Mapping the deforestation footprint of nations reveals growing threat to tropical forests
1.Pan, Y., Birdsey, R. A., Phillips, O. L. & Jackson, R. B. The structure, distribution, and biomass of the world’s forests. Annu. Rev. Ecol. Evol. Syst. 44, 593–622 (2013).
Google Scholar
2.UN FAO Global Forest Resources Assessment 2015: How Are the World’s Forests Changing? (FAO Interdepartmental Working Group, 2016).3.Douglas, I. in Encyclopedia of the Anthropocene (eds Dellasala, D. A. & Goldstein, M. I.) 185–197 (Elsevier, 2018); https://doi.org/10.1016/B978-0-12-809665-9.09206-54.Hassan, R., Scholes, R. & Ash, N. Ecosystems and Human Well-Being: Current State and Trends (Island Press, 2005).5.Giri, C. et al. Status and distribution of mangrove forests of the world using earth observation satellite data. Glob. Ecol. Biogeogr. 20, 154–159 (2011).
Google Scholar
6.Sievers, M. et al. The role of vegetated coastal wetlands for marine megafauna conservation. Trends Ecol. Evol. 34, 807–817 (2019).
Google Scholar
7.Houghton, R. A. The annual net flux of carbon to the atmosphere from changes in land use 1850–1990. Tellus B 51, 298–313 (1999).
Google Scholar
8.Giam, X. Global biodiversity loss from tropical deforestation. Proc. Natl Acad. Sci. USA 114, 5775–5777 (2017).CAS
Google Scholar
9.D’Almeida, C. et al. The effects of deforestation on the hydrological cycle in Amazonia: a review on scale and resolution. Int. J. Climatol. 27, 633–647 (2007).
Google Scholar
10.Laurance, W. F. et al. Ecosystem decay of amazonian forest fragments: a 22-year investigation. Conserv. Biol. 16, 605–618 (2002).
Google Scholar
11.Qin, Y. et al. Improved estimates of forest cover and loss in the Brazilian Amazon in 2000–2017. Nat. Sustain. 2, 764–772 (2019).
Google Scholar
12.Take action to stop Amazon burning. Nature 573, 163 (2019)13.Karstensen, J., Peters, G. P. & Andrew, R. M. Attribution of CO2 emissions from Brazilian deforestation to consumers between 1990 and 2010. Environ. Res. Lett. 8, 024005 (2013).
Google Scholar
14.Godar, J., Tizado, E. J. & Pokorny, B. Who is responsible for deforestation in the Amazon? A spatially explicit analysis along the Transamazon Highway in Brazil. For. Ecol. Manag. 267, 58–73 (2012).
Google Scholar
15.Seymour, F. & Harris, N. L. Reducing tropical deforestation. Science 365, 756 (2019).CAS
PubMed
PubMed Central
Google Scholar
16.de Area Leão Pereira, E. J., de Santana Ribeiro, L. C., da Silva Freitas, L. F. & de Barros Pereira, H. B. Brazilian policy and agribusiness damage the Amazon rainforest. Land Use Policy 92, 104491 (2020).
Google Scholar
17.Escobar, H. Deforestation in the Brazilian Amazon is still rising sharply. Science 369, 613 (2020).CAS
PubMed
PubMed Central
Google Scholar
18.Pendrill, F. et al. Agricultural and forestry trade drives large share of tropical deforestation emissions. Glob. Environ. Change 56, 1–10 (2019).
Google Scholar
19.Pendrill, F., Persson, U. M., Godar, J. & Kastner, T. Deforestation displaced: trade in forest-risk commodities and the prospects for a global forest transition. Environ. Res. Lett. 14, 055003 (2019).
Google Scholar
20.Hosonuma, N. et al. An assessment of deforestation and forest degradation drivers in developing countries. Environ. Res. Lett. 7, 044009 (2012).
