More stories

  • in

    Variable influences of soil and seed-associated bacterial communities on the assembly of seedling microbiomes

    1.Wagner MR, Lundberg DS, Coleman-Derr D, Tringe SG, Dangl JL, Mitchell-Olds T. Natural soil microbes alter flowering phenology and the intensity of selection on flowering time in a wild Arabidopsis relative. Ecol Lett. 2014;17:717–26.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    2.de Vries FT, Griffiths RI, Knight CG, Nicolitch O, Williams A. Harnessing rhizosphere microbiomes for drought-resilient crop production. Science. 2020;368:270–4.PubMed 
    Article 
    CAS 

    Google Scholar 
    3.Compant S, Clément C, Sessitsch A. Plant growth-promoting bacteria in the rhizo- and endosphere of plants: their role, colonization, mechanisms involved and prospects for utilization. Soil Biol Biochem. 2010;42:669–78.CAS 
    Article 

    Google Scholar 
    4.Trivedi P, Leach JE, Tringe SG, Sa T, Singh BK. Plant–microbiome interactions: from community assembly to plant health. Nat Rev Microbiol. 2020;18:607–21.CAS 
    PubMed 
    Article 

    Google Scholar 
    5.Berendsen RL, Vismans G, Yu K, Song Y, de Jonge R, Burgman WP, et al. Disease-induced assemblage of a plant-beneficial bacterial consortium. ISME J. 2018;12:1496–507.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    6.Nelson EB. Microbial dynamics and interactions in the spermosphere. Annu Rev Phytopathol. 2004;42:271–309.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    7.Nelson EB. The seed microbiome: origins, interactions, and impacts. Plant Soil Springe Int Publ. 2018;422:7–34.CAS 
    Article 

    Google Scholar 
    8.Edwards J, Johnson C, Santos-Medellín C, Lurie E, Podishetty NK, Bhatnagar S, et al. Structure, variation, and assembly of the root-associated microbiomes of rice. Proc Natl Acad Sci USA. 2015;112:E911–20.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    9.Fitzpatrick CR, Salas-González I, Conway JM, Finkel OM, Gilbert S, Russ D, et al. The plant microbiome: from ecology to reductionism and beyond. Annu Rev Microbiol. 2020;74:81–100.CAS 
    PubMed 
    Article 

    Google Scholar 
    10.Bulgarelli D, Rott M, Schlaeppi K, Ver Loren van Themaat E, Ahmadinejad N, Assenza F, et al. Revealing structure and assembly cues for Arabidopsis root-inhabiting bacterial microbiota. Nature. 2012;488:91–95.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    11.Naylor D, DeGraaf S, Purdom E, Coleman-Derr D. Drought and host selection influence bacterial community dynamics in the grass root microbiome. ISME J. 2017;11:2691–704.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    12.Chaparro JM, Badri DV, Vivanco JM. Rhizosphere microbiome assemblage is affected by plant development. ISME J. 2014;8:790–803.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    13.Fitzpatrick CR, Copeland J, Wang PW, Guttman DS, Kotanen PM, Johnson MTJ. Assembly and ecological function of the root microbiome across angiosperm plant species. Proc Natl Acad Sci USA. 2018;115:E1157–65.CAS 
    PubMed 
    Article 

    Google Scholar 
    14.Grady KL, Sorensen JW, Stopnisek N, Guittar J, Shade A. Assembly and seasonality of core phyllosphere microbiota on perennial biofuel crops. Nat Commun. 2019;10:4135.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    15.Lundberg DS, Lebeis SL, Paredes SH, Yourstone S, Gehring J, Malfatti S, et al. Defining the core Arabidopsis thaliana root microbiome. Nature. 2012;488:86–90.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    16.Schlaeppi K, Dombrowski N, Oter RG, Ver Loren Van Themaat E, Schulze-Lefert P. Quantitative divergence of the bacterial root microbiota in Arabidopsis thaliana relatives. Proc Natl Acad Sci USA. 2014;111:585–92.CAS 
    PubMed 
    Article 

    Google Scholar 
    17.Bulgarelli D, Garrido-Oter R, Münch PC, Weiman A, Dröge J, Pan Y, et al. Structure and function of the bacterial root microbiota in wild and domesticated barley. Cell Host Microbe. 2015;17:392–403.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    18.Peiffer JA, Spor A, Koren O, Jin Z, Tringe SG, Dangl JL, et al. Diversity and heritability of the maize rhizosphere microbiome under field conditions. Proc Natl Acad Sci USA. 2013;110:6548–53.CAS 
    PubMed 
    Article 

    Google Scholar 
    19.Bulgarelli D, Schlaeppi K, Spaepen S, van Themaat EVL, Schulze-Lefert P. Structure and functions of the bacterial microbiota of plants. Annu Rev Plant Biol. 2013;64:807–38.CAS 
    PubMed 
    Article 

    Google Scholar 
    20.Coleman-Derr D, Desgarennes D, Fonseca-Garcia C, Gross S, Clingenpeel S, Woyke T, et al. Plant compartment and biogeography affect microbiome composition in cultivated and native Agave species. N Phytol. 2016;209:798–811.CAS 
    Article 

