1.Perissinotto, R., Mayzaud, P., Nichols, P. D. & Labat, J. P. Grazing by Pyrosoma atlanticum (Tunicata, Thaliacea) in the south Indian Ocean. Mar. Ecol. Prog. Ser. 330, 1–11 (2007).CAS
Article
Google Scholar
2.Drits, A. V., Arashkevich, E. G. & Semenova, T. N. Pyrosoma atlanticum (Tunicata, Thaliacea): grazing impact on phytoplankton standing stock and role in organic carbon flux. J. Plankton Res. 14, 799–809 (1992).Article
Google Scholar
3.Henschke, N. et al. Large vertical migrations of Pyrosoma atlanticum play an important role in active carbon transport. J. Geophys. Res. Biogeosci. 124, 1056–1070 (2019).Article
Google Scholar
4.Schram, J. B., Sorensen, H. L., Brodeur, R. D., Galloway, A. W. E. & Sutherland, K. R. Abundance, distribution, and feeding ecology of Pyrosoma atlanticum in the Northern California Current. Mar. Ecol. Prog. Ser. 651, 97–110 (2020).5.O’Loughlin, J. H. et al. Implications of Pyrosoma atlanticum range expansion on phytoplankton standing stocks in the Northern California Current. Prog. Oceanogr. 188, 102424 (2020).6.Hobson, E. S. & Chess, J. Trophic relations of the blue rockfish, Sebastes mystinus, in a coastal upwelling system off northern California. in Fishery Bulletin, Vol. 86, 715–743 (National Marine Fisheries Service, 1988).7.Bulman, C. M., He, X. & Koslow, J. A. Trophic ecology of the mid-slope demersal fish community off Southern Tasmania, Australia. Mar. Freshw. Res. 53, 59–72 (2002).Article
Google Scholar
8.Harbison, G. R. The parasites and predators of Thaliacea. in The Biology of Pelagic Tunicates (Oxford University Press, 1998).9.James, G. D. & Stahl, J. -C. Diet of southern Buller’s albatross (Diomedea bulleri bulleri) and the importance of fishery discards during chick rearing. N. Z. J. Mar. Freshw. Res. 34, 435–454 (2000).Article
Google Scholar
10.Hedd, A. & Gales, R. The diet of shy albatrosses (Thalassarche cauta) at Albatross Island, Tasmania. J. Zool. 253, 69–90 (2001).Article
Google Scholar
11.Childerhouse, S., Dix, B. & Gales, N. Diet of New Zealand sea lions (Phocarctos hookeri) at the Auckland Islands. Wildl. Res. 28, 291–298 (2001).Article
Google Scholar
12.Lindley, J. A., Hernández, F., Scatllar, J. & Docoito, J. Funchalia sp. (Crustacea: Penaeidae) associated with Pyrosoma atlanticum (Thaliacea: Pyrosomidae) off the Canary Islands. J. Mar. Biol. Assoc. UK 81, 173–174 (2001).Article
Google Scholar
13.Lebrato, M. & Jones, D. O. B. Mass deposition event of Pyrosoma atlanticum carcasses off Ivory Coast (West Africa). Limnol. Oceanogr. 54, 1197–1209 (2009).CAS
Article
Google Scholar
14.Archer, S. K. et al. Pyrosome consumption by benthic organisms during blooms in the northeast Pacific and Gulf of Mexico. Ecology 99, 981–984 (2018).PubMed
Article
PubMed Central
Google Scholar
15.McFall-Ngai, M. et al. Animals in a bacterial world, a new imperative for the life sciences. Proc. Natl Acad. Sci. 110, 3229–3236 (2013).CAS
PubMed
Article
PubMed Central
Google Scholar
16.Sherr E. & Sherr B. Understanding roles of microbes in marine pelagic food webs: a brief history. in Microbial Ecology of the Oceans 27–44 (John Wiley & Sons Ltd, 2008).17.Falkowski, P. G., Fenchel, T. & Delong, E. F. The microbial engines that drive earth’s biogeochemical cycles. Science 320, 1034–1039 (2008).CAS
PubMed
Article
PubMed Central
Google Scholar
18.Décima, M., Stukel, M. R., López-López, L. & Landry, M. R. The unique ecological role of pyrosomes in the Eastern Tropical Pacific. Limnol. Oceanogr. 64, 728–743 (2019).Article
