More stories

  • in

    A new fossil piddock (Bivalvia: Pholadidae) may indicate estuarine to freshwater environments near Cretaceous amber-producing forests in Myanmar

    Altogether nine polished pieces of the lower Cenomanian Kachin amber from northern Myanmar (Figs. 1A–D, 2A–E) were examined in this study (depository: Russian Museum of Biodiversity Hotspots, N. Laverov Federal Center for Integrated Arctic Research of the Ural Branch of the Russian Academy of Sciences, Arkhangelsk, Russia). A brief description of each amber piece is given below.Figure 1Lower Cenomanian Kachin amber samples with specimens and borings of †Palaeolignopholas kachinensis gen. & sp. nov. from northern Myanmar used in this study. (A) RMBH biv1115 (frontal view with the holotype). (B) RMBH biv1101 (lateral view with two paratypes and a shell fragment). (C) RMBH biv1116 (frontal view with the fossilized paratype). (D) RMBH biv1100 (frontal view with borings). The red frames indicate position of the type specimens (holotype and some paratypes). The red arrows indicate bivalve borings. Scale bars = 5 mm. (Photos: Ilya V. Vikhrev).Full size imageFigure 2Lower Cenomanian Kachin amber samples with borings of †Palaeolignopholas kachinensis gen. & sp. nov. from northern Myanmar used in this study. (A) RMBH biv1102 (frontal view). (B) RMBH biv1103 (frontal view). (C) RMBH biv1114 (frontal view). (D) RMBH biv1118 (frontal view). (E) RMBH biv1117 (frontal view). The red arrows indicate bivalve borings. Scale bars = 5 mm. (Photos: Ilya V. Vikhrev).Full size imageRMBH biv1115: Size 8.5 × 5.8 × 8.1 mm (Fig. 1A). Inclusions: articulated shell of †Palaeolignopholas kachinensis gen. & sp. nov., “floating” in the resin (the holotype).RMBH biv1101: Size 15.6 × 6.4 × 11.5 mm (Fig. 1B). Inclusions: two complete articulated shells (paratypes) and a shell fragment of †Palaeolignopholas kachinensis gen. & sp. nov., “floating” in the resin.RMBH biv1116: Size 22.5 × 8.3 × 16.5 mm (Fig. 1C). Inclusions: fossilized shell of †Palaeolignopholas kachinensis gen. & sp. nov. (paratype), borings of this species (filled with fine gray sand), unidentified fly specimens (Insecta: Diptera), and unidentified organic fragments (probably, plant debris).RMBH biv1100: Size 17.5 × 4.9 × 12.0 mm (Fig. 1D). Inclusions: borings of †Palaeolignopholas kachinensis gen. & sp. nov. (filled with fine gray sand), and an unidentified caddisfly specimen (Insecta: Trichoptera).RMBH biv1102: Size 15.6 × 5.1 × 12.7 mm (Fig. 2A). Inclusions: borings of †Palaeolignopholas kachinensis gen. & sp. nov. (filled with fine gray sand), and unidentified organic fragments (probably, plant debris).RMBH biv1103: Size 19.6 × 4.7 × 14.3 mm (Fig. 2B). Inclusions: borings of †Palaeolignopholas kachinensis gen. & sp. nov. (filled with fine gray sand), an unidentified beetle specimen (Insecta: Coleoptera), and unidentified organic fragments (probably, plant debris).RMBH biv1114: Size 33.1 × 7.8 × 21.7 mm (Fig. 2C). Inclusions: multiple borings of †Palaeolignopholas kachinensis gen. & sp. nov. (filled with fine gray sand), and unidentified plant remains.RMBH biv1118: Size 25.1 × 8.4 × 14.3 mm (Fig. 2D). Inclusions: separate borings of †Palaeolignopholas kachinensis gen. & sp. nov. (filled with fine gray sand), a plant fragment with a cluster of borings around, and an unidentified insect specimen.RMBH biv1117: Size 15.5 × 3.9 × 10.7 mm (Fig. 2E). Inclusions: borings of †Palaeolignopholas kachinensis gen. & sp. nov. (filled with fine gray sand), and an unidentified insect specimen.Additionally, six amber samples containing adult and sub-adult specimens of †Palaeolignopholas kachinensis gen. & sp. nov. were examined using photographs in published works as follows: BMNH 20205 (Department of Palaeontology, Natural History Museum, London, UK)15, NIGP 169623 and NIGP 169624 (Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, Nanjing, China)20, RS.P1450 (Ru D. A. Smith collection, Kuala Lumpur, Malaysia)19, and AMNH (Division of Invertebrates, American Museum of Natural History, New York, NY, United States of America)16.Based on morphological analyses of the fossil piddock shells, it was found to be a genus and species new to science, which is described here.Systematic paleontologyPhylum Mollusca Linnaeus, 1758Class Bivalvia Linnaeus, 1758Family Pholadidae Lamarck, 1809Subfamily Martesiinae Grant & Gale, 1931†Palaeolignopholas gen. novLSID: http://zoobank.org/urn:lsid:zoobank.org:act:1D686DCE-A5E9-41DA-9504-2EC58C93D988Type species: †Palaeolignopholas kachinensis gen. & sp. nov.Etymology. This name is derived from the prefix ‘Palaeo-’ (ancient), and ‘-lignopholas’, the name of a recent genus of estuarine and freshwater piddocks boring into wood, mudstone rocks, brickwork, laterites, etc.11,13. Masculine in gender.Diagnosis. The new monotypic genus is conchologically similar to several other piddock genera such as Lignopholas, Martesia, and Diplothyra Tryon 1862 but can be distinguished from these taxa by the following combination of characters: mesoplax relatively small, triangular, divided longitudinally, posterior slope without concentric sculpture, sculptured valve with concave parallel ridges (Martesia-like “rasping teeth”) curved anteriorly, periostracal lamellae dense, fine, hair-like. The fossil genus †Opertochasma Stephenson, 1952 shares a divided mesoplax but it clearly differs from both †Palaeolignopholas gen. nov. and Lignopholas by having two radial grooves on the shell surface21.Distribution. Kachin State, northern Myanmar; Upper Cretaceous (lower Cenomanian)15,19,22.Comments. Both †Palaeolignopholas gen. nov. and Lignopholas appear to be closely related to each other because they share a longitudinally divided mesoplax and periostracal lamellae, which are considered diagnostic features distinguishing this clade from Martesia + Diplothyra. Based on available conchological characters, we assume that †Palaeolignopholas gen. nov. might be placed on the ancestral stem lineage of the Lignopholas clade, although a possibility of homeomorphy could not entirely be excluded.†Palaeolignopholas kachinensis gen. & sp. nov = Plant Antheridia or Fungal Sporangia indet. sensu Grimaldi et al. (2002): 9, fig. 2a,b (bivalve specimens), fig. 3 (borings), fig. 5 (shell reconstruction of an immature specimen), figs. 6 and 7 (SEMs of borings surface showing rasped ornament at different magnifications)16. = Palaeoclavaria burmitis Poinar & Brown (2003): 765, figs. 1–4 (borings) [this fungal taxon was introduced using a trace fossil (boring) as the holotype]17; Poinar (2016): 2, figs. 10, 15, 16 (borings)18. = Martesiinae indet. sensu Smith & Ross (2018): 4, figs. 1a–c, 2a,b, 3a–d (borings), 4a,b, 5a–e (bivalve specimens)19. = Pholadidae indet. sensu Mao et al. (2018): 99, figs. 8a–f (borings), 8g,h (bivalve specimens)20. = Martesia sp. 2 sensu Mayoral et al. (2020): 10, figs. 4a (borings), 7b, 8a–l (bivalve specimens)15. = Pholadidae indet. sensu Balashov (2020): 623.Figures 1, 2, 3, 4, 5, 6 and 7.Figure 3Holotype and a paratype of †Palaeolignopholas kachinensis gen. & sp. nov. from lower Cenomanian Kachin amber, northern Myanmar. (A) Holotype: ventro-lateral view of articulated shell. (B) Paratype: anterio-lateral view of fossilized shell. VN ventral margin; DR dorsal margin; AN anterior margin; PS posterior margin; d disc; rs rasping surface of the valve; uvs umbonal ventral sulcus; pg pedal gape; pl periostracal lamellae. Scale bars = 500 µm. (Photos: Ilya V. Vikhrev).Full size imageFigure 4Paratypes of †Palaeolignopholas kachinensis gen. & sp. nov. from lower Cenomanian Kachin amber, northern Myanmar. (A) Paratype: dorsal view of articulated shell. Scale bar = 500 µm. (B) Paratype: dorsal view of articulated shell. The detached and deflected umbonal paired fragment of the valves is framed by red square. The blue contour indicates the lifetime position of this fragment. The blue arrows show the shell breakages. Scale bar = 200 µm. (C) Umbonal paired fragment of the holotype valves (inner view). The blue arrows show the shell breakage. Scale bar = 200 µm.  VN ventral margin; DR dorsal margin; AN anterior margin; PS posterior margin; ms longitudinally divided mesoplax (inner view); pr prora; d disc; rs rasping surface of the valve; uvs umbonal ventral sulcus; pg pedal gape; pl periostracal lamellae; sb shell breakage. (Photos: Ilya V. Vikhrev).Full size imageFigure 5Rasping surface of †Palaeolignopholas kachinensis gen. & sp. nov. shell. (A) Holotype shell. The red frame marks position of the enlarged area. (B) Undulated micro-sculpture of the rasping surface. Scale bar = 100 µm. (Photos: Ilya V. Vikhrev).Full size imageFigure 6Schematic reconstruction of †Palaeolignopholas kachinensis gen. & sp. nov. from lower Cenomanian Kachin amber, northern Myanmar based on the type series and other fossil material15,16,19,20. (A) Lateral view of adult specimen. (B) Dorsal view of adult specimen. (C) Ventral view of adult specimen (based on a paratype BMNH 2020515). (D) Anterio-ventral view of immature specimen. (E) Dorsal view of immature specimen. (F) Mesoplax of adult specimen. (G) Mesoplax of immature specimen. d disc; mt metaplax; ms mesoplax; hp hypoplax; ca callum; uvs umbonal ventral sulcus; pg pedal gape; pl periostracal lamellae. Scale bars = 1 mm (A–C). (Line graphics: Yulia E. Chapurina).Full size imageFigure 7Clavate borings of †Palaeolignopholas kachinensis gen. & sp. nov. from lower Cenomanian Kachin amber, northern Myanmar. (A) Cluster of borings. It marks drilling of immature piddocks into soft resin from the unidentified plant (wood?) fragment. (B–D) Clavate borings of adult piddocks. Scale bars = 1 mm. Abbreviation: bg a characteristic bioglyph indicating the shell rotation inside hardening resin. (Photos: Ilya V. Vikhrev).Full size imageLSID: http://zoobank.org/urn:lsid:zoobank.org:act:F6659EBF-B0A4-4B21-A99B-2C56BDB7EC9B.Common name. Kachin Amber Piddock.Holotype. RMBH biv1115, the adult shell with length 3.07 mm and width 1.13 mm “floating” in the resin (Figs. 1A, 3A, 5A,B), local collector leg., Russian Museum of Biodiversity Hotspots, N. Laverov Federal Center for Integrated Arctic Research of the Ural Branch of the Russian Academy of Sciences, Arkhangelsk, Russia.Paratypes. RMBH biv1116, the fossilized adult shell with length 4.05 mm and width 1.83 mm (Figs. 1C, 3B); RMBH biv1101, the immature specimen with articulated shell (width 1.86 mm) sharing a detached and deflected umbonal paired fragment of the valves due to the shell breakage (Figs. 1B, 4B,C); RMBH biv1101, the other immature specimen with shell length 2.68 mm and shell width 2.52 mm in this amber piece (Figs. 1B, 4A); BMNH 20205, adult specimen [illustrated in Mayoral et al. (2020): fig. 7B15], Department of Palaeontology, Natural History Museum, London, UK; NIGP 169623, adult specimen [illustrated in Mao et al. (2018): 100, fig. 8G20], and NIGP 169624, two adult specimens [illustrated in Mao et al. (2018): 100, fig. 8H20], Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, Nanjing, China; RS.P1450, two sub-adult specimens [illustrated in Smith & Ross (2018): 5, fig. 4A,B19], Ru D. A. Smith collection, Kuala Lumpur, Malaysia.Type locality and strata. The Noije Bum Hill mines, Hukawng Valley, near Tanai (26.3593°N, 96.7200°E), Kachin State, northern Myanmar; Upper Cretaceous (lower Cenomanian; absolute age of youngest zircons in enclosing marine sediment: 98.79 ± 0.62 Ma)19,22.Etymology. The name of this species reflects its type locality, which is situated in the Kachin State of Myanmar.Diagnosis. As for the genus.Description. Shell small (up to 9.3 mm in length15,19,20), conical, with a rounded anterior margin, tapering posteriorly (Figs. 3A,B, 4A–C, 6A–E); its shape is similar to those in the recent Lignopholas, Martesia, and Diplothyra. Valve sculptured, with concave parallel ridges (Martesia-like “rasping teeth”) curved anteriorly (Fig. 5A,B). The ridges share a characteristic wave-like micro-sculpture (Fig. 5B). Sulcus deep (Figs. 3A, 4C, 6A–C). Mesoplax longitudinally divided, relatively small, triangular, tapering or lobed anteriorly (Fig. 3A, 6B,F), in immature specimens sometimes with lateral lobes (Figs. 4C, 6E,G). Metaplax and hypoplax long, narrow, not longitudinally divided but sometimes slightly bifurcated posteriorly (Fig. 6A–C). Periostracum densely covered by fine, hair-like lamellae (Figs. 4B,C and 6D). Umbonal reflection with large flattened ridge. Pedal gape presents in immature (Figs. 4A,B, 6D) and some adult specimens (Fig. 3A) but it is covered by callum in older specimens (Figs. 3B, 6C). Morphological details of the new species were also presented in a series of micro-CT images published Mayoral et al. (see Fig. 8 in that paper15) and in the reconstruction of Grimaldy et al. (see Fig. 5 in that work16).Figure 8Recent freshwater piddock Lignopholas fluminalis (Blanford, 1867) in the middle reaches of the Kaladan River, Rakhine State, Myanmar13. (A) Habitat of the freshwater piddock: river pool with siltstone rocks at the bottom, a possible modern analogue of the Mesozoic riverine ecosystem with †Palaeolignopholas. (B) Siltstone rock fragment with living freshwater piddocks inside their clavate borings. (C) Ethanol-preserved piddock (dorsal view). (D) Living piddock with fully developed callum (ventral view). (E) Living piddock with pedal gape (ventral view). Abbreviations: d disc; mt metaplax; ms mesoplax; ca callum; uvs umbonal ventral sulcus; pg pedal gape; pl periostracal lamellae. Scale bar = 2 mm. (Photos: Olga V. Aksenova).Full size imageBorings and corresponding ichnotaxon. The borings produced by †Palaeolignopholas kachinensis gen. & sp. nov. represent club-shaped (clavate) structures (Figs. 1C,D, 2A–E, 7A–D), sometimes with a characteristic bioglyph revealing the shell rotation in hardening resin (Fig. 7C). These borings were illustrated in detail15,16,17,19,20, and were considered belonging to Teredolites clavatus Leymerie, 184215. Initially, the trace fossils produced by the Kachin amber piddock were described as sporocarps of Palaeoclavaria burmitis Poinar & Brown, 2003, a non-gilled hymenomycete taxon17. The holotype of this taxon represents a club-shaped piddock crypt labelled as follows: “Amber from the Hukawng Valley in Burma; specimen (in piece B with accession number B-P-1) deposited in the Poinar amber collection maintained at Oregon State University (holotype)17”. Hence, Palaeoclavaria Poinar & Brown, 2003 and P. burmitis Poinar & Brown, 2003 must be considered ichnogenus and ichnospecies, respectively. New ichnotaxonomic synonymies are formally proposed here as follows: Teredolites Leymerie, 1842 (= Palaeoclavaria Poinar & Brown, 2003 syn. nov.), and Teredolites clavatus Leymerie, 1842 (= Palaeoclavaria burmitis Poinar & Brown, 2003 syn. nov.). More