    Google Scholar 
    21.de Souza RSC, Okura VK, Armanhi JSL, Jorrín B, Lozano N, da Silva MJ, et al. Unlocking the bacterial and fungal communities assemblages of sugarcane microbiome. Sci Rep. 2016;6:28774.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    22.Levy A, Salas Gonzalez I, Mittelviefhaus M, Clingenpeel S, Herrera Paredes S, Miao J, et al. Genomic features of bacterial adaptation to plants. Nat Genet. 2017;50:138–50.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    23.Vannier N, Mony C, Bittebiere A-K, Michon-Coudouel S, Biget M, Vandenkoornhuyse P. A microorganisms’ journey between plant generations. Microbiome. 2018;6:79.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    24.Tobias TB, Farrer EC, Rosales A, Sinsabaugh RL, Suding KN, Porras-Alfaro A. Seed-associated fungi in the alpine tundra: both mutualists and pathogens could impact plant recruitment. Fungal Ecol. 2017;30:10–18.Article 

    Google Scholar 
    25.Truyens S, Weyens N, Cuypers A, Vangronsveld J. Bacterial seed endophytes: genera, vertical transmission and interaction with plants. Environ Microbiol Rep. 2015;7:40–50.Article 

    Google Scholar 
    26.Shade A, Jacques M-A, Barret M. Ecological patterns of seed microbiome diversity, transmission, and assembly. Curr Opin Microbiol. 2017;37:15–22.PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    27.Hardoim PR, van Overbeek LS, Berg G, Pirttilä AM, Compant S, Campisano A, et al. The hidden world within plants: ecological and evolutionary considerations for defining functioning of microbial endophytes. Microbiol Mol Biol Rev. 2015;79:293–320.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    28.Normander BO, Prosser JI. Bacterial origin and community composition in the barley phytosphere as a function of habitat and presowing conditions. Appl Environ Microbiol. 2000;66:4372–7.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    29.Green SJ, Inbar E, Michel FC, Hadar Y, Minz D. Succession of bacterial communities during early plant development: transition from seed to root and effect of compost amendment. Appl Environ Microbiol. 2006;72:3975–83.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    30.Ofek M, Hadar Y, Minz D. Colonization of cucumber seeds by bacteria during germination. Environ Microbiol. 2011;13:2794–807.PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    31.OECD-FAO. Agricultural Outlook 2020–2029.32.Fierer N. Embracing the unknown: disentangling the complexities of the soil microbiome. Nat Rev Microbiol. 2017;15:579–90.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    33.Rath KM, Fierer N, Daniel, Murphy V, Rousk J. Linking bacterial community composition to soil salinity along environmental gradients. ISME J. 2018;13:836–46.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    34.Caporaso JG, Lauber CL, Walters WA, Berg-Lyons D, Lozupone CA, Turnbaugh PJ, et al. Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proc Natl Acad Sci USA. 2011;108:4516–22.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    35.Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJA, Holmes SP. DADA2: high-resolution sample inference from Illumina amplicon data. Nat Methods. 2016;13:581–3.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    36.Oliverio A, Holland-Moritz H. dada2 tutorial with MiSeq dataset for Fierer Lab. 2019.37.Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, et al. The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. Nucleic Acids Res. 2013;41:D590–596.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    38.Stamatakis A, Ludwig T, Meier H. RAxML-III: a fast program for maximum likelihood-based inference of large phylogenetic trees. Bioinformatics. 2005;21:456–63.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    39.Letunic I, Bork P. Interactive Tree Of Life (iTOL): an online tool for phylogenetic tree display and annotation. Bioinformatics. 2007;23:127–8.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    40.R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing; 2020.41.Wickham H. ggplot2: elegant graphics for data analysis. Springer-Verlag: New York; 2016.42.Becker RA, Wilks AR, Minka TP, Deckmyn A. maps: draw geographical maps. 2018.43.Jari Oksanen F, Blanchet G, Friendly M, Kindt R, Legendre P, McGlinn D, et al. vegan: community ecology package. R. 2019. p. R package version 2.5-6.44.Rochefort A, Simonin M, Marais C, Guillerm-Erckelboudt A-Y, Barret M, Sarniguet A. Asymmetric outcome of community coalescence of seed and soil microbiota during early seedling growth. bioRxiv. 2020.11.19.390344.45.Minich JJ, Sanders JG, Amir A, Humphrey G, Gilbert JA, Knight R. Quantifying and understanding well-to-well contamination in microbiome research. mSystems. 2019;4:e00186–19.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    46.Cribari-Neto F, Zeileis A. Beta regression in R. J Stat Software; Vol 1, Issue 2. 2010.47.Douma JC, Weedon JT. Analysing continuous proportions in ecology and evolution: a practical introduction to beta and Dirichlet regression. Methods. Ecol Evol. 2019;10:1412–30.
    Google Scholar 
    48.Kuhn M. caret: classification and regression training. 2020.49.Wright MN, Ziegler A. Ranger: a fast implementation of random forests for high dimensional data in C++ and R. J Stat Softw. 2017;77:1–17.Article 

    Google Scholar 
    50.Thiergart T, Durán P, Ellis T, Vannier N, Garrido-Oter R, Kemen E, et al. Root microbiota assembly and adaptive differentiation among European Arabidopsis populations. Nat Ecol Evol. 2019;4:122–31.PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    51.Simonin M, Dasilva C, Terzi V, Ngonkeu ELM, Diouf D, Aboubacry K. et al. Influence of plant genotype and soil on the wheat rhizosphere microbiome: evidences for a core microbiome across eight African and European Soils. FEMS Microbiol Ecol. 2016;96:fiaa067Article 
    CAS 