Google Scholar
21.Jha, S. & Bawa, K. S. Population growth, human development, and deforestation in biodiversity hotspots. Conserv. Biol. 20, 906–912 (2006).CAS
PubMed
PubMed Central
Google Scholar
22.DeFries, R. S., Rudel, T., Uriarte, M. & Hansen, M. Deforestation driven by urban population growth and agricultural trade in the twenty-first century. Nat. Geosci. 3, 178–181 (2010).CAS
Google Scholar
23.Gibbs, H. K. et al. Tropical forests were the primary sources of new agricultural land in the 1980s and 1990s. Proc. Natl Acad. Sci. USA 107, 16732–16737 (2010).CAS
PubMed
PubMed Central
Google Scholar
24.Henders, S., Persson, U. M. & Kastner, T. Trading forests: land-use change and carbon emissions embodied in production and exports of forest-risk commodities. Environ. Res. Lett. 10, 125012 (2015).
Google Scholar
25.Lambin, E. F. et al. The role of supply-chain initiatives in reducing deforestation. Nat. Clim. Change 8, 109–116 (2018).
Google Scholar
26.Curtis, P. G., Slay, C. M., Harris, N. L., Tyukavina, A. & Hansen, M. C. Classifying drivers of global forest loss. Science 361, 1108–1111 (2018).CAS
PubMed
PubMed Central
Google Scholar
27.Chen, C. et al. China and India lead in greening of the world through land-use management. Nat. Sustain. 2, 122–129 (2019).PubMed
PubMed Central
Google Scholar
28.Saikku, L., Soimakallio, S. & Pingoud, K. Attributing land-use change carbon emissions to exported biomass. Environ. Impact Assess. Rev. 37, 47–54 (2012).
Google Scholar
29.Beckman, J., Sands, R. D., Riddle, A. A., Lee, T. & Walloga, J. M. International Trade and Deforestation: Potential Policy Effects via a Global Economic Model (USDA, 2017); https://ideas.repec.org/p/ags/uersrr/262185.html30.Cuypers, D. et al. The Impact of EU Consumption on Deforestation: Comprehensive Analysis of the Impact of EU consumption on Deforestation (European Commission, 2013).31.Zhang, Q. et al. Global timber harvest footprints of nations and virtual timber trade flows. J. Clean. Prod. 250, 119503 (2020).
Google Scholar
32.Hansen, M. C. et al. High-resolution global maps of 21st-century forest cover change. Science 342, 850–853 (2013).CAS
PubMed
PubMed Central
Google Scholar
33.Lenzen, M., Kanemoto, K., Moran, D. & Geschke, A. Mapping the structure of the world economy. Environ. Sci. Technol. 46, 8374–8381 (2012).CAS
PubMed
PubMed Central
Google Scholar
34.Lenzen, M., Moran, D., Kanemoto, K. & Geschke, A. Building Eora: a global multi-region input–output database at high country and sector resolution. Econ. Syst. Res. 25, 20–49 (2013).
Google Scholar
35.Chazdon, R. L. et al. When is a forest a forest? Forest concepts and definitions in the era of forest and landscape restoration. Ambio 45, 538–550 (2016).PubMed
PubMed Central
Google Scholar
36.Tropek, R. et al. Comment on ‘High-resolution global maps of 21st-century forest cover change’. Science 344, 981 (2014).CAS
PubMed
PubMed Central
Google Scholar
37.Moran, D. & Kanemoto, K. Identifying species threat hotspots from global supply chains. Nat. Ecol. Evol. 1, 0023 (2017).
Google Scholar
38.Forest Fact Book 2017–2018 (Government of Canada Publications, 2017).39.Crowther, T. W. et al. Mapping tree density at a global scale. Nature 525, 201–205 (2015).CAS
PubMed
PubMed Central
Google Scholar
40.Ericsson, K. & Werner, S. The introduction and expansion of biomass use in Swedish district heating systems. Biomass. Bioenergy 94, 57–65 (2016).
Google Scholar
41.Kennedy, C. & Southwood, T. The number of species of insects associated with British trees: a re-analysis. J. Anim. Ecol. 53, 455–478 (1984).
Google Scholar
42.Braun, A. C. H. et al. Assessing the impact of plantation forestry on plant biodiversity: a comparison of sites in Central Chile and Chilean Patagonia. Glob. Ecol. Conserv. 10, 159–172 (2017).