  • in

    The phylogeographic history of Krascheninnikovia reflects the development of dry steppes and semi-deserts in Eurasia

    1.Hurka, H. et al. The Eurasian steppe belt: Status quo, origin and evolutionary history. Turczaninowia 22, 5–71 (2019).
    Google Scholar 
    2.Walter, H. Die Vegetation Osteuropas (Gustav Fischer Verlag, 1974).
    Google Scholar 
    3.Walter, H. Die Vegetation der Erde in öko-physiologischer Betrachtung , Band II : Die gemäßigten und arktischen Zonen, in ökologischer Betrachtung (Gustav Fischer Verlag, 1968).
    Google Scholar 
    4.Cohen, K. M. & Gibbard, P. L. Global chronostratigraphical correlation table for the last 2.7 million years, version 2019 QI-500. Quat. Int. 500, 20–31 (2019).Article 

    Google Scholar 
    5.Frenzel, B. Grundzüge der Pleistozänen Vegetationsgeschichte Nord-Euroasiens. Geogr. J. 136, 291 (1968).
    Google Scholar 
    6.Tarasov, P. E. et al. Last glacial maximum biomes reconstructed from pollen and plant macrofossil data from northern Eurasia. J. Biogeogr. 27, 609–620 (2000).Article 

    Google Scholar 
    7.Caves Rugenstein, J., Sjostrom, D., Mix, H., Winnick, M. & Chamberlain, C. Aridification of Central Asia and uplift of the Altai and Hangay Mountains, Mongolia: Stable isotope evidence. Am. J. Sci. 314, 1171–1201 (2014).ADS 
    Article 
    CAS 

    Google Scholar 
    8.Yanina, T., Sorokin, V., Bezrodnykh, Y. & Romanyuk, B. Late Pleistocene climatic events reflected in the Caspian Sea geological history (based on drilling data). Quat. Int. 465, 130–141 (2018).Article 

    Google Scholar 
    9.Dolukhanov, P. M., Chepalyga, A. L., Shkatova, V. K. & Lavrentiev, N. V. Late Quaternary Caspian: Sea-levels, environments and human settlement. Open Geogr. J. 2, 1–15 (2009).Article 

    Google Scholar 
    10.Tudryn, A. et al. Late Quaternary Caspian Sea environment: Late Khazarian and Early Khvalynian transgressions from the lower reaches of the Volga River. Quat. Int. 292, 193–204 (2013).Article 

    Google Scholar 
    11.Dengler, J., Janišová, M., Török, P. & Wellstein, C. Biodiversity of Palaearctic grasslands: A synthesis. Agric. Ecosyst. Environ. 182, 1–14 (2014).Article 

    Google Scholar 
    12.Hejcman, M., Hejcmanová, P., Pavlů, V. & Beneš, J. Origin and history of grasslands in Central Europe—a review. Grass Forage Sci. 68, 345–363 (2013).Article 

    Google Scholar 
    13.Franzke, A. et al. Molecular signals for Late Tertiary/Early Quaternary range splits of an Eurasian steppe plant: Clausia aprica (Brassicaceae). Mol. Ecol. 13, 2789–2795 (2004).CAS 
    PubMed 
    Article 

    Google Scholar 
    14.Hurka, H., Friesen, N., German, D. A., Franzke, A. & Neuffer, B. ‘Missing link’ species Capsella orientalis and Capsella thracicaelucidate evolution of model plant genus Capsella (Brassicaceae). Mol. Ecol. 21, 1223–1238 (2012).PubMed 
    Article 

    Google Scholar 
    15.Seregin, A. P., Anačkov, G. & Friesen, N. Molecular and morphological revision of the Allium saxatile group (Amaryllidaceae): Geographical isolation as the driving force of underestimated speciation. Bot. J. Linn. Soc. 178, 67–101 (2015).Article 

    Google Scholar 
    16.Friesen, N. et al. Dated phylogenies and historical biogeography of Dontostemon and Clausia (Brassicaceae) mirror the palaeogeographical history of the Eurasian steppe. J. Biogeogr. 43, 738–749 (2015).Article 

    Google Scholar 
    17.Friesen, N. et al. Allium species of section Rhizomatosa, early members of the Central Asian steppe vegetation. Flora 263, 151536 (2020).Article 

    Google Scholar 
    18.Friesen, N. et al. Evolutionary history of the Eurasian steppe plant Schivereckia podolica (Brassicaceae) and its close relatives. Flora 268, 151602 (2020).Article 

    Google Scholar 
    19.Volkova, P. A., Herden, T. & Friesen, N. Genetic variation in Goniolimon speciosum (Plumbaginaceae) reveals a complex history of steppe vegetation. Bot. J. Linn. Soc. 184, 113–121 (2017).
    Google Scholar 
    20.Žerdoner Čalasan, A., Seregin, A. P., Hurka, H., Hofford, N. P. & Neuffer, B. The Eurasian steppe belt in time and space: Phylogeny and historical biogeography of the false flax (Camelina Crantz, Camelineae, Brassicaceae). Flora 260, 151477 (2019).Article 

    Google Scholar 
    21.Kirschner, P. et al. Long-term isolation of European steppe outposts boosts the biome’s conservation value. Nat. Commun. 11, 1968 (2020).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    22.Heklau, H. & von Wehrden, H. Wood anatomy reflects the distribution of Krascheninnikovia ceratoides (Chenopodiaceae). Flora Morphol. Distrib. Funct. Ecol. Plants 206, 300–309 (2011).Article 

    Google Scholar 
    23.Heklau, H. & Röser, M. Delineation, taxonomy and phylogenetic relationships of the genus Krascheninnikovia (Amaranthaceae subtribe Axyridinae). Taxon 57, 563–576 (2008).
    Google Scholar 
    24.Takhtajan, A. Floristic Regions of the World (University of California Press, 1986).
    Google Scholar 
    25.Manafzadeh, S., Staedler, Y. M. & Conti, E. Visions of the past and dreams of the future in the Orient: The Irano-Turanian region from classical botany to evolutionary studies. Biol. Rev. Camb. Philos. Soc. 92, 1365–1388 (2017).PubMed 
    Article 

    Google Scholar 
    26.Walter, H. & Breckle, S.-W. Ecological systems of the geobiosphere. 2 Tropical and subtropical zonobiomes (Springer, 1986). https://doi.org/10.1007/978-3-662-06812-0.
    Google Scholar 
    27.Hartmann, H. Zur Flora und Vegetation der Halbwüsten, Steppen und Rasengesellschaften im südöstlichen Ladakh (Indien). in Jahrbuch des Vereins zum Schutz der Bergwelt 129–188 (1997).28.Kraudzun, T., Vanselow, K. A. & Samimi, C. Realities and myths of the Teresken syndrome—An evaluation of the exploitation of dwarf shrub resources in the Eastern Pamirs of Tajikistan. J. Environ. Manag. 132, 49–59 (2014).Article 

    Google Scholar 
    29.Vanselow, K. & Samimi, C. Predictive mapping of dwarf shrub vegetation in an arid high mountain ecosystem using remote sensing and random forests. Remote Sens. 6, 6709–6726 (2014).ADS 
    Article 

    Google Scholar 
    30.Smoliak, S. & Bezeau, L. M. Chemical composition and in vitro digestibility of range forage plants of the Stipa-Bouteloua prairie. Can. J. Plant Sci. 47, 161–167 (1967).CAS 
    Article 

    Google Scholar 
    31.Waldron, B. L., Eun, J.-S., ZoBell, D. R. & Olson, K. C. Forage kochia (Kochia prostrata) for fall and winter grazing. Small Rumin. Res. 91, 47–55 (2010).Article 

    Google Scholar 
    32.Steshenko, A. P. Formation of the semi-shrub structure in the high mountains of Pamir. Trans Akad Nauk Tadzhik SSR 50, 2 (1956).
    Google Scholar 
    33.Zalenski, O. V. & Steshenko, A. P. On the special features of the main species of the vegetation of the Pamir mountains. Proc. Bot. Soc. 7, 9–12 (1957).
    Google Scholar 
    34.Barnes, M. The Effect of Plant Source Location on Restoration Success: A Reciprocal Transplant Experiment with Winterfat (Krascheninnikovia lanata) (University of New Mexico, 2009).
    Google Scholar 
    35.Seidl, A. et al. Phylogeny and biogeography of the Pleistocene Holarctic steppe and semi-desert goosefoot plant Krascheninnikovia ceratoides. Flora 262, 151504 (2020).Article 

    Google Scholar 
    36.Yang, J. Y., Fu, X. Q., Yan, G. X. & Zhang, S. Z. Analysis of three species of the genus Ceratoides. Grassl. China 1, 67–71 (1996).
    Google Scholar 
    37.Rubtsov, M., Sagimbaev, R., Shakhanov, E., Tiran, T. & Balyan, G. Natural polyploids of prostrate summer cypress and winterfat as initial material for breeding. Sov. Agric. Sci. 4, 20–24 (1989).
    Google Scholar 
    38.Yan, G., Zhang, S., Yan, J., Fu, X. & Wang, L. Chromosome numbers and geographical distribution of 68 species of forage plants. Grassl. China 4, 53–60 (1989).
    Google Scholar 
    39.Kurban, N. Karyotype analysis of three species of Ceratoides (Chenopodiaceae). J. Syst. Evol. 22, 466–468 (1984).
    Google Scholar 
    40.Zakharjeva, O. I. & Soskov, Y. D. Chromosome numbers in desert herbage plants. Bulleten VNII Rastenievod. Im. N.I. Vavilova 108, 57–60 (1981).
    Google Scholar 
    41.Domínguez, F. et al. Krascheninnikovia ceratoides (L.) Gueldenst (Chenopodiaceae) en Aragón (España): Algunos resultados para su conservación. Bol. R. Soc. Esp. Hist. Nat. (Sec. Biol.) 96, 15–26 (2001).
    Google Scholar 
    42.Zakirova, R. Chromosome numbers of some Alliaceae, Salicaceae, Polygonaceae, and Chenopodiaceae of the South Balkhash territory. Citologija 41, 1064 (1999).
    Google Scholar 
    43.Dobes, C. H., Hahn, B. & Morawetz, W. Chromosomenzahlen zur Gefässpflanzenflora Österreichs. Linzer Biol. Beitr 29, 5–43 (1997).
    Google Scholar 
    44.Sainz Ollero, H., Múgica, F. & Arias Torcal, J. Estrategias para la conservación de la flora amenazada de Aragón (Consejo de Protección de la Naturaleza de Aragón, 1996).
    Google Scholar 
    45.Lomonosova, M. N. & Krasnikov, A. A. Chromosome numbers in some members of the Chenopodiaceae. Bot. Zurn. (Moscow Leningrad) 78, 158–159 (1993).
    Google Scholar 
    46.Castroviejo, S. & Soriano, C. Krascheninnikovia ceratoides Gueldenst (Publicaciones del CSIC, 1990).
    Google Scholar 
    47.Takhtajan, A. Numeri chromosomatum magnoliophytorum florae URSS. Aceraceae–Menyanthaceae. (Academis Scientiarum Rossica, Institutum Botanicum nomine VL Komarovii;” Nauka”, 1990).48.Ghaffari, S. M., Balaei, Z., Chatrenoor, T. & Akhani, H. Cytology of SW Asian Chenopodiaceae: New data from Iran and a review of previous records and correlations with life forms and C4 photosynthesis. Plant Syst. Evol. 301, 501–521 (2014).Article 