    Google Scholar 
    52.Robinson RJ, Fraaije BA, Clark IM, Jackson RW, Hirsch PR, Mauchline TH. Wheat seed embryo excision enables the creation of axenic seedlings and Koch’s postulates testing of putative bacterial endophytes. Sci Rep. 2016;6:25581.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    53.Walterson AM, Stavrinides J. Pantoea: insights into a highly versatile and diverse genus within the Enterobacteriaceae. FEMS Microbiol Rev. 2015;39:968–84.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    54.Hardoim PR, Hardoim CCP, van Overbeek LS, van Elsas JD. Dynamics of seed-borne rice endophytes on early plant growth stages. PLoS One. 2012;7:e30438.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    55.Liu F, Hewezi T, Lebeis SL, Pantalone V, Grewal PS, Staton ME. Soil indigenous microbiome and plant genotypes cooperatively modify soybean rhizosphere microbiome assembly. BMC Microbiol. 2019;19:201.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    56.Nelson EB, Simoneau P, Barret M. Editorial special issue: the soil, the seed, the microbes and the plant. Plant Soil. 2018;422:1–5.CAS 
    Article 

    Google Scholar 
    57.Shmida A, Wilson MV. Biological determinants of species diversity. J Biogeogr. 1985;12:1–20.Article 

    Google Scholar 
    58.Hannula SE, Kielak AM, Steinauer K, Huberty M, Jongen R, De Long JR, et al. Time after time: temporal variation in the effects of grass and forb species on soil bacterial and fungal communities. MBio. 2019;10:e02635–19.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    59.Jack ALH, Nelson EB. A seed-recruited microbiome protects developing seedlings from disease by altering homing responses of Pythium aphanidermatum zoospores. Plant Soil. 2018;422:209–22.CAS 
    Article 

    Google Scholar 
    60.Verma SK, Kharwar RN, White JF. The role of seed-vectored endophytes in seedling development and establishment. Symbiosis. 2019;78:107–13.Article 

    Google Scholar 
    61.Carlström CI, Field CM, Bortfeld-Miller M, Müller B, Sunagawa S, Vorholt JA. Synthetic microbiota reveal priority effects and keystone strains in the Arabidopsis phyllosphere. Nat Ecol Evol. 2019;3:1445–54.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    62.Busby PE, Soman C, Wagner MR, Friesen ML, Kremer J, Bennett A, et al. Research priorities for harnessing plant microbiomes in sustainable agriculture. PLoS Biol. 2017;15:e2001793.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    63.Finkel OM, Castrillo G, Herrera Paredes S, Salas González I, Dangl JL. Understanding and exploiting plant beneficial microbes. Curr Opin Plant Biol. 2017;38:155–63.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    64.Toju H, Peay KG, Yamamichi M, Narisawa K, Hiruma K, Naito K, et al. Core microbiomes for sustainable agroecosystems. Nat Plants. 2018;4:247–57.PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    65.Maignien L, DeForce EA, Chafee ME, Murat Eren A, Simmons SL. Ecological succession and stochastic variation in the assembly of Arabidopsis thaliana phyllosphere communities. MBio. 2014;5:e00682–13.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    66.Wei Z, Gu Y, Friman V-P, Kowalchuk GA, Xu Y, Shen Q, et al. Initial soil microbiome composition and functioning predetermine future plant health. Sci Adv. 2019;5:eaaw0759.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    67.Durán P, Thiergart T, Garrido-Oter R, Agler M, Kemen E, Schulze-Lefert P, et al. Microbial interkingdom interactions in roots promote arabidopsis survival. Cell. 2018;175:973–83.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    68.Hamonts K, Trivedi P, Garg A, Janitz C, Grinyer J, Holford P, et al. Field study reveals core plant microbiota and relative importance of their drivers. Environ Microbiol. 2018;20:124–40.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar  More

  • in

    Useful plants have deep evolutionary roots

    1.Díaz, S. et al. Science 359, 270–272 (2018).Article 

    Google Scholar 
    2.Molina-Venegas, R., Rodríguez, M. Á., Pardo-de-Santayana, M., Ronquillo, C. & Mabberley, D. J. Nat. Ecol. Evol. https://doi.org/10.1038/s41559-021-01414-2 (2021).3.Faith, D. P. Biol. Conserv. 61, 1–10 (1992).Article 

    Google Scholar 
    4.Mabberley, D. J. Mabberley’s Plant-Book (Cambridge Univ. Press, 2017).5.Jin, Y. & Qian, H. Ecography 42, 1353–1359 (2019).Article 

    Google Scholar 
    6.Tucker, C. M. et al. Biol. Rev. 94, 1740–1760 (2019).Article 

    Google Scholar 
    7.Forest, F. et al. Nature 445, 757–760 (2007).CAS 
    Article 

    Google Scholar 
    8.Newman, J. A., Varner, G. & Linquist, S. Defending Biodiversity (Cambridge Univ. Press, 2017).9.Cline, B. Ethics Environ. 25, 45–72 (2020).Article 

    Google Scholar 
    10.Díaz, S. et al. Science 370, 411–413 (2020).Article 

    Google Scholar  More

  • in

    Maximum levels of global phylogenetic diversity efficiently capture plant services for humankind

    1.Faith, D. P. et al. Evosystem services: an evolutionary perspective on the links between biodiversity and human well-being. Curr. Opin. Environ. Sust. 2, 66–74 (2010).Article 

    Google Scholar 
    2.Cámara-Leret, R. et al. Fundamental species traits explain provisioning services of tropical American palms. Nat. Plants 3, 16220 (2017).Article 

    Google Scholar 
    3.Oka, C., Aiba, M. & Nakashizuka, T. Phylogenetic clustering in beneficial attributes of tree species directly linked to provisioning, regulating and cultural ecosystem services. Ecol. Indic. 96, 477–495 (2019).Article 

    Google Scholar 
    4.Faith, D. P. Conservation evaluation and phylogenetic diversity. Biol. Conserv. 61, 1–10 (1992).Article 