Google Scholar
19.Gauns, M., Mochemadkar, S., Pratihary, A., Roy, R. & Naqvi, S. W. A. Biogeochemistry and ecology of Pyrosoma spinosum from the Central Arabian Sea. Zool. Stud. 54, 3 (2015).Article
CAS
Google Scholar
20.Bowlby, M. R., Widder, E. A. & Case, J. F. Patterns of stimulated bioluminescence in two pyrosomes (Tunicata: Pyrosomatidae). Biol. Bull. 179, 340–350 (1990).CAS
PubMed
Article
PubMed Central
Google Scholar
21.Haddock, S. H. D., Moline, M. A. & Case, J. F. Bioluminescence in the sea. Annu. Rev. Mar. Sci. 2, 443–493 (2010).Article
Google Scholar
22.Swift, E., Biggley, W. H. & Napora, T. A. The bioluminescence emission spectra of Pyrosoma atlanticum, P. spinosum (Tunicata), Euphausia tenera (Crustacea) and Gonostoma sp. (Pisces). J. Mar. Biol. Assoc. UK 57, 817–823 (1977).23.Martínez‐García, M. et al. Ammonia-oxidizing Crenarchaeota and nitrification inside the tissue of a colonial ascidian. Environ. Microbiol. 10, 2991–3001 (2008).PubMed
Article
CAS
PubMed Central
Google Scholar
24.Donia, M. S. et al. Complex microbiome underlying secondary and primary metabolism in the tunicate-Prochloron symbiosis. Proc. Natl Acad. Sci. 108, E1423–E1432 (2011).CAS
PubMed
Article
PubMed Central
Google Scholar
25.Kwan, J. C. et al. Host control of symbiont natural product chemistry in cryptic populations of the tunicate Lissoclinum patella. PLoS ONE 9, e95850 (2014).PubMed
PubMed Central
Article
CAS
Google Scholar
26.Purcell, J. E. & Arai, M. N. Interactions of pelagic cnidarians and ctenophores with fish: a review. Hydrobiologia. 451, 27–44 (2001).Article
Google Scholar
27.Delannoy, C. M. J., Houghton, J. D. R., Fleming, N. E. C. & Ferguson, H. W. Mauve stingers (Pelagia noctiluca) as carriers of the bacterial fish pathogen Tenacibaculum maritimum. Aquaculture. 311, 255–257 (2011).Article
Google Scholar
28.Lee, M. D., Kling, J. D., Araya, R. & Ceh, J. Jellyfish life stages shape associated microbial communities, while a core microbiome is maintained across all. Front. Microbiol. 9, 1534 (2018).29.Troussellier, M., Escalas, A., Bouvier, T. & Mouillot, D. Sustaining rare marine microorganisms: macroorganisms as repositories and dispersal agents of microbial diversity. Front. Microbiol. 8 (2017).30.Brodeur, R. et al. An unusual gelatinous plankton event in the NE Pacific: the Great Pyrosome Bloom of 2017. PICES Press; Sidney Vol. 26, 22–27 (Winter, 2018).31.Sutherland, K. R., Sorensen, H. L., Blondheim, O. N., Brodeur, R. D. & Galloway, A. W. E. Range expansion of tropical pyrosomes in the northeast Pacific Ocean. Ecology 99, 2397–2399 (2018).PubMed
Article
PubMed Central
Google Scholar
32.Miller, R. R. et al. Distribution of pelagic Thaliaceans, Thetys vagina and Pyrosoma Atlanticum, during a period of mass occurrence within the California current. CalCOFI Rep. 60, (2019).33.Guigand, C. M., Cowen, R. K., Llopiz, J. K. & Richardson, D. E. A coupled asymmetrical multiple opening closing net with environmental sampling system. Mar. Technol. Soc. J. 39, 22–24 (2005).34.Parada, A. E., Needham, D. M. & Fuhrman, J. A. Every base matters: assessing small subunit rRNA primers for marine microbiomes with mock communities, time series and global field samples. Environ. Microbiol. 18, 1403–1414 (2016).CAS
PubMed
Article
PubMed Central
Google Scholar
35.Callahan, B. J. et al. DADA2: high-resolution sample inference from Illumina amplicon data. Nat. Methods 13, 581–583 (2016).CAS