    Google Scholar 
    49.eFloras. Published on the Internet http://www.efloras.org. (2008).50.Kadereit, G., Mavrodiev, E. V., Zacharias, E. H. & Sukhorukov, A. P. Molecular phylogeny of Atripliceae (Chenopodioideae, Chenopodiaceae): Implications for systematics, biogeography, flower and fruit evolution, and the origin of C4 photosynthesis. Am. J. Bot. 97, 1664–1687 (2010).PubMed 
    Article 

    Google Scholar 
    51.Di Vincenzo, V. et al. Evolutionary diversification of the African achyranthoid clade (Amaranthaceae) in the context of sterile flower evolution and epizoochory. Ann. Bot. 122, 69–85 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    52.Janis, C. M. Tertiary mammal evolution in the context of changing climates, vegetation, and tectonic events. Annu. Rev. Ecol. Syst. 24, 467–500 (1993).Article 

    Google Scholar 
    53.Doležel, J. & Greilhuber, J. Nuclear genome size: Are we getting closer?. Cytom. Part A 77, 635–642 (2010).Article 
    CAS 

    Google Scholar 
    54.Yokoya, K., Roberts, A. V., Mottley, J., Lewis, R. & Brandham, P. E. Nuclear DNA amounts in roses. Ann. Bot. 85, 557–561 (2000).CAS 
    Article 

    Google Scholar 
    55.Poland, J. A., Brown, P. J., Sorrells, M. E. & Jannink, J.-L. Development of high-density genetic maps for barley and wheat using a novel two-enzyme genotyping-by-sequencing approach. PLoS ONE 7, e32253 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    56.Catchen, J., Hohenlohe, P. A., Bassham, S., Amores, A. & Cresko, W. A. Stacks: An analysis tool set for population genomics. Mol. Ecol. 22, 3124–3140 (2013).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    57.Weiß, C. L., Pais, M., Cano, L. M., Kamoun, S. & Burbano, H. A. nQuire: A statistical framework for ploidy estimation using next generation sequencing. BMC Bioinform. 19, 122 (2018).Article 
    CAS 

    Google Scholar 
    58.Corrêa, A., dos Santos, R., Goldman, G. H. & Riaño-Pachón, D. M. ploidyNGS: Visually exploring ploidy with next generation sequencing data. Bioinformatics 33, 2575–2576 (2017).Article 
    CAS 

    Google Scholar 
    59.Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25, 1754–1760 (2009).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    60.Li, H. A statistical framework for SNP calling, mutation discovery, association mapping and population genetical parameter estimation from sequencing data. Bioinformatics 27, 2987–2993 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    61.R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing (2013).62.Frichot, E. & François, O. LEA: An R package for landscape and ecological association studies. Methods Ecol. Evol. 6, 925–929 (2015).Article 

    Google Scholar 
    63.Jombart, T. adegenet: A R package for the multivariate analysis of genetic markers. Bioinformatics 24, 1403–1405 (2008).CAS 
    PubMed 
    Article 

    Google Scholar 
    64.Gruber, B., Unmack, P. J., Berry, O. F. & Georges, A. dartr: An R package to facilitate analysis of SNP data generated from reduced representation genome sequencing. Mol. Ecol. Resour. 18, 691–699 (2018).PubMed 
    Article 

    Google Scholar 
    65.Bradley, M. raxml_ascbias. GitHub https://github.com/btmartin721/raxml_ascbias (2018).66.Stamatakis, A. RAxML version 8: A tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30, 1312–1313 (2014).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    67.Minh, B. Q. et al. IQ-TREE 2: New models and efficient methods for phylogenetic inference in the genomic era. Mol. Biol. Evol. 37, 1530–1534 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    68.Lewis, P. O. A likelihood approach to estimating phylogeny from discrete morphological character data. Syst. Biol. 50, 913–925 (2001).CAS 
    PubMed 
    Article 

    Google Scholar 
    69.Guindon, S. et al. New algorithms and methods to estimate maximum-likelihood phylogenies: Assessing the performance of PhyML 3.0. Syst. Biol. 59, 307–321 (2010).CAS 
    PubMed 
    Article 

    Google Scholar 
    70.Minh, B. Q., Nguyen, M. A. T. & von Haeseler, A. Ultrafast approximation for phylogenetic bootstrap. Mol. Biol. Evol. 30, 1188–1195 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    71.Huson, D. H. & Bryant, D. Application of phylogenetic networks in evolutionary studies. Mol. Biol. Evol. 23, 254–267 (2005).PubMed 
    Article 
    CAS 

    Google Scholar 
    72.Rambaut, A. FigTree v1.3.1. (2010).73.Kalinowski, S. T. hp-rare 1.0: A computer program for performing rarefaction on measures of allelic richness. Mol. Ecol. Notes 5, 187–189 (2005).CAS 
    Article 

    Google Scholar 
    74.Brummitt, R. World geographical scheme for recording plant distributions. (2001).75.Britton, T., Anderson, C. L., Jacquet, D., Lundqvist, S. & Bremer, K. Estimating divergence times in large phylogenetic trees. Syst. Biol. 56, 741–752 (2007).PubMed 
    Article 

    Google Scholar 
    76.Matzke, N. J. BioGeoBEARS: BioGeography with Bayesian (and likelihood) evolutionary analysis with R scripts. Version 1.1. 1, published on GitHub on 6 November 2018. (2018).77.Matzke, N. J. Model selection in historical biogeography reveals that founder-event speciation is a crucial process in island clades. Syst. Biol. 63, 951–970 (2014).PubMed 
    Article 

    Google Scholar 
    78.Matzke, N. J. Probabilistic historical biogeography: New models for founder-event speciation, imperfect detection, and fossils allow improved accuracy and model-testing. Front. Biogeogr. 5, 2 (2013).Article 

    Google Scholar 
    79.Ronquist, F. Dispersal-vicariance analysis: A new approach to the quantification of historical biogeography. Syst. Biol. 46, 195–203 (1997).Article 

    Google Scholar 
    80.Strömberg, C. A. E. Evolution of grasses and grassland ecosystems. Annu. Rev. Earth Planet. Sci. 39, 517–544 (2011).ADS 
    Article 
    CAS 

    Google Scholar 
    81.Linder, H. P., Lehmann, C. E. R., Archibald, S., Osborne, C. P. & Richardson, D. M. Global grass (Poaceae) success underpinned by traits facilitating colonization, persistence and habitat transformation. Biol. Rev. 93, 1125–1144 (2017).PubMed 
    Article 

    Google Scholar 
    82.Devyatkin, E. V. Meridional distribution of Pleistocene ecosystems in Asia: Basic problems. Stratigr. Geol. Correl. 1, 77–83 (1993).
    Google Scholar 
    83.Arkhipov, S. A. & Volkova, V. S. Geological history of Pleistocene landscapes and climate in West Siberia. (1994).84.Akhmetyev, M. A. et al. Chapter 8: Kazakhstan and Central Asia (plains and foothills). In Cenozoic Climatic and Environmental Changes in Russia (Geological Society of America, 2005). https://doi.org/10.1130/0-8137-2382-5.139.
    Google Scholar 
    85.Arkhipov, S. A. et al. Chapter 4: West Siberia. In Cenozoic Climatic and Environmental Changes in Russia (Geological Society of America, 2005). https://doi.org/10.1130/0-8137-2382-5.67.
    Google Scholar 
    86.Li, Q. Q. et al. Phylogeny and biogeography of Allium (Amaryllidaceae: Allieae) based on nuclear ribosomal internal transcribed spacer and chloroplast rps16 sequences, focusing on the inclusion of species endemic to China. Ann. Bot. 106, 709–733 (2010).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    87.Hais, M., Komprdová, K., Ermakov, N. & Chytrý, M. Modelling the last glacial maximum environments for a refugium of Pleistocene biota in the Russian Altai mountains Siberia. Palaeogeogr. Palaeoclimatol. Palaeoecol. 438, 135–145 (2015).Article 

    Google Scholar 
    88.Fedeneva, I. N. & Dergacheva, M. I. Paleosols as the basis of environmental reconstruction in Altai mountainous areas. Quat. Int. 106–107, 89–101 (2003).Article 

    Google Scholar 
    89.Braun-Blanquet, J. & Bolòs i Capdevila, O. de. Les groupements végétaux du bassin moyen de l’Ebre et leur dynamisme. An. la Estac. Exp. Aula Dei 5, 1–266 (1957).
    Google Scholar 
    90.Tutin, T., Webb, D., Heywood, V., Walters, S. & Moore, D. Flora Europaea (Cambridge University Press, 1993).
    Google Scholar 
    91.Heklau, H. Proposal to conserve the name Krascheninnikovia against Ceratoides (Chenopodiaceae. Taxon 55, 1044–1045 (2006).Article 

    Google Scholar 
    92.Davis, P. H. Flora of Turkey and the east Aegean islands (Edinburgh University Press, 1988).
    Google Scholar 
    93.Welsh, S., Atwood, N., Higgins, L. & Goodrich, S. A Utah Flora. Gt. Basin Nat. 9, 123 (1987).
    Google Scholar 
    94.Täckholm, V. Students’ Flora of Egypt (Cairo University Publishing, 1974).
    Google Scholar 
    95.Komarov, V. Flora of the U.R.S.S (Academiae Sciencitarum U.R.S.S, 1964).
    Google Scholar 
    96.Rechinger, K. Flora Iranica (Akademische Druck- und Verlagsanstalt, 1963).
    Google Scholar 
    97.Crawford, K. M. & Whitney, K. D. Population genetic diversity influences colonization success. Mol. Ecol. 19, 1253–1263 (2010).CAS 
    PubMed 
    Article 

    Google Scholar 
    98.Hilbig, W. Vegetation of Mongolia (SPB Academic Pubishing, 1995).
    Google Scholar 
    99.Briggs, J. C. Chapter 7 Neogene. In Global Biogeography Vol. 14 (ed. Briggs, J. C.) 147–189 (Elsevier, Amsterdam, 1995).
    Google Scholar 
    100.Yurtsev, B. A. The Pleistocene ‘Tundra-steppe’ and the productivity paradox: The landscape approach. Quat. Sci. Rev. 20, 165–174 (2001).ADS 
    Article 

    Google Scholar 
    101.Stewart, J. R., Lister, A. M., Barnes, I. & Dalén, L. Refugia revisited: Individualistic responses of species in space and time. Proc. Biol. Sci. 277, 661–671 (2010).PubMed 

    Google Scholar 
    102.Varga, Z. Extra-Mediterranean refugia, post-glacial vegetation history and area dynamics in eastern Central Europe. Relict Species https://doi.org/10.1007/978-3-540-92160-8_3 (2009).Article 

    Google Scholar 
    103.Willis, K. J. & Vanandel, T. Trees or no trees? The environments of central and eastern Europe during the Last Glaciation. Quat. Sci. Rev. 23, 2369–2387 (2004).ADS 
    Article 

    Google Scholar 
    104.Tremetsberger, K. et al. Pleistocene refugia and polytopic replacement of diploids by tetraploids in the Patagonian and Subantarctic plant Hypochaeris incana (Asteraceae, Cichorieae). Mol. Ecol. 18, 3668–3682 (2009).CAS 
    PubMed 
    Article 

    Google Scholar  More

  • in

    Multi-decadal trends in contingent mixing of Atlantic mackerel (Scomber scombrus) in the Northwest Atlantic from otolith stable isotopes

    1.Tsukamoto, K., Nakai, I. & Tesch, W.-V. Do all freshwater eels migrate?. Nature 396, 635–636 (1998).ADS 
    CAS 
    Article 

    Google Scholar 
    2.Fromentin, J.-M. & Powers, J. E. Atlantic bluefin tuna: population dynamics, ecology, fisheries and management. Fish. Fish. 6, 281–306 (2005).Article 

    Google Scholar 
    3.Kerr, L. A. & Secor, D. H. Bioenergetic trajectories underlying partial migration in Patuxent River (Chesapeake Bay) white perch (Morone americana). Can. J. Fish. Aquat. Sci. 66, 602–612 (2009).Article 

    Google Scholar 
    4.Cadrin, S. X. et al. Population structure of beaked redfish, Sebastes mentella: evidence of divergence associated with different habitats. ICES J. Mar. Sci. 67, 1617–1630 (2010).Article 

    Google Scholar 
    5.Doak, D. F. et al. The statistical inevitability of stability-diversity relationships in community ecology. Am. Nat. 151, 264–276 (1998).CAS 
    PubMed 
    Article 

    Google Scholar 
    6.Tilman, D., Lehman, C. L. & Bristow, C. E. Diversity-stability relationships: statistical inevitability or ecological consequence?. Am. Nat. 151, 277–282 (1998).CAS 
    PubMed 
    Article 

    Google Scholar 
    7.Secor, D. H., Kerr, L. A. & Cadrin, S. X. Connectivity effects on productivity, stability, and persistence in a herring metapopulation model. ICES J. Mar. Sci. 66, 1726–1732 (2009).Article 