    Google Scholar 
    5.Vane-Wright, R. I., Humphries, C. J. & Williams, P. H. What to protect?—Systematics and the agony of choice. Biol. Conserv. 55, 235–254 (1991).Article 

    Google Scholar 
    6.Crozier, R. H. Genetic diversity and the agony of choice. Biol. Conserv. 61, 11–15 (1992).Article 

    Google Scholar 
    7.Tucker, C. M. et al. Assessing the utility of conserving evolutionary history. Biol. Rev. 94, 1740–1760 (2019).Article 

    Google Scholar 
    8.Owen, N. R., Gumbs, R., Gray, C. L. & Faith, D. P. Global conservation of phylogenetic diversity captures more than just functional diversity. Nat. Commun. 10, 859 (2019).Article 

    Google Scholar 
    9.Mazel, F. et al. Prioritizing phylogenetic diversity captures functional diversity unreliably. Nat. Commun. 9, 2888 (2018).Article 

    Google Scholar 
    10.Mazel, F. et al. Reply to: ‘Global conservation of phylogenetic diversity captures more than just functional diversity’. Nat. Commun. 10, 858 (2019).Article 

    Google Scholar 
    11.Forest, F. et al. Preserving the evolutionary potential of floras in biodiversity hotspots. Nature 445, 757–760 (2007).CAS 
    Article 

    Google Scholar 
    12.Cook, F. E. M. Economic Botany Data Collection Standard (International Working Group on Taxonomic Databases for Plant Sciences, Royal Botanic Gardens, UK, 1995).13.Smith, S. A. & Brown, J. W. Constructing a broadly inclusive seed plant phylogeny. Am. J. Bot. 105, 302–314 (2018).Article 

    Google Scholar 
    14.Jin, Y. & Qian, H. V. PhyloMaker: an R package that can generate very large phylogenies for vascular plants. Ecography 42, 1353–1359 (2019).Article 

    Google Scholar 
    15.Mabberley, D. J. Mabberley’s Plant-book: A Portable Dictionary of Plants, Their Classification and Uses 4th edn (Cambridge Univ. Press, 2017).16.Cox, P. A. Will tribal knowledge survive the millennium? Science 287, 44–45 (2000).CAS 
    Article 

    Google Scholar 
    17.Cámara-Leret, R., Paniagua-Zambrana, N., Balslev, H. & Macía, M. J. Ethnobotanical knowledge is vastly under-documented in northwestern South America. PLoS ONE 9, e85794 (2014).Article 

    Google Scholar 
    18.Cámara-Leret, R. & Dennehy, Z. Information gaps in indigenous and local knowledge for science-policy assessments. Nat. Sustain. 2, 736–741 (2019).Article 

    Google Scholar 
    19.Novotny, V. et al. Low host specificity of herbivorous insects in a tropical forest. Nature 416, 841–844 (2002).CAS 
    Article 

    Google Scholar 
    20.Gilbert, G. S., Magarey, R., Suiter, K. & Webb, C. O. Evolutionary tools for phytosanitary risk analysis: phylogenetic signal as a predictor of host range of plant pests and pathogens. Evol. Appl. 5, 869–878 (2012).Article 

    Google Scholar 
    21.Calatayud, J. et al. Geography and major host evolutionary transitions shape the resource use of plant parasites. Proc. Natl Acad. Sci. USA 113, 9840–9845 (2016).CAS 
    Article 

    Google Scholar 
    22.Pecl, G. T. et al. Biodiversity redistribution under climate change: impacts on ecosystems and human well-being. Science 355, eai9214 (2017).Article 

    Google Scholar 
    23.Lehmann, P. et al. Complex responses of global insect pests to climate warming. Front. Ecol. Environ. 18, 141–150 (2020).Article 

    Google Scholar 
    24.de Lucena, R. F. P. et al. The ecological apparency hypothesis and the importance of useful plants in rural communities from Northeastern Brazil: an assessment based on use value. J. Environ. Manag. 96, 106–115 (2012).Article 

    Google Scholar 
    25.Menendez-Baceta, G. et al. The importance of cultural factors in the distribution of medicinal plant knowledge: a case study in four Basque regions. J. Ethnopharmacol. 161, 116–127 (2015).Article 

    Google Scholar 
    26.Webb, C. O., Ackerly, D. D., McPeek, M. A. & Donoghue, M. J. Phylogenies and community ecology. Annu. Rev. Ecol. Syst. 33, 475–505 (2002).Article 

    Google Scholar 
    27.Global Information on Scoping for the Thematic Assessment of Sustainable Use of Wild Species (Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services, 2018); https://ipbes.net/sustainable-use-wild-species-assessment28.Karki, M., Senaratna Sellamuttu, S., Okayasu, S. & Suzuki, W. (eds) Regional Assessment Report on Biodiversity and Ecosystem Services for Asia and the Pacific (Secretariat of the IPBES, 2018).29.Pardo-de-Santayana, M. & Macía, M. The benefits of traditional knowledge. Nature 518, 487–488 (2015).CAS 
    Article 

    Google Scholar 
    30.Díaz, S. et al. Assessing nature’s contributions to people. Science 359, 270–272 (2018).Article 

    Google Scholar 
    31.Antonelli, A. et al. State of the World’s Plants and Fungi 2020 (Royal Botanic Gardens, Kew, 2020).32.Ulian, T. et al. Unlocking plant resources to support food security and promote sustainable agriculture. Plants People Planet 2, 421–445 (2020).Article 