PubMed
PubMed Central
Article
Google Scholar
36.Cole, J. R. et al. Ribosomal Database Project: data and tools for high throughput rRNA analysis. Nucleic Acids Res. 42, D633–D642 (2014).CAS
Article
Google Scholar
37.Wang, Q., Garrity, G. M., Tiedje, J. M. & Cole, J. R. Naïve Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl. Environ. Microbiol. 73, 5261–5267 (2007).CAS
PubMed
PubMed Central
Article
Google Scholar
38.O’Leary, N. A. et al. Reference sequence (RefSeq) database at NCBI: current status, taxonomic expansion, and functional annotation. Nucleic Acids Res. 44, D733–D745 (2016).PubMed
Article
CAS
PubMed Central
Google Scholar
39.Johnson, M. et al. NCBI BLAST: a better web interface. Nucleic Acids Res. 36, W5–W9 (2008).CAS
PubMed
PubMed Central
Article
Google Scholar
40.McMurdie, P. J. & Holmes, S. phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE 8, e61217 (2013).CAS
PubMed
PubMed Central
Article
Google Scholar
41.Clarke, K. R. Non-parametric multivariate analyses of changes in community structure. Aust. J. Ecol. 18, 117–143 (1993).Article
Google Scholar
42.Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).PubMed
PubMed Central
Article
CAS
Google Scholar
43.McMurdie, P. J. & Holmes, S. Waste not, want not: why rarefying microbiome data is inadmissible. PLoS Comput. Biol. 10, e1003531 (2014).PubMed
PubMed Central
Article
CAS
Google Scholar
44.Duperron, S. Microbial Symbioses 168 p. (Elsevier, 2016).45.Schmitt, S. et al. Assessing the complex sponge microbiota: core, variable and species-specific bacterial communities in marine sponges. ISME J. 6, 564–576 (2012).CAS
PubMed
Article
PubMed Central
Google Scholar
46.Gloor, G. B., Macklaim, J. M., Pawlowsky-Glahn, V. & Egozcue, J. J. Microbiome datasets are compositional: and this is not optional. Front. Microbiol. 8 (2017).47.Urbanczyk, H., Ast, J. C., Higgins, M. J., Carson, J. & Dunlap, P. V. Reclassification of Vibrio fischeri, Vibrio logei, Vibrio salmonicida and Vibrio wodanis as Aliivibrio fischeri gen. nov., comb. nov., Aliivibrio logei comb. nov., Aliivibrio salmonicida comb. nov. and Aliivibrio wodanis comb. nov. Int. J. Syst. Evol. Microbiol. 57, 2823–2829 (2007).CAS
PubMed
Article
PubMed Central
Google Scholar
48.Stecher, G., Tamura, K. & Kumar, S. Molecular Evolutionary Genetics Analysis (MEGA) for macOS. Mol. Biol. Evol. 37, 1237–1239 (2020).CAS
PubMed
PubMed Central
Article
Google Scholar
49.Letunic, I. & Bork, P. Interactive Tree Of Life (iTOL) v4: recent updates and new developments. Nucleic Acids Res. 47, W256–W259 (2019).CAS
PubMed
PubMed Central
Article
Google Scholar
50.Booth, B. C. Marine phytoplankton. A guide to naked flagellates and coccolithophorids (C. R. Tomas [ed.]). Limnol. Oceanogr. 39, 982–983 (1994).Article
Google Scholar
51.Halse, G. R. & Syvertsen, E. E. Chapter 2—marine diatoms. in Identifying Marine Diatoms and Dinoflagellates (ed. Tomas C. R.) 5–385 (Academic Press, 1996).52.Steidinger, K. A. & Tangen, K. Chapter 3—dinoflagellates. in Identifying Marine Diatoms and Dinoflagellates (ed. Tomas C. R.) 387–584 (Academic Press, 1996).53.Daniels, C. & Breitbart, M. Bacterial communities associated with the ctenophores Mnemiopsis leidyi and Beroe ovata. FEMS Microbiol. Ecol. 82, 90–101 (2012).CAS
PubMed
Article
PubMed Central
Google Scholar
54.Kramar, M. K., Tinta, T., Lučić, D., Malej, A. & Turk, V. Bacteria associated with moon jellyfish during bloom and post-bloom periods in the Gulf of Trieste (northern Adriatic). PLoS ONE 14, e0198056 (2019).Article