    Google Scholar 
    8.Cadrin, S. X. & Secor, D. H. Accounting for spatial population structure in stock assessment: past, present, and future. In The Future of Fisheries Science in North America (eds Beamish, R. J. & Rothschild, B. J.) 405–426 (Springer, 2009).
    Google Scholar 
    9.Secor, D. H. The unit stock concept: bounded fish and fisheries. In Stock Identification Methods: Applications in Fishery Science 2nd edn (eds Cadrin, S. X. et al.) 7–28 (Elsevier, 2014).
    Google Scholar 
    10.Ricker, W. E. Maximum sustained yields from fluctuating environments and mixed stocks. J. Fish. Res. Board Can. 15, 991–1006 (1958).Article 

    Google Scholar 
    11.Kerr, L. A. et al. Lessons learned from practical approaches to reconcile mismatches between biological population structure and stock units of marine fish. ICES J. Mar. Sci. 74, 1708–1722 (2017).Article 

    Google Scholar 
    12.Kerr, L. A., Cadrin, S. X. & Kovach, A. I. Consequences of a mismatch between biological and management units on our perception of Atlantic cod off New England. ICES J. Mar. Sci. 71, 1366–1381 (2014).Article 

    Google Scholar 
    13.Goethel, D. R. & Berger, A. M. Accounting for spatial complexities in the calculation of biological reference points: effects of misdiagnosing population structure for stock status indicators. Can. J. Fish. Aquat. Sci. 74, 1878–1894 (2017).Article 

    Google Scholar 
    14.Van Beveren, E., Duplisea, D. E., Brosset, P. & Castonguay, M. Assessment modelling approaches for stocks with spawning components, seasonal and spatial dynamics, and limited resources for data collection. PLoS ONE 14, e0222472 (2019).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    15.Cadrin, S. X. Defining spatial structure for fishery stock assessment. Fish. Res. 221, 105397 (2020).Article 

    Google Scholar 
    16.Sette, O. E. Biology of the Atlantic mackerel (Scomber scombrus) of North America. Part II:migration and habits. Fish. Bull. 51, 251–358 (1950).
    Google Scholar 
    17.Moores, J. A., Winters, G. H. & Parsons, L. S. Migrations and biological characteristics of Atlantic mackerel (Scomber scombrus) occurring in Newfoundland waters. J. Fish. Res. Board Can. 32, 1347–1357 (1975).Article 

    Google Scholar 
    18.Redding, S. G., Cooper, L. W., Castonguay, M., Wiernicki, C. & Secor, D. H. Northwest Atlantic mackerel population structure evaluated using otolith δ18O composition. ICES J. Mar. Sci. 77, 2582–2589 (2020).Article 

    Google Scholar 
    19.Overholtz, W. J., Link, J. S. & Suslowicz, L. E. Consumption of important pelagic fish and squid by predatory fish in the northeastern USA shelf ecosystem with some fishery comparisons. ICES J. Mar. Sci. 57, 1147–1159 (2000).Article 

    Google Scholar 
    20.Tyrrell, M. C., Link, J. S., Moustahfid, H. & Overholtz, W. J. Evaluating the effect of predation mortality on forage species population dynamics in the Northeast US continental shelf ecosystem using multispecies virtual population analysis. ICES J. Mar. Sci. 65, 1689–1700 (2008).Article 

    Google Scholar 
    21.Jansen, T. & Gislason, H. Population structure of Atlantic mackerel (Scomber scombrus). PLoS ONE 8, e64744 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    22.Nøttestad, L. et al. Quantifying changes in abundance, biomass, and spatial distribution of Northeast Atlantic mackerel (Scomber scombrus) in the Nordic seas from 2007 to 2014. ICES J. Mar. Sci. 73, 359–373 (2016).Article 

    Google Scholar 
    23.Olafsdottir, A. H. et al. Geographical expansion of Northeast Atlantic mackerel (Scomber scombrus) in the Nordic Seas from 2007 to 2016 was primarily driven by stock size and constrained by low temperatures. Deep-Sea. Res. Part II 159, 152–168 (2019).Article 

    Google Scholar 
    24.FAO. The state of world fisheries and aquaculture 2020. Sustainability in action. 244 http://www.fao.org/documents/card/en/c/ca9229en (2020). Accessed on 23 July 2020.25.NEFSC. 64th Northeast Regional Stock Assessment Workshop (64th SAW) Assessment Report. 536 (2018).26.DFO. Assessment of the Atlantic mackerel stock for the Northwest Atlantic (Subareas 3 and 4) in 2018. DFO Can. Sci. Advis. Sec. Sci. Advis. Rep. 2019/035: 14 (2019).27.Secor, D. H. Specifying divergent migrations in the concept of stock: the contingent hypothesis. Fish. Res. 43, 13–34 (1999).Article 

    Google Scholar 
    28.Sette, O. E. Biology of the Atlantic mackerel (Scomber scombrus) of North America. Part I: early life history, including the growth, drift, and mortality of the egg and larval populations. Fish. Bull. 50, 149–237 (1943).
    Google Scholar 
    29.Berrien, P. L. Eggs and larvae of Scomber scombrus and Scomber japonicus in continental shelf waters between Massachusetts and Florida. Fish. Bull. 76, 95–115 (1978).
    Google Scholar 
    30.Overholtz, W. J., Hare, J. A. & Keith, C. M. Impacts of interannual environmental forcing and climate change on the distribution of Atlantic mackerel on the U.S. Northeast continental shelf. Mar. Coast. Fish. 3, 219–232 (2011).Article 

    Google Scholar 
    31.McManus, M. C., Hare, J. A., Richardson, D. E. & Collie, J. S. Tracking shifts in Atlantic mackerel (Scomber scombrus) larval habitat suitability on the Northeast U.S. Continental Shelf. Fish. Oceanogr. 27, 49–62 (2018).Article 

    Google Scholar 
    32.Richardson, D. E., Carter, L., Curti, K. L., Marancik, K. E. & Castonguay, M. Changes in the spawning distribution and biomass of Atlantic mackerel (Scomber scombrus) in the western Atlantic Ocean over 4 decades. Fish. Bull. 118, 120–134 (2020).Article 

    Google Scholar 
    33.Moura, A. et al. Population structure and dynamics of the Atlantic mackerel (Scomber scombrus) in the North Atlantic inferred from otolith chemical and shape signatures. Fish. Res. 230, 105621 (2020).Article 

    Google Scholar 
    34.Rooker, J. et al. Evidence of trans-Atlantic movement and natal homing of bluefin tuna from stable isotopes in otoliths. Mar. Ecol. Prog. Ser. 368, 231–239 (2008).ADS 
    Article 

    Google Scholar 
    35.Clarke, L. M., Munch, S. B., Thorrold, S. R. & Conover, D. O. High connectivity among locally adapted populations of a marine fish (Menidia menidia). Ecology 91, 3526–3537 (2010).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    36.Wells, R. J. D. et al. Natural tracers reveal population structure of albacore (Thunnus alalunga) in the eastern North Pacific. ICES J. Mar. Sci. 72, 2118–2127 (2015).Article 

    Google Scholar 
    37.Moreira, C. et al. Population structure of the blue jack mackerel (Trachurus picturatus) in the NE Atlantic inferred from otolith microchemistry. Fish. Res. 197, 113–122 (2018).Article 

    Google Scholar 
    38.Trueman, C. N., MacKenzie, K. M. & Palmer, M. R. Identifying migrations in marine fishes through stable-isotope analysis. J. Fish. Biol. 81, 826–847 (2012).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    39.McMahon, K. W., Hamady, L. L. & Thorrold, S. R. A review of ecogeochemistry approaches to estimating movements of marine animals. Limnol. Oceanogr. 58, 697–714 (2013).ADS 
    CAS 
    Article 

    Google Scholar 
    40.Kalish, J. M. 13C and 18O isotopic disequilibria in fish otoliths: metabolic and kinetic effects. Mar. Ecol. Prog. Ser. 75, 191–203 (1991).ADS 
    Article 

    Google Scholar 
    41.Solomon, C. T. et al. Experimental determination of the sources of otolith carbon and associated isotopic fractionation. Can. J. Fish. Aquat. Sci. 63, 79–89 (2006).CAS 
    Article 

    Google Scholar 
    42.Tohse, H. & Mugiya, Y. Sources of otolith carbonate: experimental determination of carbon incorporation rates from water and metabolic CO2, and their diel variations. Aquat. Biol. 1, 259–268 (2008).Article 

    Google Scholar 
    43.Chung, M.-T., Trueman, C. N., Godiksen, J. A., Holmstrup, M. E. & Grønkjær, P. Field metabolic rates of teleost fishes are recorded in otolith carbonate. Commun. Biol. 2, 24 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    44.Rooker, J. R. & Secor, D. H. Microchemistry: migration and ecology of Atlantic bluefin tuna. In The Future of Bluefin Tunas: Ecology, Fisheries Management, and Conservation (ed. Block, B. A.) (Johns Hopkins University Press, 2019).
    Google Scholar 
    45.Uriarte, A. et al. Spatial pattern of migration and recruitment of North East Atlantic mackerel. ICES CM 2001/O:17 (2001).46.Mendiola, D., Alvarez, P., Cotano, U. & Martínez de Murguía, A. Early development and growth of the laboratory reared north-east Atlantic mackerel (Scomber scombrus) L. J. Fish. Biol. 70, 911–933 (2007).Article 

    Google Scholar 
    47.Bates, D., Maechler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).Article 

    Google Scholar 
    48.Harrison, X. A. et al. A brief introduction to mixed effects modelling and multi-model inference in ecology. PeerJ 6, e4794 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    49.Hartig, F. DHARMa: residual diagnostics for hierarchical (multi-level/mixed) regression models (2020).50.Kerr, L. A. et al. Mixed stock origin of Atlantic bluefin tuna in the U.S. rod and reel fishery (Gulf of Maine) and implications for fisheries management. Fish. Res. 224, 105461 (2020).Article 

    Google Scholar 
    51.R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2020).
    Google Scholar 
    52.Smith, A. D. et al. Atlantic mackerel (Scomber scombrus L.) in NAFO Subareas 3 and 4 in 2018. DFO Can. Sci. Advis. Sec. Res. Doc. 2020/013. iv + 37 p. (2020).53.Lambrey de Souza, J., Sévigny, J.-M., Chanut, J.-P., Barry, W. F. & Grégoire, F. High genetic variability in the mtDNA control region of a Northwestern Atlantic teleost, Scomber scombrus L. Can. Tech. Rep. Fish. Aquat. Sci. 2625, vi+25 (2006).
    Google Scholar 
    54.Radlinski, M. K., Sundermeyer, M. A., Bisagni, J. J. & Cadrin, S. X. Spatial and temporal distribution of Atlantic mackerel (Scomber scombrus) along the northeast coast of the United States, 1985–1999. ICES J. Mar. Sci. 70, 1151–1161 (2013).Article 

    Google Scholar 
    55.Castonguay, M., Plourde, S., Robert, D., Runge, J. A. & Fortier, L. Copepod production drives recruitment in a marine fish. Can. J. Fish. Aquat. Sci. 65, 1528–1531 (2008).Article 

    Google Scholar 
    56.McManus, M. C. Atlantic Mackerel (Scomber scombrus) Population and Habitat Trends in the Northwest Atlantic (University of Rhode Island, 2017).
    Google Scholar 
    57.Schloesser, R. W., Rooker, J. R., Louchuoarn, P., Neilson, J. D. & Secord, D. H. Interdecadal variation in seawater δ13C and δ18O recorded in fish otoliths. Limnol. Oceanogr. 54, 1665–1668 (2009).ADS 
    CAS 
    Article 

    Google Scholar 
    58.Schloesser, R. W., Neilson, J. D., Secor, D. H. & Rooker, J. R. Natal origin of Atlantic bluefin tuna (Thunnus thynnus) from Canadian waters based on otolith δ13C and δ18O. Can. J. Fish. Aquat. Sci. 67, 563–569 (2010).CAS 
    Article 

    Google Scholar 
    59.Thorrold, S. R., Campana, S. E., Jones, C. M. & Swart, P. K. Factors determining δ13C and δ18O fractionation in aragonitic otoliths of marine fish. Geochim. Cosmochim. Acta. 61, 2909–2919 (1997).ADS 
    CAS 
    Article 

    Google Scholar 
    60.Campana, S. E. Chemistry and composition of fish otoliths: pathways, mechanisms and applications. Mar. Ecol. Prog. Ser. 188, 263–297 (1999).ADS 
    CAS 
    Article 

    Google Scholar 
    61.Caesar, L., Rahmstorf, S., Robinson, A., Feulner, G. & Saba, V. Observed fingerprint of a weakening Atlantic Ocean overturning circulation. Nature 556, 191–196 (2018).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    62.Saba, V. S. et al. Enhanced warming of the Northwest Atlantic Ocean under climate change. J. Geophys. Res. Oceans 121, 118–132 (2016).ADS 
    Article 

    Google Scholar 
    63.Pershing, A. J. et al. Slow adaptation in the face of rapid warming leads to collapse of the Gulf of Maine cod fishery. Science 350, 809–812 (2015).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    64.Brickman, D., Hebert, D. & Wang, Z. Mechanism for the recent ocean warming events on the Scotian Shelf of eastern Canada. Cont. Shelf. Res. 156, 11–22 (2018).ADS 
    Article 

    Google Scholar 
    65.Thorrold, S. R., Latkoczy, C., Swart, P. K. & Jones, C. M. Natal homing in a marine fish metapopulation. Science 291, 297–299 (2001).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    66.Gillanders, B. M. Using elemental chemistry of fish otoliths to determine connectivity between estuarine and coastal habitats. Estuar. Coast. Shelf. Sci. 64, 47–57 (2005).ADS 
    Article 