    Google Scholar 
    33.Plants of the World Online (Royal Botanic Gardens, Kew, 2021); http://www.plantsoftheworldonline.org/34.Zanne, A. E. et al. Three keys to the radiation of angiosperms into freezing environments. Nature 506, 89–92 (2014).CAS 
    Article 

    Google Scholar 
    35.The Plant List, version 1.1 (The Plant List, 2013); http://www.theplantlist.org/36.Rangel, T. F. et al. Phylogenetic uncertainty revisited: implications for ecological analyses. Evolution 69, 1301–1312 (2015).Article 

    Google Scholar 
    37.Federhen, S. The NCBI taxonomy database. Nucleic Acids Res. 40, D136–D143 (2012).CAS 
    Article 

    Google Scholar 
    38.Hörandl, E. & Stuessy, T. F. Paraphyletic groups as natural units of biological classification. Taxon 59, 1641–1653 (2010).Article 

    Google Scholar 
    39.Revell, L. J. phytools: an R package for phylogenetic comparative biology (and other things). Methods Ecol. Evol. 3, 217–223 (2012).Article 

    Google Scholar 
    40.Rodrigues, A. S. L. & Gaston, K. J. Maximising phylogenetic diversity in the selection of networks of conservation areas. Biol. Conserv. 105, 103–111 (2002).Article 

    Google Scholar 
    41.Bordewich, M., Rodrigo, A. G. & Semple, C. Selecting taxa to save or sequence: desirable criteria and a greedy solution. Syst. Biol. 57, 825–834 (2008).Article 

    Google Scholar 
    42.Pielou, E. C. The measurement of diversity in different types of biological collections. J. Theor. Biol. 13, 131–144 (1966).Article 

    Google Scholar 
    43.Kembel, S. W. Disentangling niche and neutral influences on community assembly: assessing the performance of community phylogenetic structure tests. Ecol. Lett. 12, 949–960 (2009).Article 

    Google Scholar 
    44.R Core Team R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2020).45.Kembel, S. W. et al. Picante: R tools for integrating phylogenies and ecology. Bioinformatics 26, 1463–1464 (2010).CAS 
    Article 

    Google Scholar 
    46.Brummitt, R. K. World Geographical Scheme for Recording Plant Distributions 2nd edn (International Working Group on Taxonomic Databases for Plant Sciences, 2001).47.Baselga, A. Partitioning the turnover and nestedness components of beta diversity. Glob. Ecol. Biogeogr. 19, 134–143 (2010).Article 

    Google Scholar  More

  • in

    Native Burmese pythons exhibit site fidelity and preference for aquatic habitats in an agricultural mosaic

    1.Gurarie, E., Andrews, R. D. & Laidre, K. L. A novel method for identifying behavioural changes in animal movement data. Ecol. Lett. 12, 395–408 (2009).PubMed 
    Article 

    Google Scholar 
    2.Block, B. A. et al. Tracking apex marine predator movements in a dynamic ocean. Nature 475, 86–90 (2011).CAS 
    PubMed 
    Article 

    Google Scholar 
    3.Dulau, V. et al. Continuous movement behavior of humpback whales during the breeding season in the southwest Indian Ocean: on the road again!. Mov. Ecol. 5, 11 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    4.Glaudas, X. & Alexander, G. J. Food supplementation affects the foraging ecology of a low-energy, ambush-foraging snake. Behav. Ecol. Sociobiol. 71, 5 (2017).Article 

    Google Scholar 
    5.Moorter, B. V., Rolandsen, C. M., Basille, M. & Gaillard, J.-M. Movement is the glue connecting home ranges and habitat selection. J. Anim. Ecol. 85, 21–31 (2016).PubMed 
    Article 

    Google Scholar 
    6.Sodhi, N. S., Koh, L. P., Brook, B. W. & Ng, P. K. L. Southeast Asian biodiversity: an impending disaster. Trends Ecol. Evol. 19, 654–660 (2004).PubMed 
    Article 

    Google Scholar 
    7.Laurance, W. F., Sayer, J. & Cassman, K. G. Agricultural expansion and its impacts on tropical nature. Trends Ecol. Evol. 29, 107–116 (2014).PubMed 
    Article 

    Google Scholar 
    8.Schneider, A. et al. A new urban landscape in East-Southeast Asia, 2000–2010. Environ. Res. Lett. 10, 034002 (2015).ADS 
    Article 

    Google Scholar 
    9.Böhm, M. et al. Correlates of extinction risk in squamate reptiles: the relative importance of biology, geography, threat and range size—extinction risk correlates in squamate reptiles. Glob. Ecol. Biogeogr. 25, 391–405 (2016).Article 

    Google Scholar 
    10.Ditchkoff, S. S., Saalfeld, S. T. & Gibson, C. J. Animal behavior in urban ecosystems: Modifications due to human-induced stress. Urban Ecosyst. 9, 5–12 (2006).Article 

    Google Scholar 
    11.Shamoon, H., Maor, R., Saltz, D. & Dayan, T. Increased mammal nocturnality in agricultural landscapes results in fragmentation due to cascading effects. Biol. Conserv. 226, 32–41 (2018).Article 

    Google Scholar 
    12.Shine, R. & Fitzgerald, M. Large snakes in a mosaic rural landscape: the ecology of carpet pythons Morelia spilota (Serpentes: Pythonidae) in coastal eastern Australia. Large Snakes Mosaic Rural Landsc. Ecol. Carpet Pythons Morelia Spilota Serpentes Pythonidae Coast. East. Aust. 76, 113–122 (1996).13.Charles, K. E. & Linklater, W. L. Dietary breadth as a predictor of potential native avian–human conflict in urban landscapes. Wildl. Res. 40, 482 (2013).Article 