CAS
Google Scholar
55.Hernandez-Agreda, A., Leggat, W., Bongaerts, P., Herrera, C. & Ainsworth, T. D. Rethinking the coral microbiome: simplicity exists within a diverse microbial biosphere. mBio 9, e00812–18 (2018).56.Webster, N. S. & Bourne, D. Bacterial community structure associated with the Antarctic soft coral, Alcyonium antarcticum. FEMS Microbiol. Ecol. 59, 81–94 (2007).CAS
PubMed
Article
PubMed Central
Google Scholar
57.Rodrigues, C. F., Hilário, A., Cunha, M. R., Weightman, A. J. & Webster, G. Microbial diversity in Frenulata (Siboglinidae, Polychaeta) species from mud volcanoes in the Gulf of Cadiz (NE Atlantic). Antonie Van Leeuwenhoek 100, 83–98 (2011).PubMed
Article
PubMed Central
Google Scholar
58.McCann, J., Stabb, E. V., Millikan, D. S. & Ruby, E. G. Population dynamics of Vibrio fischeri during Infection of Euprymna scolopes. Appl. Environ. Microbiol. 69, 5928–5934 (2003).CAS
PubMed
PubMed Central
Article
Google Scholar
59.Hammann, S., Moss, A. & Zimmer, M. Sterile surfaces of Mnemiopsis leidyi; (Ctenophora) in bacterial suspension—a key to invasion success? Open J. Mar. Sci. 05, 237–246 (2015).Article
Google Scholar
60.Hammer, T. J., Sanders, J. G. & Fierer, N. Not all animals need a microbiome. FEMS Microbiol. Lett. 366, fnz117 https://doi.org/10.1093/femsle/fnz117 (2019).61.Nedashkovskaya, O. I., Kukhlevskiy, A. D., Zhukova, N. V. & Kim, S. B. Amylibacter ulvae sp. nov., a new alphaproteobacterium isolated from the Pacific green alga Ulva fenestrata. Arch. Microbiol. 198, 251–256 (2016).CAS
PubMed
Article
PubMed Central
Google Scholar
62.Burke, C., Thomas, T., Lewis, M., Steinberg, P. & Kjelleberg, S. Composition, uniqueness and variability of the epiphytic bacterial community of the green alga Ulva australis. ISME J. 5, 590–600 (2011).CAS
PubMed
Article
PubMed Central
Google Scholar
63.Catão, E. C. P. et al. Shear stress as a major driver of marine biofilm communities in the NW Mediterranean Sea. Front. Microbiol. 10 (2019).64.Chafee, M. et al. Recurrent patterns of microdiversity in a temperate coastal marine environment. ISME J. 12, 237–252 (2018).PubMed
Article
PubMed Central
Google Scholar
65.Bondoso, J. et al. Roseimaritima ulvae gen. nov., sp. nov. and Rubripirellula obstinata gen. nov., sp. nov. two novel planctomycetes isolated from the epiphytic community of macroalgae. Syst. Appl. Microbiol. 38, 8–15 (2015).PubMed
Article
PubMed Central
Google Scholar
66.Zhu, P., Li, Q. & Wang, G. Unique microbial signatures of the Alien Hawaiian marine sponge Suberites zeteki. Microb. Ecol. 55, 406–414 (2008).PubMed
Article
PubMed Central
Google Scholar
67.Pimentel-Elardo, S., Wehrl, M., Friedrich, A. B., Jensen, P. R. & Hentschel, U. Isolation of planctomycetes from Aplysina sponges. Aquat. Microb. Ecol. 33, 239–245 (2003).Article
Google Scholar
68.da Silva Oliveira, F. A. et al. Microbial epibionts of the colonial ascidians Didemnum galacteum and Cystodytes sp. Symbiosis 59, 57–63 (2013).Article
Google Scholar
69.Yakimov, M. M. et al. Phylogenetic survey of metabolically active microbial communities associated with the deep-sea coral Lophelia pertusa from the Apulian plateau, Central Mediterranean Sea. Deep Sea Res. A Oceanogr. Res. Pap. 53, 62–75 (2006).Article
Google Scholar
70.Duque-Alarcón, A., Santiago-Vázquez, L. Z. & Kerr, R. G. A microbial community analysis of the octocoral Eunicea fusca. Electron. J. Biotechnol. 15, 15–15 (2012).