    Google Scholar 
    67.Høie, H., Andersson, C., Folkvord, A. & Karlsen, Ø. Precision and accuracy of stable isotope signals in otoliths of pen-reared cod (Gadus morhua) when sampled with a high-resolution micromill. Mar. Biol. 144, 1039–1049 (2004).Article 

    Google Scholar 
    68.Martino, J. C., Doubleday, Z. A., Chung, M.-T. & Gillanders, B. M. Experimental support towards a metabolic proxy in fish using otolith carbon isotopes. J. Exp. Biol. 223, jeb217091 (2020).PubMed 
    Article 

    Google Scholar 
    69.Manel, S., Gaggiotti, O. E. & Waples, R. S. Assignment methods: matching biological questions with appropriate techniques. Trends Ecol. Evol. 20, 136–142 (2005).PubMed 
    Article 

    Google Scholar 
    70.Siskey, M. R., Wilberg, M. J., Allman, R. J., Barnett, B. K. & Secor, D. H. Forty years of fishing: changes in age structure and stock mixing in northwestern Atlantic bluefin tuna (Thunnus thynnus) associated with size-selective and long-term exploitation. ICES J. Mar. Sci. 73, 2518–2528 (2016).Article 

    Google Scholar 
    71.Kerr, L. A., Cadrin, S. X. & Secor, D. H. The role of spatial dynamics in the stability, resilience, and productivity of an estuarine fish population. Ecol. Appl. 20, 497–507 (2010).CAS 
    PubMed 
    Article 

    Google Scholar 
    72.Goethel, D. R., Quinn, T. J. & Cadrin, S. X. Incorporating spatial structure in stock assessment: movement modeling in marine fish population dynamics. Rev. Fish. Sci. 19, 119–136 (2011).Article 

    Google Scholar 
    73.Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer, 2016).
    Google Scholar  More

  • in

    Coastal road mortality of land crab during spawning migration

    1.Firth, L. B. et al. Ocean sprawl: Challenges and opportunities for biodiversity management in a changing world. Oceanogr. Mar. Biol. Annu. Rev. 54, 193–269 (2016).
    Google Scholar 
    2.Forman, R. T. T. et al. Road Ecology: Science and Solutions (Island Press, 2003).
    Google Scholar 
    3.Bishop, M. J. et al. Effects of ocean sprawl on ecological connectivity: Impacts and solutions. J. Exp. Mar. Biol. Ecol. 492, 7–30. https://doi.org/10.1016/j.jembe.2017.01.021 (2017).Article 

    Google Scholar 
    4.Sobocinski, K. L., Cordell, J. R. & Simenstad, C. A. Effects of shoreline modifications on supratidal macroinvertebrate fauna on Puget Sound, Washington beaches. Estuar. Coast 33, 699–711. https://doi.org/10.1007/s12237-009-9262-9 (2010).CAS 
    Article 

    Google Scholar 
    5.Carlton, J. T. & Hodder, J. Maritime mammals: Terrestrial mammals as consumers in marine intertidal communities. Mar. Ecol. Prog. Ser. 256, 271–286. https://doi.org/10.3354/meps256271 (2003).ADS 
    Article 

    Google Scholar 
    6.Levin, L. A. et al. The function of marine critical transition zones and the importance of sediment biodiversity. Ecosystems 4, 430–451. https://doi.org/10.1007/s10021-001-0021-4 (2001).CAS 
    Article 

    Google Scholar 
    7.Lee, Y. Study on Changes in the Coastal Environment Due to Human Interference: A Case Study of Sand Beach Coast in Gangneung. Master’s Thesis. Korea National University of Education, Cheongju (2011).8.Son, S. et al. Analysis of Influential factors of roadkill occurrence—A case study of Seorak national park. J. Korean Inst. Landsc. Arch. 44, 1–12. https://doi.org/10.9715/KILA.2016.44.3.001 (2016).ADS 
    Article 

    Google Scholar 
    9.Carr, L. W. & Fahrig, L. Effect of road traffic on two amphibian species of differing vagility. Conserv. Biol. 15, 1071–1078. https://doi.org/10.1046/j.1523-1739.2001.0150041071.x (2001).Article 

    Google Scholar 
    10.Coffin, A. W. From roadkill to road ecology: A review of the ecological effects of roads. J. Transp. Geogr. 15, 396–406. https://doi.org/10.1016/j.jtrangeo.2006.11.006 (2007).Article 

    Google Scholar 
    11.Zielin, S. B., Littlejohn, J., de Rivera, C. E., Smith, W. P. & Jacobson, S. L. Ecological investigations to select mitigation options to reduce vehicle-caused mortality of a threatened butterfly. J. Insect Conserv. 20, 845–854. https://doi.org/10.1007/s10841-016-9916-4 (2016).Article 

    Google Scholar 
    12.Bonnet, X., Naulleau, G. & Shine, R. The dangers of leaving home: Dispersal and mortality in snakes. Biol. Conserv. 89, 39–50. https://doi.org/10.1016/S0006-3207(98)00140-2 (1999).Article 

    Google Scholar 
    13.Fahrig, L., Pedlar, J. H., Pope, S. E., Taylor, P. D. & Wegner, J. F. Effect of road traffic on amphibian density. Biol. Conserv. 73, 177–182. https://doi.org/10.1016/0006-3207(94)00102-V (1995).Article 

    Google Scholar 
    14.Hobday, A. J. & Minstrell, M. L. Distribution and abundance of roadkill on Tasmanian highways: Human management options. Wildl. Res. 35, 712–726. https://doi.org/10.1080/15627020.2015.1021161 (2008).Article 

    Google Scholar 
    15.Finder, R. A., Roseberry, J. L. & Woolf, A. Site and landscape conditions at white-tailed deer/vehicle collision locations in Illinois. Landsc. Urban Plan. 44, 77–85. https://doi.org/10.1016/S0169-2046(99)00006-7 (1999).Article 

    Google Scholar 
    16.Glista, D. J., DeVault, T. L. & DeWoody, J. A. Vertebrate road mortality predominantly impacts amphibians. Herpetol. Conserv. Biol. 3, 77–87 (2008).
    Google Scholar 
    17.Grilo, C., Bissonette, J. A. & Cramer, P. C. Mitigation measures to reduce impacts on biodiversity. In Highways: Construction (ed. Jones, S. R.) 73–114 (Management and Maintenance. Nova Science Publishers, 2010).
    Google Scholar 
    18.Baine, M. et al. The development of management options for the black land crab (Gecarcinus ruricola) catchery in the San Andres Archipelago, Colombia. Ocean Coast Manage. 50, 564–589. https://doi.org/10.1016/j.ocecoaman.2007.02.007 (2007).Article 

    Google Scholar 
    19.Kantola, T., Tracy, J. L., Baum, K. A., Quinn, M. A. & Coulson, R. N. Spatial risk assessment of eastern monarch butterfly road mortality during autumn migration within the southern corridor. Biol. Conserv. 231, 150–160. https://doi.org/10.1016/j.biocon.2019.01.008 (2019).Article 

    Google Scholar 
    20.Koivula, M. J. & Vermeulen, H. J. W. Highways and forest fragmentation—Effects on carabid beetles (Coleoptera, Carabidae). Landsc. Ecol. 20, 911–926. https://doi.org/10.1007/s10980-005-7301-x (2005).Article 

    Google Scholar 
    21.Costa, L. L., Mothé, N. A. & Zalmon, I. R. Light pollution and ghost crab road-kill on coastal habitats. Reg. Stud. Mar. Sci. 39, 101457. https://doi.org/10.1016/j.rsma.2020.101457 (2020).Article 

    Google Scholar 
    22.Hübner, L., Pennings, S. C. & Zimmer, M. Sex- and habitat-specific movement of an omnivorous semi-terrestrial crab controls habitat connectivity and subsidies: A multi-parameter approach. Oecologia 178, 999–1015. https://doi.org/10.1007/s00442-015-3271-0 (2015).ADS 
    Article 
    PubMed 

    Google Scholar 
    23.Burggren, W. W. & McMahon, B. R. Biology of the Terrestrial Crabs (Cambridge University Press, 1988).
    Google Scholar 
    24.Micheli, F., Gherardi, F. & Vannini, M. Feeding and burrowing ecology of two East African mangrove crabs. Mar. Biol. 111, 247–254. https://doi.org/10.1007/BF01319706 (1991).Article 

    Google Scholar 
    25.Green, P. T., O’Dowd, D. J. & Lake, P. S. Recruitment dynamics in a rainforest seedling community: Context independent impact of a keystone consumer. Oecologia 156, 373–385. https://doi.org/10.1007/s00442-008-0992-3 (2008).ADS 
    Article 
    PubMed 

    Google Scholar 
    26.Suzuki, S. The life history of Sesarma haematocheirin the Miura peninsula. Res. Crust 11, 51–65. https://doi.org/10.18353/rcustacea.11.0_51 (1981).Article 

    Google Scholar 
    27.Adamczewska, A. M. & Morris, S. Ecology and behavior of Gecarcoideanatalis, the Christmas Island red crab, during the annual breeding migration. Biol. Bull. 200, 305–320. https://doi.org/10.2307/1543512 (2001).Article 

    Google Scholar 
    28.Le Galliard, J.-F., Fitze, P. S., Ferriere, R. & Clobert, J. Sex ratio bias, male aggression, and population collapse in lizards. Proc. Natl. Acad. Sci. 102, 18231–18236. https://doi.org/10.1073/pnas.0505172102 (2005).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    29.Caswell, H. Matrix Population Models: Construction, Analysis, and Interpretation (Sinauer Associates, 2001).
    Google Scholar 
    30.Aresco, M. J. The effect of sex-specific terrestrial movements and roads on the sex ratio of freshwater turtles. Biol. Conserv. 123, 37–44. https://doi.org/10.1016/j.biocon.2004.10.006 (2005).Article 

    Google Scholar 
    31.Mumme, R. L., Schoech, S. J., Woolfenden, G. E. & Fitzpatrick, J. W. Life and death in the fast lane: Demographic consequences of road mortality in the Florida scrub-jay. Conserv. Biol. 14, 501–512. https://doi.org/10.1046/j.1523-1739.2000.98370.x (2000).Article 

    Google Scholar 
    32.Kioko, J., Kiffner, C., Jenkins, N. & Collinson, W. J. Wildlife roadkill patterns on a major highway in northern Tanzania. Afr. Zool. 50, 17–22. https://doi.org/10.1080/15627020.2015.1021161 (2015).Article 

    Google Scholar 
    33.Seo, C., Thorne, J. H., Choi, T., Kwon, H. & Park, C. H. Disentangling roadkill: The influence of landscape and season on cumulative vertebrate mortality in South Korea. Landsc. Ecol. Eng. 11, 87–99. https://doi.org/10.1007/s11355-013-0239-2 (2015).Article 

    Google Scholar 
    34.Beebee, T. J. C. Effects of road mortality and mitigation measures on amphibian populations. Conserv. Biol. 27, 657–668. https://doi.org/10.1111/cobi.12063 (2013).Article 
    PubMed 

    Google Scholar 
    35.Zhang, W. et al. Daytime driving decreases amphibian roadkill. PeerJ 6, e5385. https://doi.org/10.7717/peerj.5385 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    36.Saigusa, M. & Hidaka, T. Semilunar rhythm in the zoea-release activity of the terrestrial crabs Sesarma. Oecologia 37, 163–176. https://doi.org/10.1007/BF00344988 (1978).ADS 
    Article 
    PubMed 

    Google Scholar 
    37.Hartnoll, R. G. et al. Reproduction in the land crab Johngarthialagostoma on Ascension Island. J. Crust. Biol. 30, 83–92. https://doi.org/10.1651/09-3143.1 (2010).Article 

    Google Scholar 
    38.Schmidt, A. J., Bemvenutia, C. E. & Dieleet, K. Effects of geophysical cycles on the rhythm of mass mate searching of a harvested mangrove crab. Anim. Behav. 84, 333–340. https://doi.org/10.1016/j.anbehav.2012.04.023 (2012).Article 

    Google Scholar 
    39.Saigusa, M. Ecological distribution of three species of the genus Sesarma in winter season. Zool. Mag. 87, 142–150 (1978).
    Google Scholar 
    40.Saigusa, M. Adaptive significance of a semilunar rhythm in the terrestrial crab Sesarma. Biol. Bull. 160, 311–321. https://doi.org/10.2307/1540891 (1981).Article 

    Google Scholar 
    41.Saigusa, M., Terajima, M. & Yamamoto, M. Structure, formation, mechanical properties, and disposal of the embryo attachment system of an estuarine crab, Sesarma haematocheir. Biol. Bull. 203, 289–306. https://doi.org/10.2307/1543572 (2002).CAS 
    Article 
    PubMed 

    Google Scholar 
    42.Saigusa, M. Hatching of an estuarine crab, sesarma haematochier: Factors affecting the timing of hatching in detached embryos, and enhancement of hatching synchrony by the female. J. Oceanogr. 56, 93–102. https://doi.org/10.1023/A:1011118726283 (2000).Article 

    Google Scholar 
    43.Saigusa, M. Larval release rhythm coinciding with solar day and tidal cycles in the terrestrial crab Sesarma-harmony with the semilunar timing and its adaptive significance. Biol. Bull. 162, 371–386. https://doi.org/10.2307/1540990 (1982).Article 