Google Scholar
43.Kang, D., Wang, X., Li, S. & Li, J. Comparing the plant diversity between artificial forest and nature growth forest in a giant panda habitat. Sci. Rep. 7, 3561 (2017).PubMed
PubMed Central
Google Scholar
44.Gamfeldt, L. et al. Higher levels of multiple ecosystem services are found in forests with more tree species. Nat. Commun. 4, 1340 (2013).PubMed
PubMed Central
Google Scholar
45.Erwin, T. L. Tropical forests: their richness in Coleoptera and other arthropod species. Coleopt. Bull. 36, 74–75 (1982).
Google Scholar
46.Gibson, L. et al. Primary forests are irreplaceable for sustaining tropical biodiversity. Nature 478, 378–381 (2011).CAS
PubMed
PubMed Central
Google Scholar
47.Dirzo, R. & Raven, P. H. Global state of biodiversity and loss. Annu. Rev. Environ. Resour. 28, 137–167 (2003).
Google Scholar
48.Bradford, M. & Murphy, H. T. The importance of large-diameter trees in the wet tropical rainforests of Australia. PLoS ONE 14, e0208377 (2019).PubMed
PubMed Central
Google Scholar
49.Lenzen, M. et al. International trade drives biodiversity threats in developing nations. Nature 486, 109–112 (2012).CAS
PubMed
PubMed Central
Google Scholar
50.Chaudhary, A. & Kastner, T. Land use biodiversity impacts embodied in international food trade. Glob. Environ. Change 38, 195–204 (2016).
Google Scholar
51.Wilting, H. C., Schipper, A. M., Bakkenes, M., Meijer, J. R. & Huijbregts, M. A. J. Quantifying biodiversity losses due to human consumption: a global-scale footprint analysis. Environ. Sci. Technol. 51, 3298–3306 (2017).CAS
PubMed
PubMed Central
Google Scholar
52.Weinzettel, J., Vačkář, D. & Medková, H. Human footprint in biodiversity hotspots. Front. Ecol. Environ. 16, 447–452 (2018).
Google Scholar
53.Marques, A. et al. Increasing impacts of land use on biodiversity and carbon sequestration driven by population and economic growth. Nat. Ecol. Evol. 3, 628–637 (2019).PubMed
PubMed Central
Google Scholar
54.Godar, J., Persson, U. M., Tizado, E. J. & Meyfroidt, P. Towards more accurate and policy relevant footprint analyses: tracing fine-scale socio-environmental impacts of production to consumption. Ecol. Econ. 112, 25–35 (2015).
Google Scholar
55.Furumo, P. R. & Lambin, E. F. Scaling up zero-deforestation initiatives through public-private partnerships: a look inside post-conflict Colombia. Glob. Environ. Change 62, 102055 (2020).
Google Scholar
56.Garrett, R. D. et al. Criteria for effective zero-deforestation commitments. Glob. Environ. Change 54, 135–147 (2019).
Google Scholar
57.Blackman, A., Goff, L. & Rivera Planter, M. Does eco-certification stem tropical deforestation? Forest stewardship council certification in mexico. J. Environ. Econ. Manag. 89, 306–333 (2018).
Google Scholar
58.Protecting and Restoring Forests: A Story of Large Commitments yet Limited Progress. New York Declaration on Forests Five-Year Assessment Report (NYDF Assessment Partners, 2019).59.Meijer, K. S. A comparative analysis of the effectiveness of four supply chain initiatives to reduce deforestation. Trop. Conserv. Sci. 8, 583–597 (2015).
Google Scholar
60.Carvalho, W. D. et al. Deforestation control in the brazilian amazon: a conservation struggle being lost as agreements and regulations are subverted and bypassed. Perspect. Ecol. Conserv. 17, 122–130 (2019).
Google Scholar
61.Green, J. M. H. et al. Linking global drivers of agricultural trade to on-the-ground impacts on biodiversity. Proc. Natl Acad. Sci. USA 116, 23202–23208 (2019).CAS
PubMed
PubMed Central
Google Scholar
62.Nolte, C., le Polain de Waroux, Y., Munger, J., Reis, T. N. P. & Lambin, E. F. Conditions influencing the adoption of effective anti-deforestation policies in South America’s commodity frontiers. Glob. Environ. Change 43, 1–14 (2017).