    Google Scholar 
    14.Soulsbury, C. D. & White, P. C. L. Human–wildlife interactions in urban areas: a review of conflicts, benefits and opportunities. Wildl. Res. 42, 541 (2015).Article 

    Google Scholar 
    15.Gibbon, J. W. et al. The global decline of reptiles Déjà Vu Amphibians. BioScience 50, 653 (2000).Article 

    Google Scholar 
    16.Todd, B., Willson, J. & Gibbons, J. The Global Status of Reptiles and Causes of Their Decline. in Ecotoxicology of Amphibians and Reptiles, Second Edition (eds. Sparling, D., Linder, G., Bishop, C. & Krest, S.) 47–67 (CRC Press, 2010). https://doi.org/10.1201/EBK1420064162-c3.17.Böhm, M. et al. The conservation status of the world’s reptiles. Biol. Conserv. 157, 372–385 (2013).Article 

    Google Scholar 
    18.Barker, D. G. & Barker, T. M. The distribution of the burmese python, python molurus bivittatus. Bull. Chic. Herpetol. Soc. 43, 33–38 (2008).
    Google Scholar 
    19.Rahman, S. C., Jenkins, C. L., Trageser, S. J. & Rashid, S. M. A. Radio-telemetry study of Burmese python (Python molurus bivittatus) and elongated tortoise (Indotestudo elongata) in Lawachara National Park, Bangladesh: a prelimiary observation. Khan MAR Ali MS Feeroz MM Naser MN Ed. Festschr. 50th Anniversary IUCN Red List Threat. Species 54–62 (2014).20.Bhupathy, S., Ramesh, C. & Bahuguna, A. Feeding habits of Indian rock pythons in Keoladeo National Park, Bharatpur India. Herpetol. J. 24, 59–64 (2014).
    Google Scholar 
    21.Shine, R., Harlow, P. S., Keogh, J. S. & Boeadi. The influence of sex and body size on food habits of a giant tropical snake, Python reticulatus. Funct. Ecol. 12, 248–258 (1998).22.Dorcas, M. E. et al. Severe mammal declines coincide with proliferation of invasive Burmese pythons in Everglades National Park. Proc. Natl. Acad. Sci. 109, 2418–2422 (2012).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    23.Dove, C. J., Snow, R. W., Rochford, M. R. & Mazzotti, F. J. Birds Consumed by the Invasive Burmese Python (Python molurus bivittatus) in Everglades National Park, Florida, USA. Wilson J. Ornithol. 123, 126–131 (2011).Article 

    Google Scholar 
    24.Stuart, B. et al. Python bivittatus (errata version published in 2019). https://doi.org/10.2305/IUCN.UK.2012-1.RLTS.T193451A151341916.en. (2019).25.Goodyear, N. C. Python molurus bivittatus (Burmese python) Movements. Herpetol. Rev. 25, 71–72 (1994).
    Google Scholar 
    26.You, C.-W. et al. Return of the pythons: first formal records, with a special note on recovery of the Burmese python in the demilitarized Kinmen islands. Zool. Stud. 52, 8 (2013).Article 

    Google Scholar 
    27.Miranda, E. B. P., Ribeiro, R. P. & Strüssmann, C. The ecology of human-anaconda conflict: a study using internet videos. Trop. Conserv. Sci. 9, 43–77 (2016).Article 

    Google Scholar 
    28.Nóbrega Alves, R. R. et al. A zoological catalogue of hunted reptiles in the semiarid region of Brazil. J. Ethnobiol. Ethnomed. 8, 27 (2012).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    29.Orzechowski, S. C. M., Frederick, P. C., Dorazio, R. M. & Hunter, M. E. Environmental DNA sampling reveals high occupancy rates of invasive Burmese pythons at wading bird breeding aggregations in the central Everglades. PLoS ONE 14, e0213943 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    30.Marshall, B. M. et al. No room to roam: King Cobras reduce movement in agriculture. Mov. Ecol. 8, 33 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    31.Reed, R. N. & Rodda, G. H. Giant constrictors: biological and management profiles and an establishment risk assessment for nine large species of pythons, anacondas, and the boa constrictor: U.S. Geological Survey Open-File Report. (2009).32.Reinert, H. K. & Cundall, D. An Improved Surgical Implantation Method for Radio-Tracking Snakes. Copeia 1982, 702–705 (1982).Article 

    Google Scholar 
    33.R Core Team. R: a language and environment for statistical computing.34.R Studio Team. RStudio: integrated development environment for R.35.Silva, I., Crane, M., Suwanwaree, P., Strine, C. & Goode, M. Using dynamic Brownian Bridge Movement Models to identify home range size and movement patterns in king cobras. PLoS ONE 13, e0203449 (2018).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    36.Silva, I., Crane, M., Marshall, B. M. & Strine, C. T. Reptiles on the wrong track? Moving beyond traditional estimators with dynamic Brownian Bridge Movement Models. Mov. Ecol. 8, 43 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    37.Kranstauber, B., Kays, R., LaPoint, S. D., Wikelski, M. & Safi, K. A dynamic Brownian bridge movement model to estimate utilization distributions for heterogeneous animal movement. J. Anim. Ecol. 81, 738–746 (2012).PubMed 
    Article 

    Google Scholar 
    38.Kranstauber, B., Smolla, M. & Scharf, A. K. move: Visualizing and Analyzing Animal Track Data. (2020).39.Calenge, C. The package adehabitat for the R software: tool for the analysis of space and habitat use by animals. Ecol. Model. 197, 1035 (2006).Article 