    Google Scholar 
    44.Forward, R. B. Larval release rhythms of decapod crustaceans: An overview. Bull. Mar. Sci. 41, 165–176 (1987).
    Google Scholar 
    45.Hicks, J. W. The breeding behaviour and migrations of the terrestrial crab Gecarcoideanatalis (Decapoda: Brachyura). Aust. J. Zool. 33, 127–142. https://doi.org/10.1071/ZO9850127 (1985).Article 

    Google Scholar 
    46.Morgan, S. G. & Christy, J. H. Adaptive significance of the timing of larval release by crabs. Am. Nat. 145, 457–479. https://doi.org/10.1086/285749 (1995).Article 

    Google Scholar 
    47.Paula, J. Rhythms of larval release of decapod crustaceans in the Mira Estuary, Portugal. Mar. Biol. 100, 309–312. https://doi.org/10.1007/BF00391144 (1989).Article 

    Google Scholar 
    48.Bergin, M. E. Hatching rhythms in Ucapugilator (Decapoda: Brachyura). Mar. Biol. 63, 151–158. https://doi.org/10.1007/BF00406823 (1981).Article 

    Google Scholar 
    49.Christy, J. H. Adaptive significance of semilunar cycles of larval release in fiddler crabs (Genus Uca): Test of a hypothesis. Biol. Bull. 163, 251–263. https://doi.org/10.2307/1541264 (1982).Article 

    Google Scholar 
    50.Quintero-Angel, A., Osorio-Dominguez, D., Vargas-Salinas, F. & Saavedra-Rodriguez, C. A. Roadkill rate of snakes in a disturbed landscape of central Andes of Columbia. Herpetol. Notes 5, 99–105 (2012).
    Google Scholar 
    51.Orłowski, G. Roadside hedgerows and trees as factors increasing road mortality of birds: Implications for management of roadside vegetation in rural landscapes. Landsc. Urban Plan. 86, 153–161. https://doi.org/10.1016/j.landurbplan.2008.02.003 (2008).Article 

    Google Scholar 
    52.Saeki, M. & Macdonald, D. W. The effects of traffic on the raccoon dog (Nyctereutes procyonoides viverrinus) and other mammals in Japan. Biol. Conserv. 118, 559–571. https://doi.org/10.1016/j.biocon.2003.10.004 (2004).Article 

    Google Scholar 
    53.Costa, L. L., Secco, H., Arueira, V. F. & Zalmon, I. R. Mortality of the Atlantic ghost crab Ocypode quadrata (Fabricius, 1787) due to vehicle traffic on sandy beaches: A road ecology approach. J. Environ. Manage. 260, 110168. https://doi.org/10.1016/j.jenvman.2020.110168 (2020).Article 
    PubMed 

    Google Scholar 
    54.Tsai, J. R., Hsieh, Y. T., Lin & H. C. The effect of dike types on terrestrial crab passage through the access road: The predicament of terrestrial crab conservation in Gaomei Wetland. In Proceedings of the 39th Oceans Engineering Conference in Taiwan Hungkuang University, November (2017)55.Bellis, M. A., Jackson, S. D., Griffin, C. R., Warren, P. S. & Thompson, A. O. Utilizing a multi-technique, multi-taxa approach to monitoring wildlife passageways in southern Vermont. Oecol. Aust. 17, 111–128. https://doi.org/10.4257/oeco.2013.1701.10 (2007).Article 

    Google Scholar 
    56.Song, J. et al. Roadkill of amphibians in the Korea national park. Korean J. Environ. Ecol. 23, 187–193 (2009).
    Google Scholar 
    57.Ryu, M. & Kim, J. G. Influence of roadkill during breeding migration on the sex ratio of land crab (Sesarma haematoche). J. Environ. Ecol. 44, 23. https://doi.org/10.1186/s41610-020-00167-6 (2020).Article 

    Google Scholar 
    58.Mizuta, T. Moonlight-related mortality: Lunar conditions and roadkill occurrence in the Amami woodcock Scolopax mira. Wilson J. Ornithol. 126, 544–552. https://doi.org/10.1676/13-159.1 (2014).Article 

    Google Scholar 
    59.Gibbs, J. P. & Steen, D. A. Trends in sex ratios of turtles in the United States: Implications of road mortality. Conserv. Biol. 19, 552–556. https://doi.org/10.1111/j.1523-1739.2005.000155.x (2005).Article 

    Google Scholar 
    60.Rytwinski, T. & Fahrig, L. Do species life history traits explain population responses to roads? A meta-analysis. Biol. Conserv. 147, 87–98. https://doi.org/10.1016/j.biocon.2011.11.023 (2012).Article 

    Google Scholar 
    61.Korea Astronomy and Space Science Institute. Korean Astronomical Almanac (Korea Astronomy and Space Science Institute, 2017).
    Google Scholar  More

  • in

    Monitoring respiratory effects of allergenic pollen

    Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain
    the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in
    Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles
    and JavaScript. More

  • in

    Monitoring the variation in the gut microbiota of captive woolly monkeys related to changes in diet during a reintroduction process

    1.Amato, K. R. Incorporating the gut microbiota into models of human and non-human primate ecology and evolution. Am. J. Phys. Anthropol. 159, S196–S215 (2016).PubMed 
    Article 

    Google Scholar 
    2.Ley, R., Hamady, M. & Lozupone, C. Evolution of mammals and their gut microbes. Science 320, 1647–1651 (2008).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    3.Walter, J. Ecological role of lactobacilli in the gastrointestinal tract: Implications for fundamental and biomedical research. Appl. Environ. Microbiol. 74, 4985–4996 (2008).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    4.O’Callaghan, A. & van Sinderen, D. Bifidobacteria and their role as members of the human gut microbiota. Front. Microbiol. 7, 925 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    5.Redford, K. H., Segre, J. A., Salafsky, N., Del Rio, C. M. & Mcaloose, D. Conservation and the microbiome. Conserv. Biol. 26, 195–197 (2012).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    6.Costello, E. K., Stagaman, K., Dethlefsen, L., Bohannan, B. J. & Relman, D. A. The application of ecological theory towards an understanding of the human microbiome. Science 336, 1255–1262 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    7.Nicholson, J. K. et al. Host-gut microbiota metabolic interactions. Science 336, 1262–1267 (2012).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    8.Kohl, K. D., Skopec, M. M. & Dearing, M. D. Captivity results in disparate loss of gut microbial diversity in closely related hosts. Conserv. Physiol. 2, cou009 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    9.Clayton, J. B. et al. Captivity humanizes the primate microbiome. Proc. Natl. Acad. Sci. 113, 10376–10381 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    10.McKenzie, V. J. et al. The effects of captivity on the mammalian gut microbiome. Integr. Comp. Biol. 57, 690–704 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    11.Muegge, B. D. et al. Diet drives convergence in gut microbiome functions across mammalian phylogeny and within humans. Science 332, 970–974 (2011).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    12.Myers, S. P. & Hawrelak, J. A. The causes of intestinal dysbiosis: a review. Altern. Med. Rev. 9, 180–197 (2004).PubMed 

    Google Scholar 
    13.Knights, D. et al. Complex host genetics influence the microbiome in inflammatory bowel disease. Genome Med. 6, 107 (2014).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    14.Perofsky, A. C., Lewis, R. J., Abondano, L. A., Fiore, A. D. & Meyers, L. A. Hierarchical social networks shape gut microbial composition in wild Verreaux ’ s sifaka. Proc. R. Soc. B Biol. Sci. 248, 20172274 (2017).Article 

    Google Scholar 
    15.Phillips, C. D. et al. Microbiome analysis among bats describes influences of host phylogeny, life history, physiology and geography. Mol. Ecol. 21, 2617–2627 (2012).PubMed 
    Article 

    Google Scholar 
    16.Hale, V. L. et al. Diet versus phylogeny: a comparison of gut microbiota in captive colobine monkey species. Microb. Ecol. 75, 515–527 (2018).PubMed 
    Article 

    Google Scholar 
    17.Delsuc, F. et al. Convergence of gut microbiomes in myrmecophagous mammals. Mol. Ecol. 23, 1301–1317 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    18.Lambert, J. E. Primate Nutritional Ecology: Feeding Biology and Diet at Ecological and Evolutionary Scales: Primates in Perspective (Oxford University Press, 2010).
    Google Scholar 
    19.Gomez, A. et al. Temporal variation selects for diet-microbe co-metabolic traits in the gut of Gorilla spp. ISME J. 10, 514–526 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    20.Amato, K. R. et al. Habitat degradation impacts black howler monkey (Alouatta pigra) gastrointestinal microbiomes. ISME J. 7, 1344–1353 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    21.Ochman, H. et al. Evolutionary relationships of wild hominids recapitulated by gut microbial communities. PLoS Biol. 8, 3–10 (2010).Article 
    CAS 

    Google Scholar 
    22.Amato, K. R. et al. Evolutionary trends in host physiology outweigh dietary niche in structuring primate gut microbiomes. ISME J. 13, 576–587 (2018).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    23.Borbón-García, A., Reyes, A., Vives-Flórez, M. & Caballero, S. Captivity shapes the gut microbiota of Andean bears: Insights into health surveillance. Front. Microbiol. 8, 1316 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    24.Kohl, K. D. & Dearing, M. D. Wild-caught rodents retain a majority of their natural gut microbiota upon entrance into captivity. Environ. Microbiol. Rep. 6, 191–195 (2014).PubMed 
    Article 

    Google Scholar 
    25.Xiao, Y. et al. Captivity causes taxonomic and functional convergence of gut microbial communities in bats. PeerJ 7, e6844 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    26.Prabhu, V. R., Wasimuddin, V. R., Kamalakkannan, R., Arjun, M. S. & Nagarajan, M. Consequences of domestication on gut microbiome: a comparative study between wild gaur and domestic mithun. Front. Microbiol. 11, 133 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    27.Chaves, Ó. M., Stoner, K. E. & Arroyo-Rodríguez, V. Differences in diet between spider monkey groups living in forest fragments and continuous forest in Mexico. Biotropica 44, 105–113 (2012).Article 

    Google Scholar 
    28.Nakagawa, N. Determinants of the dramatic seasonal changes in the intake of energy and protein by Japanese monkeys in a cool temperate forest. Am. J. Primatol. 41, 267–288 (1997).CAS 
    PubMed 
    Article 

    Google Scholar 
    29.Amato, K. R. et al. The gut microbiota appears to compensate for seasonal diet variation in the wild black howler monkey (Alouatta pigra). Microb. Ecol. 69, 434–443 (2014).PubMed 
    Article 
    CAS 

    Google Scholar 
    30.Chen, T., Li, Y., Liang, J., Li, Y. & Huang, Z. Gut microbiota of provisioned and wild rhesus macaques (Macaca mulatta) living in a limestone forest in southwest Guangxi China. Microbiologyopen 9, e981 (2020).PubMed 

    Google Scholar 
    31.Mackie, R. I., Sghir, A. & Gaskins, H. R. Developmental microbial ecology of the neonatal gastrointestinal tract. Am. J. Clin. Nutr. 69, 1035s–1045s (1999).CAS 
    PubMed 
    Article 

    Google Scholar 
    32.Donnet-hughes, A. et al. Potential role of the intestinal microbiota of the mother in neonatal immune education. Proc. Nutr. Soc. 69, 407–415 (2010).PubMed 
    Article 

    Google Scholar 
    33.Orkin, J. D. et al. Seasonality of the gut microbiota of free-ranging white-faced capuchins in a tropical dry forest. ISME J. 13, 183–196 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    34.Eckburg, P. B. et al. Diversity of the human intestinal microbial flora. Science 308, 1635–1638 (2015).ADS 
    Article 

    Google Scholar 
    35.Ley, R. E. et al. Obesity alters gut microbial ecology. Proc. Natl. Acad. Sci. U. S. A. 102, 11070–11075 (2005).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    36.Frank, D. N. et al. Molecular-phylogenetic characterization of microbial community imbalances in human inflammatory bowel diseases. Proc. Natl. Acad. Sci. U. S. A. 104, 13780–13785 (2007).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    37.Shin, N. R., Whon, T. W. & Bae, J. W. Proteobacteria: Microbial signature of dysbiosis in gut microbiota. Trends Biotechnol. 33, 496–503 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    38.Jang, H. B., Choi, M. K., Kang, J. H., Park, S. I. & Lee, H. J. Association of dietary patterns with the fecal microbiota in Korean adolescents. BMC Nutr. 3, 1–11 (2017).Article 

    Google Scholar 
    39.Wang, B. et al. Comparison of the fecal microbiomes of healthy and diarrheic captive wild boar. Microb. Pathog. 147, 104377 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    40.Tang, J. et al. Gut microbiota in reintroduction of giant panda. Ecol. Evol. 10, 1012–1028 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    41.Clayton, J. B. et al. The gut microbiome of nonhuman primates: Lessons in ecology and evolution. Am. J. Primatol. 80, e22867 (2018).PubMed 
    Article 

    Google Scholar 
    42.Martínez-Mota, R., Kohl, K. D., Orr, T. J. & Denise Dearing, M. Natural diets promote retention of the native gut microbiota in captive rodents. ISME J. 14, 67–78 (2020).PubMed 
    Article 
    CAS 

    Google Scholar 
    43.Kilkenny, C. et al. Improving bioscience research reporting: the ARRIVE guidelines for reporting animal research. PLoS Biol. 8, e1000412 (2010).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    44.Vargas, S. A., León, J., Ramírez, M., Galvis, N., Cifuentes, E., & Stevenson, P. R. Population density and ecological traits of highland woolly monkeys at Cueva de los Guácharos National Park, Colombia. In High altitude primates Springer, New York. 85–102 (2014)45.Stevenson, P. R. Seed dispersal by woolly monkeys (Lagothrix lagothricha) at Tinigua National Park, Colombia: dispersal distance, germination rates, and dispersal quantity. Am. J. Primatol. Off. J. Am. Soc. Primatol. 50, 275–289 (2000).CAS 