Google Scholar
63.Godar, J., Gardner, T. A., Tizado, E. J. & Pacheco, P. Actor-specific contributions to the deforestation slowdown in the Brazilian Amazon. Proc. Natl Acad. Sci. USA 111, 15591–15596 (2014).CAS
PubMed
PubMed Central
Google Scholar
64.Alix-Garcia, J. M., Sims, K. R. E. & Yañez-Pagans, P. Only one tree from each seed? Environmental effectiveness and poverty alleviation in Mexico’s payments for ecosystem services program. Am. Econ. J.: Econ. Policy 7, 1–40 (2015).
Google Scholar
65.Alix-Garcia, J. M. et al. Payments for environmental services supported social capital while increasing land management. Proc. Natl Acad. Sci. USA 115, 7016–7021 (2018).CAS
PubMed
PubMed Central
Google Scholar
66.Börner, J. et al. The effectiveness of payments for environmental services. World Dev. 96, 359–374 (2017).
Google Scholar
67.Jayachandran, S. et al. Cash for carbon: a randomized trial of payments for ecosystem services to reduce deforestation. Science 357, 267–273 (2017).CAS
PubMed
PubMed Central
Google Scholar
68.Annual Review 2017 (PEFC, 2017).69.Higgins, V. & Richards, C. Framing sustainability: alternative standards schemes for sustainable palm oil and South–South trade. J. Rural Stud. 65, 126–134 (2019).
Google Scholar
70.Gibbs, H. K. et al. Brazil’s soy moratorium. Science 347, 377–378 (2015).CAS
Google Scholar
71.World Countries (ArcGIS, 2020); https://www.arcgis.com/home/item.html?id=d974d9c6bc924ae0a2ffea0a46d71e3d72.Hansen, M. et al. Response to comment on ‘High-resolution global maps of 21st-century forest cover change’. Science 344, 981 (2014).CAS
PubMed
PubMed Central
Google Scholar
73.Kanemoto, K., Lenzen, M., Peters, G. P., Moran, D. D. & Geschke, A. Frameworks for comparing emissions associated with production, consumption, and international trade. Environ. Sci. Technol. 46, 172–179 (2012).CAS
Google Scholar
74.Moran, D. & Kanemoto, K. Tracing global supply chains to air pollution hotspots. Environ. Res. Lett. 11, 094017 (2016).
Google Scholar
75.Kanemoto, K., Moran, D. & Hertwich, E. G. Mapping the carbon footprint of nations. Environ. Sci. Technol. 50, 10512–10517 (2016).CAS
PubMed
PubMed Central
Google Scholar
76.Yang, Y. et al. Mapping global carbon footprint in China. Nat. Commun. 11, 2237 (2020).CAS
PubMed
PubMed Central
Google Scholar
77.Sun, Z., Scherer, L., Tukker, A. & Behrens, P. Linking global crop and livestock consumption to local production hotspots. Glob. Food Sec. 25, 100323 (2020).
Google Scholar
78.Global Forest Resource Assessment 2000 FAO Forestry Paper 140 (FAO, 2001).79.Sasaki, N. & Putz, F. E. Critical need for new definitions of ‘forest’ and ‘forest degradation’ in global climate change agreements. Conserv. Lett. 2, 226–232 (2009).
Google Scholar
80.Ceccherini, G. et al. Abrupt increase in harvested forest area over Europe after 2015. Nature 583, 72–77 (2020).CAS
PubMed
PubMed Central
Google Scholar
81.Lenzen, M. et al. The Global MRIO Lab – charting the world economy. Econ. Syst. Res. 29, 158–186 (2017).
Google Scholar
82.Moran, D., Giljum, S., Kanemoto, K. & Godar, J. From satellite to supply chain: new approaches connect earth observation to economic decisions. One Earth 3, 5–8 (2020).
Google Scholar
83.You, L., Wood, S., Wood-Sichra, U. & Wu, W. Generating global crop distribution maps: from census to grid. Agric. Syst. 127, 53–60 (2014).
Google Scholar More