Simulations with Australian dragon lizards suggest movement-based signal effectiveness is dependent on display structure and environmental conditions
1.Endler, J. A. Signals, signal conditions, and the direction of evolution. Am. Nat. 139, S125–S153 (1992).Article
Google Scholar
2.Endler, J. A. Some general comments on the evolution and design of animal communication systems. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 340, 215–225 (1993).ADS
CAS
PubMed
Article
Google Scholar
3.Fleishman, L. J. The influence of the sensory system and the environment on motion patterns in the visual displays of anoline lizards and other vertebrates. Am. Nat. 139, S36–S61 (1992).Article
Google Scholar
4.Lythgoe, J. N. The Ecology of vision (Oxford University Press, 1979).
Google Scholar
5.Bradbury, J. W. & Vehrencamp, S. L. Principles of Animal Communication 2nd edn. (Sinauer Associates, 1998).
Google Scholar
6.Morton, E. S. Ecological sources of selection on avian sounds. Am. Nat. 109, 17–34 (1975).ADS
Article
Google Scholar
7.Endler, J. A. On the measurement and classification of colour in studies of animal colour patterns. Biol. J. Linn. Soc. Lond. 41, 315–352 (1990).Article
Google Scholar
8.Wiley, R. H. & Richards, D. G. Adaptations for acoustic communication in birds: Sound transmission and signal detection. In Ecology and Evolution of Acoustic Communication in Birds (eds Kroodsma, D. E. & Miller, E. H.) 131–181 (Academic Press, 1983).
Google Scholar
9.Bernard, G. D. & Remington, C. L. Color vision in Lycaena butterflies: Spectral tuning of receptor arrays in relation to behavioral ecology. Proc. Natl. Acad. Sci. USA 88, 2783–2787 (1991).ADS
CAS
PubMed
Article
Google Scholar
10.Peters, R. A., Clifford, C. W. G. & Evans, C. S. Measuring the structure of dynamic visual signals. Anim. Behav. 64, 131–146 (2002).Article
Google Scholar
11.Narins, P. M. Seismic communication in anuran amphibians. Bioscience 40, 268–274 (1990).Article
Google Scholar
12.Fleishman, L. & Persons, M. The influence of stimulus and background colour on signal visibility in the lizard Anolis cristatellus. J. Exp. Biol. 204, 1559–1575 (2001).CAS
PubMed
Google Scholar
13.Brumm, H. & Slabbekoorn, H. Acoustic communication in noise. Adv. Study Behav. 35, 151–209 (2005).Article
Google Scholar
14.Peters, R. A., Hemmi, J. M. & Zeil, J. Signaling against the wind: modifying motion-signal structure in response to increased noise. Curr. Biol. 17, 1231–1234 (2007).CAS
PubMed
Article
Google Scholar
15.Ord, T. J. & Stamps, J. A. Alert signals enhance animal communication in “noisy” environments. Proc. Natl. Acad. Sci. USA 105, 18830–18835 (2008).ADS
CAS
PubMed
Article
Google Scholar
16.Komers, P. E. Behavioural plasticity in variable environments. Can. J. Zool. 75, 161–169 (1997).Article
Google Scholar
17.Ord, T. J., Charles, G. K., Palmer, M. & Stamps, J. A. Plasticity in social communication and its implications for the colonization of novel habitats. Behav. Ecol. 27b, 341–351 (2015).