    Google Scholar 
    46.Botero, S., Rengifo, L. Y., Bueno, M. L. & Stevenson, P. R. How many species of woolly monkeys inhabit Colombian forests?. Am. J. Primatol. 72, 1131–1140 (2020).Article 

    Google Scholar 
    47.Di Fiore, A. et al. The rise and fall of a genus: Complete mtDNA genomes shed light on the phylogenetic position of yellow-tailed woolly monkeys, Lagothrix flavicauda, and on the evolutionary history of the family Atelidae (Primates: Platyrrhini). Mol. Phylogenet. Evol. 82, 495–510 (2015).PubMed 
    Article 
    CAS 

    Google Scholar 
    48.Fooden, D. A revision of the woolly monkeys (genus Lagothrix). J. Mammal. 44, 213–247 (1963).Article 

    Google Scholar 
    49.Botero, S. & Stevenson, P. R. Coat color is not an indicator of subspecies identity in colombian woolly monkeys. The Woolly Monkey https://doi.org/10.1007/978-1-4939-0697-0 (2014).Article 

    Google Scholar 
    50.Stevenson, P. R. Activity and ranging patterns of Colombian woolly monkeys in north-western Amazonia. Primates https://doi.org/10.1007/s10329-005-0172-6 (2006).Article 
    PubMed 

    Google Scholar 
    51.Altmann, J. Observational study of behavior: sampling methods. Behaviuor. 49, 227–266 (1974).CAS 
    Article 

    Google Scholar 
    52.Caporaso, J. G. et al. Correspondence QIIME allows analysis of high-throughput community sequencing data intensity normalization improves color calling in SOLiD sequencing. Nat. Publ. Gr 7, 335–336 (2010).CAS 

    Google Scholar 
    53.Liu, Z., Lozupone, C., Hamady, M., Bushman, F. D. & Knight, R. Short pyrosequencing reads suffice for accurate microbial community analysis. Nucl. Acids Res. 35, e120 (2007).PubMed 
    Article 
    CAS 

    Google Scholar 
    54.Liu, Z., Desantis, T. Z., Andersen, G. L. & Knight, R. Accurate taxonomy assignments from 16S rRNA sequences produced by highly parallel pyrosequencers. Nucl. Acids Res. 36, 1–11 (2008).Article 
    CAS 

    Google Scholar 
    55.Yang, B., Wang, Y. & Qian, P. Sensitivity and correlation of hypervariable regions in 16S rRNA genes in phylogenetic analysis. BMC Bioinform. 17, 1–8 (2016).CAS 
    Article 

    Google Scholar 
    56.Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet. J. 17, 10–12 (2011).Article 

    Google Scholar 
    57.Andrews, S. FastQC: a quality control tool for high throughput sequence data. (2010).58.Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    59.Magoč, T. & Salzberg, S. L. FLASH: Fast length adjustment of short reads to improve genome assemblies. Bioinformatics 27, 2957–2963 (2011).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    60.Bolyen, E. et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat. Biotechnol. 37, 852–857. https://doi.org/10.1038/s41587-019-0209-9 (2019).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    61.Amir, A. et al. Deblur rapidly resolves single-. Am. Soc. Microbiol. 2, 1–7 (2017).
    Google Scholar 
    62.DeSantis, T. Z. et al. Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Appl. Environ. Microbiol. 72, 5069–5072 (2006).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    63.Douglas, G. M., Maffei, V. J., Zaneveld, J., Yurgel, S. N., Brown, J. R., Taylor, C. M., & Langille, M. G. PICRUSt2: An improved and extensible approach for metagenome inference. BioRxiv 672295 (2020).64.McMurdie, P. J. & Holmes, S. Phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE 8, e61217 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    65.Lozupone, C., Lladser, M. E., Knights, D., Stombaugh, J. & Knight, R. UniFrac: an effective distance metric for microbial community comparison. ISME J. 5, 169–172 (2011).PubMed 
    Article 

    Google Scholar 
    66.Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48. https://doi.org/10.18637/jss.v067.i01 (2015).Article 

    Google Scholar 
    67.Barton, K. MuMIn: multi-model inference. (2009). http://r-forge.R-project.org/projects/mumin/.68.Richards, S. A., Whittingham, M. J. & Stephens, P. A. Model selection and model averaging in behavioural ecology: the utility of the IT-AIC framework. Behav. Ecol. Sociobiol. 65, 77–89 (2011).Article 

    Google Scholar  More

  • in

    Response of the chemical structure of soil organic carbon to modes of maize straw return

    Experimental designThis experiment was conducted at the Science and Technology experimental site (125° 27′ 5″ N, 49° 33′ 35″ E) of the North Corporation of Sinograin, Nenjiang, Heilongjiang, China. The soil in the tested area was classified as Black soil according to Chinese Soil Taxonomy (as Mollisol according to USDA classification system) with a thick humus layer and clay texture. The area has a mid-temperate continental monsoon climate with an average annual temperature of − 1.4 to 0.8 °C, precipitation of 450 mm, a frost-free period of 115 days, and an effective accumulated temperature of 2150 °C. The basic physicochemical properties at 0–20 cm plow layer of soil were shown in Table 2. The experiment included two modes: maize straw mulching (FG) and straw returning combined with rotary tillage. In the test plot, there were six 10-m ridges per treatment, and each treatment area was 39 m2. Each treatment has three replicate. The experiment started in 2012 under the continuous planting of maize, and the straw was mechanically crushed and returned to the field in the fall. In accordance with the adjustment in the C/N of the straw, the amount of applied fertilizer was N 150 kg hm−2, P2O5 75 kg hm−2, and K2O 75 kg hm−2. Five treatments were included: (1) stubble remaining in the field, which served as the control (CK); (2) full straw mulching (FG); (3) full straw returning combined with rotary tillage (1 XG) ; (4) 1/3 of full straw returning combined with rotary tillage (1/3 XG); and (5) half of full straw returning combined with rotary tillage (1/2 XG).Table 2 Basic physicochemical properties of surface soil.Full size tableSample collectionSoil samples were collected after the maize (Demeiya 2) was harvested in November 2019. Five soil cores (diameter 5 cm) were randomly taken from 0 to 20 cm depth in each plot, mixed thoroughly, and packed into cloth bags. After the crop roots and other debris were removed, the samples were air-dried for analyzing the content and chemical structure of SOC.Determination of total soil organic carbonThe content of total SOC was measured using a TOC (total organic carbon) analyzer (NC2100, Jena, Germany,) after air-dried soil samples were passed through a 100-mesh sieve.Purification of soil organic carbonFive grams of air-dried soil was added to a 100 mL plastic centrifuge tube, followed by the addition of 50 mL of hydrogen fluoride (HF) solution (10% v/v). After the tube was capped, the solution was shaken for 1 h and centrifuged for 10 min (3000 r min−1), and the supernatant was removed. Subsequently, the residue in the tube was treated with HF solution and then followed the above shaking and centrifuging steps. A total of eight repeats (according to the conditions of the actual samples) were performed with different duration of shaking (4 × 1 h, 3 × 12 h, and 1 × 24 h). Lastly, the residue in the tube was washed with double-distilled water four times, mainly to remove the residual HF in the soil sample. The detailed steps were as follows: 50 mL of double-distilled water was added into tube, shaken for 10 min and centrifuged (3000 r min−1) for 10 min, and then the supernatant was removed. The purified samples with free-HF were dried in an oven at 40 °C, ground through a 60-mesh sieve, and stored in a Zip-lock bag for NMR measurement.Determination of the chemical structure of soil organic carbonThe 13C solid-state NMR spectrum was collected on a Bruker AV400 NMR spectrometer (Switzerland). The cross-polarization magic-angle spinning (CPMAS) technique was used, the 13C NMR frequency was 400.18 MHz, the magic angle spinning frequency was 8 kHz, the contact time was 2 ms, the delay time was 3 s, and the number of data points was 3000. The chemical shift was calibrated based on the external standard sodium 2, 2-dimethyl-2-silapentane-5-sulfonate (DSS), the integrated area was automatically given by the instrument, and the relative content of organic C in each functional group of SOC was expressed as the percentage of the integrated area of a chemical shift interval to the total integrated area. The C structures corresponding to the chemical shift of the main 13C signal of SOC (Table 3) were as follows: alkyl C region (0–45 ppm), alkoxy C region (45–110 ppm), aromatic C region (110–160 ppm), and carbonyl C region (160–220 ppm)4,19.Table 3 13C solid-state NMR determination of organic carbon functional groups and corresponding high-molecular-weight compounds.Full size tableData analysisNMR spectra (CPMAS 13C-NMR) were analyzed using MestReNova professional software. After analyzing and extracting the source data, Microsoft Office Excel 2010 and Origin 8.0 software were used for data processing and plotting. The data in the “Available Data” were plotted using Origin by overlapping the fitted curve, and SPSS 17.0 (SPSS Inc., Chicago, USA) statistical analysis software was used to test for significant differences (Duncan’s method) and for correlation analysis. More

  • in

    Shortfalls and opportunities in terrestrial vertebrate species discovery

    1.Costello, M. J., May, R. M. & Stork, N. E. Can we name Earth’s species before they go extinct? Science 339, 413–416 (2013).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    2.Mora, C., Rollo, A. & Tittensor, D. P. Comment on ‘Can we name Earth’s species before they go extinct?’. Science 341, 237 (2013).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    3.Mora, C., Tittensor, D. P., Adl, S., Simpson, A. G. B. & Worm, B. How many species are there on Earth and in the Ocean? PLoS Biol. 9, e1001127 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    4.May, R. & Beverton, R. J. H. How many species? Phil. Trans. R. Soc. B 330, 293–304 (1990).Article 

    Google Scholar 
    5.Scheffers, B. R., Joppa, L. N., Pimm, S. L. & Laurance, W. F. What we know and don’t know about Earth’s missing biodiversity. Trends Ecol. Evol. 27, 501–510 (2012).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    6.Raven, P. H. & Wilson, E. O. A fifty-year plan for biodiversity surveys. Science 258, 1099–1100 (1992).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    7.Whittaker, R. J. et al. Conservation biogeography: assessment and prospect. Divers. Distrib. 11, 3–23 (2005).Article 

    Google Scholar 
    8.Hortal, J. et al. Seven shortfalls that beset large-scale knowledge of biodiversity. Annu. Rev. Ecol. Evol. Syst. 46, 523–549 (2015).Article 

    Google Scholar 
    9.Guide to the Global Taxonomy Initiative (Secretariat of the Convention on Biological Diversity, 2010).10.Costello, M. J., May, R. M. & Stork, N. E. Response to comments on ‘Can we name Earth’s species before they go extinct?’. Science 341, 237 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    11.Bebber, D. P., Marriott, F. H. C., Gaston, K. J., Harris, S. A. & Scotland, R. W. Predicting unknown species numbers using discovery curves. Proc. R. Soc. B 274, 1651–1658 (2007).PubMed 
    Article 

    Google Scholar 
    12.Edie, S. M., Smits, P. D. & Jablonski, D. Probabilistic models of species discovery and biodiversity comparisons. Proc. Natl Acad. Sci. USA 114, 3666–3671 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    13.Guenard, B., Weiser, M. D. & Dunn, R. R. Global models of ant diversity suggest regions where new discoveries are most likely are under disproportionate deforestation threat. Proc. Natl Acad. Sci. USA 109, 7368–7373 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    14.Blackburn, T. M. & Gaston, K. J. What determines the probability of discovering a species – a study of South-American Oscine Passerine birds. J. Biogeogr. 22, 7–14 (1995).Article 

    Google Scholar 
    15.Costello, M. J., Lane, M., Wilson, S. & Houlding, B. Factors influencing when species are first named and estimating global species richness. Glob. Ecol. Conserv. 4, 243–254 (2015).Article 

    Google Scholar 
    16.Collen, B., Purvis, A. & Gittleman, J. L. Biological correlates of description date in carnivores and primates. Glob. Ecol. Biogeogr. 13, 459–467 (2004).Article 

    Google Scholar 
    17.Diniz-Filho, J. A. F. et al. Macroecological correlates and spatial patterns of anuran description dates in the Brazilian Cerrado. Glob. Ecol. Biogeogr. 14, 469–477 (2005).Article 

    Google Scholar 
    18.Costello, M. J., Houlding, B. & Joppa, L. N. Further evidence of more taxonomists discovering new species, and that most species have been named: response to Bebber et al. (2014). New Phytol. 202, 739–740 (2014).PubMed 
    Article 

    Google Scholar 
    19.Meiri, S. Small, rare and trendy: traits and biogeography of lizards described in the 21st century. J. Zool. 299, 251–261 (2016).Article 

    Google Scholar 
    20.Klein, J. P. & Moeschberger, M. L. Survival Analysis: Techniques for Censored and Truncated Data.(Springer, 2003).21.Essl, F., Rabitsch, W., Dullinger, S., Moser, D. & Milasowszky, N. How well do we know species richness in a well-known continent? Temporal patterns of endemic and widespread species descriptions in the European fauna. Glob. Ecol. Biogeogr. 22, 29–39 (2013).Article 

    Google Scholar 
    22.Colli, G. R. et al. In the depths of obscurity: knowledge gaps and extinction risk of Brazilian worm lizards (Squamata, Amphisbaenidae). Biol. Conserv. 204, 51–62 (2016).Article 

