochem. J. 411, 605–611 (2008).CAS
PubMed
Article
Google Scholar
65.Lu, M.-X. et al. Diapause, signal and molecular characteristics of overwintering Chilo suppressalis (Insecta: Lepidoptera: Pyralidae). Sci. Rep. 3, 1–9 (2013).CAS
Google Scholar
66.Forreryd, A., Johansson, H., Albrekt, A.-S. & Lindstedt, M. Evaluation of high throughput gene expression platforms using a genomic biomarker signature for prediction of skin sensitization. BMC Genomics 15, 379 (2014).PubMed
PubMed Central
Article
CAS
Google Scholar
67.Lenz, P. H. et al. De novo assembly of a transcriptome for Calanus finmarchicus (Crustacea, Copepoda)–the dominant zooplankter of the North Atlantic Ocean. PLoS ONE 9, e88589 (2014).PubMed
PubMed Central
Article
CAS
Google Scholar
68.Roncalli, V., Cieslak, M. C. & Lenz, P. H. Transcriptomic responses of the calanoid copepod Calanus finmarchicus to the saxitoxin producing dinoflagellate Alexandrium fundyense. Sci. Rep. 6, 25708 (2016).CAS
PubMed
PubMed Central
Article
Google Scholar
69.Roncalli, V., Cieslak, M. C. & Lenz, P. H. Data from: Transcriptomic responses of the calanoid copepod Calanus finmarchicus to the saxitoxin producing dinoflagellate Alexandrium fundyense. Dryad, Dataset (2016).70.Choquet, M. et al. Genetics redraws pelagic biogeography of Calanus. Biol. Lett. 13, 20170588 (2017).PubMed
PubMed Central
Article
Google Scholar
71.Choquet, M. et al. Can morphology reliably distinguish between the copepods Calanus finmarchicus and C. glacialis, or is DNA the only way? Limnol. Oceanogr.: Methods 16, 237–252 (2018).Article
Google Scholar
72.Skottene, E. et al. A crude awakening: effects of crude oil on lipid metabolism in calanoid copepods terminating diapause. Biol. Bull. 237, 90–110 (2019).CAS
PubMed
Article
Google Scholar
73.Melle, W. & Skjoldal, H. R. Reproduction and development of Calanus finmarchicus, C. glacialis and C. hyperboreus in the Barents Sea. Mar. Ecol. Prog. Ser. 169, 211–228 (1998).Article
Google Scholar
74.Weydmann, A. et al. Mitochondrial genomes of the key zooplankton copepods Arctic Calanus glacialis and North Atlantic Calanus finmarchicus with the longest crustacean non-coding regions. Sci. Rep. 7, 1–11 (2017).CAS
Article
Google Scholar
75.Lenz, P. H., Lieberman, B., Cieslak, M. C., Roncalli, V. & Hartline, D. K. Transcriptomics and metatranscriptomics in zooplankton: wave of the future? J. Plankton Res. 43, 3–9 (2021).Article
Google Scholar
76.Langmead, B., Trapnell, C., Pop, M. & Salzberg, S. L. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol. https://doi.org/10.1186/Gb-2009-10-3-R25 (2009).77.Mortazavi, A., Williams, B. A., McCue, K., Schaeffer, L. & Wold, B. Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat. Methods 5, 621 (2008).CAS
PubMed
Article
Google Scholar
78.van der Maaten, L. Accelerating t-SNE using tree-based algorithms. J. Mach. Learn. Res. 15, 3221–3245 (2014).
Google Scholar
79.Krijthe, J. H. Rtsne: t-Distributed Stochastic Neighbor Embedding using a Barnes-Hut implementation, version 0.13. (2015).80.Ester, M., Kriegel, H.-P., Sander, J. & Xu, X. A density-based algorithm for discovering clusters in large spatial databases with noise. Proc. Second International Conference on Knowledge Discovery and Data Mining (KDD-96) 96, 226–231 (1996).81.Dunn, J. C. Well-separated clusters and optimal fuzzy partitions. J. Cybern. 4, 95–104 (1974).Article
Google Scholar
82.Hahsler, M. & Piekenbrock, M. Dbscan: density based clustering of applications with noise (DBSCAN) and related algorithms. R. package version 1, 1–3 (2018).
Google Scholar
83.Desgraupes, B. ClusterCrit: Clustering Indices. R package version 1.2.8. (2018).84.Robinson, M. D., McCarthy, D. J. & Smyth, G. K. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26, 139–140 (2010).CAS
PubMed
Article
Google Scholar
85.Langfelder, P. & Horvath, S. WGCNA: an R package for weighted correlation network analysis. BMC Bioinforma. 9, 559 (2008).Article
CAS
Google Scholar
86.Zhang, B. & Horvath, S. A general framework for weighted gene co-expression network analysis. Stat. Appl. Genet. Mol. 4, 17 (2005).87.Supek, F., Bošnjak, M., Škunca, N. & Šmuc, T. REVIGO summarizes and visualizes long lists of gene ontology terms. PLoS ONE 6, e21800 (2011).CAS
PubMed
PubMed Central
Article
Google Scholar
88.Alexa, A. & Rahnenfuhrer, J. topGO: enrichment analysis for gene ontology. R. package version 2, 2010 (2010).
Google Scholar
89.Galili, T., O’Callaghan, A., Sidi, J. & Sievert, C. heatmaply: an R package for creating interactive cluster heatmaps for online publishing. Bioinformatics 34, 1600–1602 (2018).CAS
PubMed
Article
Google Scholar
90.Lenz, P. H. et al. Diapause vs. reproductive programs: transcriptional phenotypes in Calanus finmarchicus. Dryad, Dataset, https://doi.org/10.5061/dryad.12jm63xw7 (2021). More