Google Scholar
18.Marten, K. & Marler, P. Sound transmission and its significance for animal vocalization. Behav. Ecol. Sociobiol. 2, 271–290 (1977).Article
Google Scholar
19.Ryan, M. J., Cocroft, R. B. & Wilczynski, W. The role of environmental selection in intraspecific divergence of mate recognition signals in the cricket frog, Acris crepitans. Evolution 44, 1869–1872 (1990).PubMed
Article
Google Scholar
20.Leal, M. & Fleishman, L. J. Differences in visual signal design and detectability between allopatric populations of Anolis lizards. Am. Nat. 163, 26–39 (2004).PubMed
Article
Google Scholar
21.McNett, G. D. & Cocroft, R. B. Host shifts favor vibrational signal divergence in Enchenopa binotata treehoppers. Behav. Ecol. 19, 650–656 (2008).Article
Google Scholar
22.Ferguson, G. W. Variation and evolution of the push-up displays of the side-blotched lizard genus Uta (Iguanidae). Syst. Zool. 20, 79–101 (1971).Article
Google Scholar
23.Martins, E. P., Bissell, A. N. & Morgan, K. K. Population differences in a lizard communicative display: evidence for rapid change in structure and function. Anim. Behav. 56, 1113–1119 (1998).CAS
PubMed
Article
Google Scholar
24.Martins, E. P. & Lamont, J. Estimating ancestral states of a communicative display: A comparative study of Cyclurarock iguanas. Anim. Behav. 55, 1685–1706 (1998).CAS
PubMed
Article
Google Scholar
25.Bloch, N. & Irschick, D. An analysis of inter-population divergence in visual display behavior of the green anole lizard (Anolis carolinensis). Ethology 112, 370–378 (2006).Article
Google Scholar
26.Barquero, M. D., Peters, R. & Whiting, M. Geographic variation in aggressive signalling behaviour of the Jacky dragon. Behav. Ecol. Sociobiol. 69, 1501–1510 (2015).Article
Google Scholar
27.Bian, X., Chandler, T., Laird, W., Pinilla, A. & Peters, R. Integrating evolutionary biology with digital arts to quantify ecological constraints on vision-based behaviour. Methods Ecol. Evol. 9, 544–559 (2018).Article
Google Scholar
28.Fleishman, L. J. Motion detection in the presence and absence of background motion in an Anolis lizard. J. Comp. Physiol. A 159, 711–720 (1986).CAS
PubMed
Article
Google Scholar
29.Fleishman, L. J. Sensory and environmental influences on display form in Anolis auratus, a grass anole from Panama. Behav. Ecol. Sociobiol. 22, 309–316 (1988).
Google Scholar
30.Eckert, M. P. & Zeil, J. Towards an ecology of motion vision. In Motion Vision (eds Zanker, J. M. & Zeil, J.) 333–369 (Springer, 2001).
Google Scholar
31.Peters, R. A. & Evans, C. S. Design of the Jacky dragon visual display: Signal and noise characteristics in a complex moving environment. J. Comp. Physiol. A 189, 447–459 (2003).CAS
Article
Google Scholar
32.Peters, R. A. Noise in visual communication: Motion from wind-blown plants. In Animal Communication and Noise. Animal Signals and Communication (ed. Brumm, H.) 311–330 (Springer, 2013).
Google Scholar
33.Ramos, J. A. & Peters, R. A. Motion-based signaling in sympatric species of Australian agamid lizards. J. Comp. Physiol. A 203, 661–671 (2017).CAS
Article
Google Scholar
34.Ramos, J. A. & Peters, R. A. Habitat-dependent variation in motion signal structure between allopatric populations of lizards. Anim. Behav. 126, 69–78 (2017).Article
Google Scholar
35.Ramos, J. A. & Peters, R. A. Quantifying ecological constraints on motion signaling. Front. Ecol. Evol. 5, 9 (2017).Article
Google Scholar
36.Bian, X., Chandler, T., Pinilla, A. & Peters, R. Now you see me, now you don’t: Environmental conditions, signaler behavior, and receiver response thresholds interact to determine the efficacy of a movement-based animal signal. Front. Ecol. Evol. 7, 130 (2019).Article
Google Scholar
37.Posner, M. I., Snyder, C. R. & Davidson, B. J. Attention and the detection of signals. J. Exp. Psychol. 109, 160–174 (1980).CAS
PubMed
Article
PubMed Central
Google Scholar
38.Zeil, J. & Zanker, J. M. A glimpse into crabworld. Vis. Res. 37, 3417–3426 (1997).CAS
PubMed
Article
PubMed Central
Google Scholar
39.Koch, C. & Ullman, S. Shifts in selective visual attention: Towards the underlying neural circuitry. in Matters of Intelligence. Conceptual Structures in Cognitie Neuroscience (ed. Vaina, L. M.) 115–142 (Springer, 1987).40.Itti, L., Koch, C. & Niebur, E. A model of saliency-based visual attention for rapid scene analysis. IEEE Trans. Pattern Anal. Mach. Intell. 20, 1254–1259 (1998).Article
Google Scholar
41.Harel, J., Koch, C. & Perona, P. Graph-based visual saliency. Adv. Neural Inf. Proc. Sys. 19, 545–552 (2006).