Google Scholar
71.Wiegand, S., Jogler, M. & Jogler, C. On the maverick Planctomycetes. FEMS Microbiol. Rev. 42, 739–760 (2018).CAS
PubMed
Article
PubMed Central
Google Scholar
72.Lage, O. M. & Bondoso, J. Planctomycetes and macroalgae, a striking association. Front. Microbiol. 5 (2014).73.Ward, A. C. & Bora, N. Diversity and biogeography of marine Actinobacteria. Curr. Opin. Microbiol. 9, 279–286 (2006).CAS
PubMed
Article
PubMed Central
Google Scholar
74.Hahn, M. W. Description of seven candidate species affiliated with the phylum Actinobacteria, representing planktonic freshwater bacteria. Int. J. Syst. Evol. Microbiol. 59, 112–117 (2009).CAS
PubMed
PubMed Central
Article
Google Scholar
75.Gandhimathi, R. et al. Antimicrobial potential of sponge associated marine actinomycetes. J. Mycol. Méd. 18, 16–22 (2008).Article
Google Scholar
76.Abdelmohsen, U. R., Bayer, K. & Hentschel, U. Diversity, abundance and natural products of marine sponge-associated actinomycetes. Nat. Prod. Rep. 31, 381–399 (2014).CAS
PubMed
Article
PubMed Central
Google Scholar
77.Wu, Z. et al. A new tetrodotoxin-producing actinomycete, Nocardiopsis dassonvillei, isolated from the ovaries of puffer fish Fugu rubripes. Toxicon. 45, 851–859 (2005).CAS
PubMed
Article
PubMed Central
Google Scholar
78.Reichenbach, H. The ecology of the myxobacteria. Environ. Microbiol. 1, 15–21 (1999).CAS
PubMed
Article
PubMed Central
Google Scholar
79.Marshall, R. C. & Whitworth, D. E. Is “Wolf-Pack” predation by antimicrobial bacteria cooperative? Cell behaviour and predatory mechanisms indicate profound selfishness, even when working alongside Kin. BioEssays 41, 1800247 (2019).Article
Google Scholar
80.Welsh, R. M. et al. Bacterial predation in a marine host-associated microbiome. ISME J. 10, 1540–1544 (2016).CAS
PubMed
Article
PubMed Central
Google Scholar
81.Wang, Z., Kadouri, D. E. & Wu, M. Genomic insights into an obligate epibiotic bacterial predator: Micavibrio aeruginosavorus ARL-13. BMC Genomics 12, 453 (2011).CAS
PubMed
PubMed Central
Article
Google Scholar
82.Garcia, G. D. et al. Metagenomic analysis of healthy and white plague-affected Mussismilia braziliensis corals. Microb. Ecol. 65, 1076–1086 (2013).PubMed
Article
PubMed Central
Google Scholar
83.Rosales, S. M. et al. Microbiome differences in disease-resistant vs. susceptible Acropora corals subjected to disease challenge assays. Sci. Rep. 9, 18279 (2019).CAS
PubMed
PubMed Central
Article
Google Scholar
84.Evans, A. G. L. et al. Predatory activity of Myxococcus xanthus outer-membrane vesicles and properties of their hydrolase cargo. Microbiology 158, 2742–2752 (2012).CAS
PubMed
Article
PubMed Central
Google Scholar
85.Sudo, S. & Dworkin, M. Bacteriolytic enzymes produced by Myxococcus xanthus. J. Bacteriol. 110, 236–245 (1972).CAS
PubMed
PubMed Central
Article
Google Scholar
86.Tessler, M. et al. A putative chordate luciferase from a cosmopolitan tunicate indicates convergent bioluminescence evolution across phyla. Sci. Rep. 10, 17724 (2020).CAS
PubMed
PubMed Central
Article
Google Scholar
87.Berger, A. et al. Microscopic and Genetic Characterization of Bacterial Symbionts With Bioluminescent Potential in Pyrosoma Atlanticum. Frontiers in Marine Science. 8 https://doi.org/10.3389/fmars.2021.606818 (2021).88.Leisman, G., Cohn, D. H. & Nealson, K. H. Bacterial origin of luminescence in marine animals. Science 208, 1271–1273 (1980).CAS
PubMed
Article