    Google Scholar 
    40.Bivand, R. & Rundel, C. rgeos: Interface to Geometry Engine – Open Source (‘GEOS’). (2020).41.Bracis, C., Bildstein, K. L. & Mueller, T. Revisitation analysis uncovers spatio-temporal patterns in animal movement data. Ecography https://doi.org/10.1111/ecog.03618 (2018).Article 

    Google Scholar 
    42.Berger-Tal, O. & Bar-David, S. Recursive movement patterns: review and synthesis across species. Ecosphere 6, art149 (2015).43.Avgar, T., Potts, J. R., Lewis, M. A. & Boyce, M. S. Integrated step selection analysis: bridging the gap between resource selection and animal movement. Methods Ecol. Evol. 7, 619–630 (2016).Article 

    Google Scholar 
    44.Signer, J., Fieberg, J. & Avgar, T. Animal movement tools ( amt ): R package for managing tracking data and conducting habitat selection analyses. Ecol. Evol. 9, 880–890 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    45.Marshall, B. M. et al. Data set and code supporting Marshall et al. 2020. No room to roam: King Cobras reduce movement in agriculture. (Version 1.1) . (2020).46.Thurfjell, H., Ciuti, S. & Boyce, M. S. Applications of step-selection functions in ecology and conservation. Mov. Ecol. 2, 4 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    47.Muff, S., Signer, J. & Fieberg, J. Accounting for individual-specific variation in habitat-selection studies: efficient estimation of mixed-effects models using Bayesian or frequentist computation. J. Anim. Ecol. 89, 80–92 (2020).PubMed 
    Article 

    Google Scholar 
    48.Rue, H., Martino, S. & Chopin, N. Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations. J. R. Stat. Soc. Ser. B Stat. Methodol. 71, 319–392 (2009).49.Hart, K. M. et al. Home range, habitat use, and movement patterns of non-native Burmese pythons in Everglades National Park, Florida, USA. Anim. Biotelemetry 3, 8 (2015).Article 

    Google Scholar 
    50.Tucker, M. A. et al. Moving in the Anthropocene: Global reductions in terrestrial mammalian movements. Science 359, 466–469 (2018).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    51.Rettie, W. J. & Messier, F. Range use and movement rates of woodland caribou in Saskatchewan. Can. J. Zool. 79, 1933–1940 (2001).Article 

    Google Scholar 
    52.Doherty, T. S., Fist, C. N. & Driscoll, D. A. Animal movement varies with resource availability, landscape configuration and body size: a conceptual model and empirical example. Landsc. Ecol. 34, 603–614 (2019).Article 

    Google Scholar 
    53.Young, L. I., Dickman, C. R., Addison, J. & Pavey, C. R. Spatial ecology and shelter resources of a threatened desert rodent (Pseudomys australis) in refuge habitat. J. Mammal. 98, 1604–1614 (2017).Article 

    Google Scholar 
    54.Ross, C. T. & Winterhalder, B. Sit-and-wait versus active-search hunting: A behavioral ecological model of optimal search mode. J. Theor. Biol. 387, 76–87 (2015).MathSciNet 
    PubMed 
    MATH 
    Article 

    Google Scholar 
    55.Krysko, K., Nifong, J., Mazzotti, F., Snow, R. & Enge, K. Reproduction of the Burmese python (Python molurus bivittatus) in southern Florida. Appl. Herpetol. 5, 93–95 (2008).Article 

    Google Scholar 
    56.Smith, B. J. et al. Betrayal: radio-tagged Burmese pythons reveal locations of conspecifics in Everglades National Park. Biol. Invasions 18, 3239–3250 (2016).Article 

    Google Scholar 
    57.Hunter, M. E. et al. Environmental DNA (eDNA) Sampling Improves Occurrence and Detection Estimates of Invasive Burmese Pythons. PLoS ONE 10, e0121655 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    58.Frishkoff, L. O., Hadly, E. A. & Daily, G. C. Thermal niche predicts tolerance to habitat conversion in tropical amphibians and reptiles. Glob. Change Biol. 21, 3901–3916 (2015).ADS 
    Article 

    Google Scholar 
    59.Fujioka, M., Don Lee, S. & Kurechi, M. Bird use of Rice Fields in Korea and Japan. Waterbirds 33, 8 (2010).Article 

    Google Scholar 
    60.Marshall, B. M. et al. Space fit for a king: spatial ecology of king cobras (Ophiophagus hannah) in Sakaerat Biosphere Reserve, Northeastern Thailand. Amphib.-Reptil. 40, 163–178 (2019).Article 

    Google Scholar 
    61.Barua, M., Bhagwat, S. A. & Jadhav, S. The hidden dimensions of human–wildlife conflict: Health impacts, opportunity and transaction costs. Biol. Conserv. 157, 309–316 (2013).Article 

    Google Scholar 
    62.Crane, M. et al. A report of a Malayan Krait Snake Bungarus Candidus Mortality as By-Catch in a Local Fish Trap from Nakhon Ratchasima Thailand. Trop. Conserv. Sci. 9, 313–320 (2016).Article 

    Google Scholar 
    63.Marshall, B. M. et al. Hits close to home: repeated persecution of King Cobras ( Ophiophagus hannah ) in Northeastern Thailand. Trop. Conserv. Sci. 11, 194008291881840 (2018).Article 

    Google Scholar 
    64.Webster, M. M. & Rutz, C. How strange are your study animals?. Nature 582, 337–340 (2020).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    65.Mutascio, H. E., Pittman, S. E., Zollner, P. A. & D’Acunto, L. E. Modeling relative habitat suitability of southern Florida for invasive Burmese pythons (Python molurus bivittatus). Landsc. Ecol. 33, 257–274 (2018).Article 