Google Scholar
42.Koch, C. Biophysics of Computation: Information Processing in Single Neurons (Oxford University Press, 1998).
Google Scholar
43.Tatler, B. W., Hayhoe, M. M., Land, M. F. & Ballard, D. H. Eye guidance in natural vision: Reinterpreting salience. J. Vis. 11, 5 (2011).PubMed
PubMed Central
Article
Google Scholar
44.Wilson, S. & Swan, G. A Complete Guide to Reptiles of Australia 2nd edn. (Reed New Holland, 2013).
Google Scholar
45.Heatwole, H. & Firth, B. T. Voluntary maximum temperature of the jacky lizard, Amphibolurus muricatus. Copeia 1982, 824–829 (1982).Article
Google Scholar
46.Harlow, P. S. & Taylor, J. E. Reproductive ecology of the jacky dragon (Amphibolurus muricatus): An agamid lizard with temperature-dependent sex determination. Aust. Ecol. 25, 640–652 (2000).Article
Google Scholar
47.Ord, T. J. & Evans, C. S. Display rate and opponent assessment in the Jacky dragon (Amphibolurus muricatus): An experimental analysis. Behaviour 140, 1495–1508 (2003).Article
Google Scholar
48.Warner, D. A. & Shine, R. Interactions among thermal parameters determine offspring sex under temperature-dependent sex determination. Proc. R. Soc. Lond. B. Biol. Sci. 278, 256–265 (2010).
Google Scholar
49.Carpenter, C. C., Badham, J. A. & Kimble, B. Behavior patterns of three species of Amphibolurus (Agamidae). Copeia 1970, 497–505 (1970).Article
Google Scholar
50.Peters, R. A. & Ord, T. J. Display response of the Jacky Dragon, Amphibolurus muricatus (Lacertilia : Agamidae), to intruders: A semi-Markovian process. Aust. Ecol. 28, 499–506 (2003).Article
Google Scholar
51.Peters, R. A. & Evans, C. S. Introductory tail-flick of the Jacky dragon visual display: Signal efficacy depends upon duration. J. Exp. Biol. 206, 4293–4307 (2003).PubMed
Article
Google Scholar
52.Carpenter, C. C. A comparison of the patterns of display of Urosaurus, Uta, and Streptosaurus. Herpetologica 18, 145–152 (1962).