    Google Scholar 
    23.Burgin, C. J., Colella, J. P., Kahn, P. L. & Upham, N. S. How many species of mammals are there? J. Mammal. 99, 1–14 (2018).Article 

    Google Scholar 
    24.Meyer, C., Kreft, H., Guralnick, R. & Jetz, W. Global priorities for an effective information basis of biodiversity distributions. Nat. Commun. 6, 8221 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    25.Bellard, C. et al. Vulnerability of biodiversity hotspots to global change. Glob. Ecol. Biogeogr. 23, 1376–1386 (2014).Article 

    Google Scholar 
    26.Quintero, I. & Jetz, W. Global elevational diversity and diversification of birds. Nature 555, 246–250 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    27.Joppa, L. N., Roberts, D. L. & Pimm, S. L. How many species of flowering plants are there? Proc. R. Soc. B 278, 554–559 (2011).PubMed 
    Article 

    Google Scholar 
    28.Giam, X. et al. Reservoirs of richness: least disturbed tropical forests are centres of undescribed species diversity. Proc. R. Soc. B 279, 67–76 (2012).PubMed 
    Article 

    Google Scholar 
    29.Jetz, W. & Fine, P. V. A. Global gradients in vertebrate diversity predicted by historical area-productivity dynamics and contemporary environment. PLoS Biol. 10, e1001292 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    30.Gouveia, S. F., Villalobos, F., Dobrovolski, R., Beltrão-Mendes, R. & Ferrari, S. F. Forest structure drives global diversity of primates. J. Anim. Ecol. 83, 1523–1530 (2014).PubMed 
    Article 

    Google Scholar 
    31.Oliveira, B. F. & Scheffers, B. R. Vertical stratification influences global patterns of biodiversity. Ecography 42, 249–249 (2019).Article 

    Google Scholar 
    32.Oliveira, U. et al. The strong influence of collection bias on biodiversity knowledge shortfalls of Brazilian terrestrial biodiversity. Divers. Distrib. 22, 1232–1244 (2016).33.Roll, U. et al. The global distribution of tetrapods reveals a need for targeted reptile conservation. Nat. Ecol. Evol. 1, 1677–1682 (2017).PubMed 
    Article 

    Google Scholar 
    34.Garnett, S. T. & Christidis, L. Taxonomy anarchy hampers conservation. Nature 546, 25–27 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    35.Isaac, N. J. B., Mallet, J. & Mace, G. M. Taxonomic inflation: its influence on macroecology and conservation. Trends Ecol. Evol. 19, 464–469 (2004).PubMed 
    Article 

    Google Scholar 
    36.Bremer, K., Bremer, B., Karis, P. & Källersjö, M. Time for change in taxonomy. Nature 343, 202 (1990).CAS 
    PubMed 
    Article 

    Google Scholar 
    37.Raposo, M. A. et al. What really hampers taxonomy and conservation? A riposte to Garnett and Christidis (2017). Zootaxa 4317, 179–184 (2017).Article 

    Google Scholar 
    38.Wake, D. B. Persistent plethodontid themes: species, phylogenies, and biogeography. Herpetologica 73, 242–251 (2017).Article 

    Google Scholar 
    39.Tedesco, P. A. et al. Estimating how many undescribed species have gone extinct. Conserv. Biol. 28, 1360–1370 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    40.Jetz, W., McPherson, J. M. & Guralnick, R. P. Integrating biodiversity distribution knowledge: toward a global map of life. Trends Ecol. Evol. 27, 151–159 (2012).PubMed 
    Article 

    Google Scholar 
    41.Jetz, W., Thomas, G. H., Joy, J. B., Hartmann, K. & Mooers, A. O. The global diversity of birds in space and time. Nature 491, 444–448 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    42.Jetz, W. & Pyron, R. A. The interplay of past diversification and evolutionary isolation with present imperilment across the amphibian tree of life. Nat. Ecol. Evol. 2, 850–858 (2018).PubMed 
    Article 

    Google Scholar 
    43.Upham, N. S., Esselstyn, J. A. & Jetz, W. Inferring the mammal tree: species-level sets of phylogenies for questions in ecology, evolution, and conservation. PLoS Biol. 17, e3000494 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    44.González-del-Pliego, P. et al. Phylogenetic and trait-based prediction of extinction risk for data-deficient amphibians. Curr. Biol. 29, 1557–1563.e3 (2019).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    45.Moura, M. R. et al. Geographical and socioeconomic determinants of species discovery trends in a biodiversity hotspot. Biol. Conserv. 220, 237–244 (2018).Article 

    Google Scholar 
    46.Gaston, K. J., Blackburn, T. M. & Loder, N. Which species are described first? The case of North-American butterflies. Biodivers. Conserv. 4, 119–127 (1995).Article 

    Google Scholar 
    47.Oliveira, B. F., São-Pedro, V. A., Santos-Barrera, G., Penone, C. & Costa, G. C. AmphiBIO, a global database for amphibian ecological traits. Sci. Data 4, 170123 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    48.Feldman, A., Sabath, N., Pyron, R. A., Mayrose, I. & Meiri, S. Body sizes and diversification rates of lizards, snakes, amphisbaenians and the tuatara. Glob. Ecol. Biogeogr. 25, 187–197 (2016).Article 

    Google Scholar 
    49.Hallmann, K. & Griebeler, E. M. An exploration of differences in the scaling of life history traits with body mass within reptiles and between amniotes. Ecol. Evol. 8, 5480–5494 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    50.Slavenko, A., Itescu, Y., Ihlow, F. & Meiri, S. Home is where the shell is: predicting turtle home range sizes. J. Anim. Ecol. 85, 106–114 (2016).PubMed 
    Article 

    Google Scholar 
    51.Regis, K. W. & Meik, J. M. Allometry of sexual size dimorphism in turtles: a comparison of mass and length data. PeerJ 5, e2914 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    52.Itescu, Y., Karraker, N. E., Raia, P., Pritchard, P. C. H. & Meiri, S. Is the island rule general? Turtles disagree. Glob. Ecol. Biogeogr. 23, 689–700 (2014).Article 

    Google Scholar 
    53.Faurby, S. & Svenning, J.-C. Resurrection of the island rule: human-driven extinctions have obscured a basic evolutionary pattern. Am. Nat. 187, 812–820 (2016).PubMed 
    Article 

    Google Scholar 
    54.Wilman, H. et al. EltonTraits 1.0: species-level foraging attributes of the world’s birds and mammals. Ecology 95, 2027–2027 (2014).Article 

    Google Scholar 
    55.Tonini, J. F. R., Beard, K. H., Ferreira, R. B., Jetz, W. & Pyron, R. A. Fully-sampled phylogenies of squamates reveal evolutionary patterns in threat status. Biol. Conserv. 204A, 23–31 (2016).56.Goolsby, E. W., Bruggeman, J. & Ané, C. Rphylopars: fast multivariate phylogenetic comparative methods for missing data and within-species variation. Methods Ecol. Evol. 8, 22–27 (2017).Article 

    Google Scholar 
    57.Gaston, K. J., Blackburn, T. M. & Lawton, J. H. Interspecific abundance–range size relationships: an appraisal of mechanisms. J. Anim. Ecol. 66, 579–601 (1997).Article 

    Google Scholar 
    58.Borregaard, M. K. & Rahbek, C. Causality of the relationship between geographic distribution and species abundance. Q. Rev. Biol. 85, 3–25 (2010).PubMed 
    Article 

    Google Scholar 
    59.IUCN Red List of Threatened Species. Version 2018 (IUCN, 2018).60.Freitag, S., Hobson, C., Biggs, H. C. & Jaarsveld, A. S. Testing for potential survey bias: the effect of roads, urban areas and nature reserves on a southern African mammal data set. Anim. Conserv. 1, 119–127 (1998).Article 

    Google Scholar 
    61.Kier, G. & Barthlott, W. Measuring and mapping endemism and species richness: a new methodological approach and its application on the flora of Africa. Biodivers. Conserv. 10, 1513–1529 (2001).Article 

    Google Scholar 
    62.Vilela, B. & Villalobos, F. letsR: a new R package for data handling and analysis in macroecology. Methods Ecol. Evol. 6, 1229–1234 (2015).Article 

    Google Scholar 
    63.Papavero, N. Essays on the History of Neotropical Dipterology: With Special Reference to Collectors: 1750–1905: Vol. I (Museu de Zoologia da Universidade de São Paulo, 1971).64.Baselga, A., Lobo, J. M., Hortal, J., Jiménez-Valverde, A. & Gómez, J. F. Assessing alpha and beta taxonomy in eupelmid wasps: determinants of the probability of describing good species and synonyms. J. Zool. Syst. Evol. Res. 48, 40–49 (2010).Article 

    Google Scholar 
    65.Yang, W., Ma, K. & Kreft, H. Environmental and socio-economic factors shaping the geography of floristic collections in China. Glob. Ecol. Biogeogr. 23, 1284–1292 (2014).Article 

    Google Scholar 
    66.Karger, D. N. et al. Climatologies at high resolution for the Earth’s land surface areas. Sci. Data 4, 170122 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    67.R Core Team R: A Language and Environment for Statistical Computing Version 3.5.3 (R Foundation for Statistical Computing, 2019).68.Hijmans, R. J. raster: Geographic Data Analysis and Modeling https://cran.r-project.org/package=raster (2015).69.Amatulli, G. et al. A suite of global, cross-scale topographic variables for environmental and biodiversity modeling. Sci. Data 5, 180040 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    70.Klein Goldewijk, K., Beusen, A., Van Drecht, G. & De Vos, M. The HYDE 3.1 spatially explicit database of human-induced global land-use change over the past 12,000 years. Glob. Ecol. Biogeogr. 20, 73–86 (2011).Article 

    Google Scholar 
    71.Joppa, L. N., Roberts, D. L. & Pimm, S. L. The population ecology and social behaviour of taxonomists. Trends Ecol. Evol. 26, 551–553 (2011).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    72.Wickham, H. stringr: Simple, Consistent Wrappers for Common String Operations. R package version 1.3.1 http://stringr.tidyverse.org (2018).73.Mahto, A. splitstackshape: Stack and Reshape Datasets After Splitting Concatenated Values. R package version 1.4.6 http://github.com/mrdwab/splitstackshape (2018).74.Dinerstein, E. et al. An ecoregion-based approach to protecting half the terrestrial realm. BioScience 67, 534–545 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    75.Kutner, M. H., Nachtsheim, C. J., Neter, J. & Li, W. Applied Linear Statistical Models (McGraw-Hill, 2004).
    Google Scholar 
    76.Naimi, B. usdm: Uncertainty Analysis for Species Distribution Models https://cran.r-project.org/package=usdm (2017).77.von Linné, C. Systema Naturae https://doi.org/10.5962/bhl.title.542 (Impensis Direct Laurentii Salvii, 1758).78.Harrell, F. E. Regression Modeling Strategies (Springer, 2001).79.George, B., Seals, S. & Aban, I. Survival analysis and regression models. J. Nucl. Cardiol. 21, 686–694 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    80.Jackson, C. flexsurv: a platform for parametric survival modeling in R. J. Stat. Softw. 70, 1–33 (2016).Article 

    Google Scholar 
    81.Burnham, K. P. & Anderson, D. A. Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach (Springer, 2002).82.Johnson, J. B. & Omland, K. S. Model selection in ecology and evolution. Trends Ecol. Evol. 19, 101–108 (2004).PubMed 
    Article 

    Google Scholar 
    83.Barton, K. MuMIn: Multi-Model Inference. R package version 1.43.6 https://cran.r-project.org/package=MuMIn (2019).84.Alexander Pyron, R. & Wiens, J. J. A large-scale phylogeny of Amphibia including over 2800 species, and a revised classification of extant frogs, salamanders, and caecilians. Mol. Phylogenet. Evol. 61, 543–583 (2011).PubMed 
    Article 

    Google Scholar 
    85.Pyron, R. A., Burbrink, F. T. & Wiens, J. J. A phylogeny and revised classification of Squamata, including 4161 species of lizards and snakes. BMC Evol. Biol. 13, 93 (2013).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    86.Fisher, D. O. & Blomberg, S. P. Correlates of rediscovery and the detectability of extinction in mammals. Proc. R. Soc. B 278, 1090–1097 (2011).PubMed 
    Article 

    Google Scholar 
    87.Jetz, W., Sekercioglu, C. H. & Böhning-Gaese, K. The worldwide variation in avian clutch size across species and space. PLoS Biol. 6, e303 (2008).PubMed Central 
    Article 
    CAS 
    PubMed 

    Google Scholar 
    88.Jetz, W. & Rubenstein, D. R. Environmental uncertainty and the global biogeography of cooperative breeding in birds. Curr. Biol. 21, 72–78 (2011).CAS 
    PubMed 
    Article 

    Google Scholar 
    89.Jetz, W. & Rahbek, C. Geographic range size and determinants of avian species richness. Science 297, 1548–1551 (2002).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    90.Dowle, M. & Srinivasan, A. data.table: Extension of ‘data.frame’. R package version 1.12.4 https://cran.r-project.org/package=data.table (2019).91.Gaston, K. J., Chown, S. L. & Evans, K. L. Ecogeographical rules: elements of a synthesis. J. Biogeogr. 35, 483–500 (2008).Article 

    Google Scholar 
    92.Violle, C., Reich, P. B., Pacala, S. W., Enquist, B. J. & Kattge, J. The emergence and promise of functional biogeography. Proc. Natl Acad. Sci. USA 111, 13690–13696 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    93.Database of Global Administrative Areas Version 3.6 (GADM, 2019); http://www.gadm.org More