PubMed Central
Google Scholar
89.Mackie, G. O. & Bone, Q. Luminescence and associated effector activity in Pyrosoma (Tunicata: Pyrosomida). Proc. R. Soc. Lond. B Biol. Sci. 202, 483–495 (1978).Article
Google Scholar
90.Nyholm, S. V. & McFall-Ngai, M. The winnowing: establishing the squid–vibrio symbiosis. Nat. Rev. Microbiol. 2, 632–642 (2004).CAS
PubMed
Article
PubMed Central
Google Scholar
91.Takemura, A. F., Chien, D. M. & Polz M. F. Associations and dynamics of Vibrionaceae in the environment, from the genus to the population level. Front. Microbiol. 5 (2014).92.Barnes, E. M., Carter, E. L. & Lewis, J. D. Predicting microbiome function across space is confounded by strain-level differences and functional redundancy across taxa. Front. Microbiol. 11 (2020).93.Tian, L. et al. Deciphering functional redundancy in the human microbiome. bioRxiv 176313 https://doi.org/10.1101/176313 (2017).94.Kaeding, A. J. et al. Phylogenetic diversity and cosymbiosis in the bioluminescent symbioses of “Photobacterium mandapamensis”. Appl. Environ. Microbiol. 73, 3173–3182 (2007).CAS
PubMed
PubMed Central
Article
Google Scholar
95.Baker, L. J. et al. Diverse deep-sea anglerfishes share a genetically reduced luminous symbiont that is acquired from the environment. eLife 8 e47606 (2019).96.Godeaux, J. E. A., Bone, Q. & Braconnot, J. C. Anatomy of Thaliacea. in The Biology of Pelagic Tunicates (Oxford University Press, 1998).97.Alldredge, A. L. & Madin, L. P. Pelagic tunicates: unique herbivores in the marine plankton. BioScience. 32, 655–663 (1982).Article
Google Scholar
98.Bone, Q., Carre, C. & Ryan, K. P. The endostyle and the feeding filter in salps (Tunicata). J. Mar. Biol. Assoc. UK 80, 523–534 (2000).Article
Google Scholar
99.Sutherland, K. R., Madin, L. P. & Stocker, R. Filtration of submicrometer particles by pelagic tunicates. Proc. Natl Acad. Sci. 107, 15129–15134 (2010).CAS
PubMed
Article
PubMed Central
Google Scholar
100.Dadon-Pilosof, A. et al. Surface properties of SAR11 bacteria facilitate grazing avoidance. Nat. Microbiol. 2, 1608–1615 (2017).PubMed
Article
PubMed Central
Google Scholar
101.Larson, R. J. Daily ration and predation by medusae and ctenophores in Saanich Inlet, B.C., Canada. Neth. J. Sea Res. 21, 35–44 (1987).Article
Google Scholar
102.Suchman, C. L., Daly, E. A., Keister, J. E., Peterson, W. T. & Brodeur, R. D. Feeding patterns and predation potential of scyphomedusae in a highly productive upwelling region. Mar. Ecol. Prog. Ser. 358, 161–172 (2008).Article
Google Scholar
103.Bennke, C. M. et al. The distribution of phytoplankton in the Baltic Sea assessed by a prokaryotic 16S rRNA gene primer system. J. Plankton Res. 40, 244–254 (2018).CAS
Article
Google Scholar
104.Green, B. R. Chloroplast genomes of photosynthetic eukaryotes. Plant J. 66, 34–44 (2011).CAS
PubMed
Article
PubMed Central
Google Scholar
105.Luo, J. Y. et al. Gelatinous zooplankton-mediated carbon flows in the global oceans: a data-driven modeling study. Glob. Biogeochem. Cycles. 34, e2020GB006704 (2020).106.Dadon‐Pilosof, A., Lombard, F., Genin, A., Sutherland, K. R. & Yahel, G. Prey taxonomy rather than size determines salp diets. Limnol. Oceanogr. 64, 1996–2010 (2019).Article
Google Scholar
107.Brand, A., Liz, A., Micah, A., Marjorie, H. & Jo, S. Beyond Authorship: Attribution, Contribution, Collaboration, and Credit. Learned Publishing. 28, 151–155 (2015).Article
Google Scholar More