Google Scholar
53.Cogger, H. Reproductive cycles, fat body cycles and socio-sexual behaviour in the mallee dragon, Amphibolurus fordi (Lacertilia: Agamidae). Aust. J. Zool. 26, 653–672 (1978).Article
Google Scholar
54.Garcia, J. E., Rohr, D. & Dyer, A. G. Trade-off between camouflage and sexual dimorphism revealed by UV digital imaging: The case of Australian Mallee dragons (Ctenophorus fordi). J. Exp. Biol. 216, 4290–4298 (2013).PubMed
Article
Google Scholar
55.Ramos, J. A. & Peters, R. A. Dragon wars: Movement-based signalling by Australian agamid lizards in relation to species ecology. Aust. Ecol. 41, 302–315 (2016).Article
Google Scholar
56.Gibbons, J. R. H. Comparative ecology and behaviour of lizards of the Amphibolurus decresii species complex. PhD dissertation, University of Adelaide, Adelaide, South Australia (1977).57.McLean, C. A., Moussalli, A., Sass, S. & Stuart-Fox, D. Taxonomic assessment of the Ctenophorus decresii complex (Reptilia: Agamidae) reveals a new species of dragon lizard from western New South Wales. Rec. Aust. Mus. 65, 51–63 (2013).Article
Google Scholar
58.Osborne, L. Information content of male agonistic displays in the territorial tawny dragon (Ctenophorus decresii). J. Ethol. 23, 189–197 (2005).Article
Google Scholar
59.Gibbons, J. R. The hind leg pushup display of the Amphibolurus decresii species complex (Lacertilia: Agamidae). Copeia 1979, 29–40 (1979).Article
Google Scholar
60.Chouinard-Thuly, L. et al. Technical and conceptual considerations for using animated stimuli in studies of animal behavior. Curr. Zool. 63, 5–19 (2016).PubMed
PubMed Central
Article
Google Scholar
61.Akagi, Y. & Kitajima, K. Computer animation of swaying trees based on physical simulation. Comput. Graph. 30, 529–539 (2006).Article
Google Scholar
62.Itti, L., Dhavale, N. & Pighin, F. Realistic avatar eye and head animation using a neurobiological model of visual attention. In Proc. SPIE 48th Annual International Symposium on Optical Science and Technology Vol. 5200 (eds Bosacchi, B. et al.) 64–78 (SPIE Press, Bellingham, 2003).
Google Scholar
63.Fleishman, L. J. & Pallus, A. C. Motion perception and visual signal design in Anolis lizards. Proc. R. Soc. B. 277, 3547–3554 (2010).PubMed
Article
Google Scholar
64.Oksanen, J., Blanchet, F. G., Friendly, M., Kindt, R., Legendre, P., McGlinn, D., Minchin, P. R., O’Hara, R. B., Simpson, G. L., Solymos, P., Stevens, M. H. H., Szoecs, E. & Wagner, H. (2019). Vegan: Community Ecology Package. R package version 2.5-4. https://CRAN.R-project.org/package=vegan65.R Core Team. (2018). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/.66.Blamires, S. Circumduction and head bobbing in the agamid lizard Lophognathus temporalis. Herpetofauna 28, 51–52 (1998).
Google Scholar
67.Carpenter, C. C. Aggression and social structure in iguanid lizards. In Lizard Ecology: A Symposium (ed. Milstead, W. W.) (University of Missouri Press Columbia, 1967).
Google Scholar
68.Carpenter, C. Ritualistic social behaviors in lizards. in Behavior and Neurology of Lizards, An Interdisciplinary Colloquium, 253–267. (National Institute of Mental Health, 1978).69.Peters, R. A., Hemmi, J. & Zeil, J. Image motion environments: Background noise for movement-based animal signals. J. Comp. Physiol. A 194, 441–456 (2008).Article
Google Scholar
70.Hunter, M. L. & Krebs, J. R. Geographical variation in the song of the great tit (Parus major) in relation to ecological factors. J. Anim. Ecol 48, 759–785 (1979).Article
Google Scholar
71.Harmon, L. J., Kolbe, J. J., Cheverud, J. M. & Losos, J. B. Convergence and the multidimensional niche. Evolution 59, 409–421 (2005).PubMed
Article
Google Scholar
72.Fleishman, L. J. Sensory influences on physical design of a visual display. Anim. Behav. 36, 1420–1424 (1988).Article
Google Scholar
73.Ord, T. J., Peters, R. A., Clucas, B. & Stamps, J. A. Lizards speed up visual displays in noisy motion habitats. Proc. R. Soc. Lond. B. Biol. Sci. 274, 1057–1062 (2007).
Google Scholar
74.Hasson, O. Pursuit-deterrent signals: Communication between prey and predator. Trends Ecol. Evol. 6, 325–329 (1991).CAS
PubMed
Article
PubMed Central
Google Scholar
75.Hebets, E. A. & Uetz, G. W. Female responses to isolated signals from multimodal male courtship displays in the wolf spider genus Schizocosa (Araneae: Lycosidae). Anim. Behav. 57, 865–872 (1999).CAS
PubMed
Article
PubMed Central
Google Scholar More