    Google Scholar 
    66.Steen, D. A. Snakes in the grass: secretive natural histories defy both conventional and progressive statistics. Herpetol. Conserv. Biol. 5, 183 (2010).
    Google Scholar  More

  • in

    Implications of size-dependent tree mortality for tropical forest carbon dynamics

    1.Beer, C. et al. Terrestrial gross carbon dioxide uptake: global distribution and covariation with climate. Science 329, 834–838 (2010).CAS 
    PubMed 
    Article 

    Google Scholar 
    2.Pan, Y. et al. A large and persistent carbon sink in the world’s forests. Science 333, 988–993 (2011).CAS 
    PubMed 
    Article 

    Google Scholar 
    3.Mitchard, E. T. A. The tropical forest carbon cycle and climate change. Nature 559, 527–534 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    4.Lutz, J. A. et al. Global importance of large-diameter trees. Glob. Ecol. Biogeogr. 27, 849–864 (2018).Article 

    Google Scholar 
    5.Meakem, V. et al. Role of tree size in moist tropical forest carbon cycling and water deficit responses. New Phytol. 219, 947–958 (2017).PubMed 
    Article 
    CAS 

    Google Scholar 
    6.Hubau, W. et al. Asynchronous carbon sink saturation in African and Amazonian tropical forests. Nature 579, 80–87 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    7.McDowell, N. et al. Drivers and mechanisms of tree mortality in moist tropical forests. New Phytol. 219, 851–869 (2018).PubMed 
    Article 

    Google Scholar 
    8.Camac, J. S. et al. Partitioning mortality into growth-dependent and growth-independent hazards across 203 tropical tree species. Proc. Natl Acad. Sci. USA 115, 12459 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    9.Condit, R., Hubbell, S. P. & Foster, R. B. Mortality rates of 205 neotropical tree and shrub species and the impact of a severe drought. Ecol. Monogr. 65, 419–439 (1995).Article 

    Google Scholar 
    10.McDowell, N. G. et al. Pervasive shifts in forest dynamics in a changing world. Science 368, eaaz9463 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    11.Stephenson, N. L. et al. Rate of tree carbon accumulation increases continuously with tree size. Nature 507, 90–93 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    12.Forrester, D. I. Does individual-tree biomass growth increase continuously with tree size? For. Ecol. Manag. 481, 118717 (2021).Article 

    Google Scholar 
    13.Sheil, D. et al. Does biomass growth increase in the largest trees? Flaws, fallacies and alternative analyses. Funct. Ecol. 31, 568–581 (2017).Article 

    Google Scholar 
    14.Condit, R., Pérez, R., Lao, S., Aguilar, S. & Hubbell, S. P. Demographic trends and climate over 35 years in the Barro Colorado 50 ha plot. For. Ecosyst. 4, 17 (2017).Article 

    Google Scholar 
    15.McMahon, S. M., Arellano, G. & Davies, S. J. The importance and challenges of detecting changes in forest mortality rates. Ecosphere 10, e02615 (2019).Article 

    Google Scholar 
    16.Aleixo, I. et al. Amazonian rainforest tree mortality driven by climate and functional traits. Nat. Clim. Change 9, 384–388 (2019).Article 

    Google Scholar 
    17.Parlato, B., Gora, E. M. & Yanoviak, S. P. Lightning damage facilitates beetle colonization of tropical trees. Ann. Entomol. Soc. Am. 113, 447–451 (2020).
    Google Scholar 
    18.Franklin, J. F., Shugart, H. H. & Harmon, M. E. Tree death as an ecological process. Bioscience 37, 550–556 (1987).Article 

    Google Scholar 
    19.Gale, N. & Hall, P. Factors determining the modes of tree death in three Bornean rain forests. J. Veg. Sci. 12, 337–348 (2001).Article 

    Google Scholar 
    20.Fontes, C. G., Chambers, J. Q. & Higuchi, N. Revealing the causes and temporal distribution of tree mortality in Central Amazonia. For. Ecol. Manag. 424, 177–183 (2018).Article 

    Google Scholar 
    21.de Toledo, J. J., Magnusson, W. E. & Castilho, C. V. Competition, exogenous disturbances and senescence shape tree size distribution in tropical forest: evidence from tree mode of death in Central Amazonia. J. Veg. Sci. 24, 651–663 (2013).Article 

    Google Scholar 
    22.Bennett, A. C., McDowell, N. G., Allen, C. D. & Anderson-Teixeira, K. J. Larger trees suffer most during drought in forests worldwide. Nat. Plants 1, 15139 (2015).PubMed 
    Article 

    Google Scholar 
    23.Yanoviak, S. P. et al. Lightning is a major cause of large tropical tree mortality in a lowland neotropical forest. New Phytol. 225, 1936–1944 (2020).PubMed 
    Article 

    Google Scholar 
    24.Rifai, S. W. et al. Landscape-scale consequences of differential tree mortality from catastrophic wind disturbance in the Amazon. Ecol. Appl. 26, 2225–2237 (2016).PubMed 
    Article 

    Google Scholar 
    25.McDowell, N. G. & Allen, C. D. Darcy’s law predicts widespread forest mortality under climate warming. Nat. Clim. Change 5, 669–672 (2015).Article 

    Google Scholar 
    26.Williams, A. P. et al. Temperature as a potent driver of regional forest drought stress and tree mortality. Nat. Clim. Change 3, 292–297 (2013).Article 

    Google Scholar 
    27.Sperry, J. S. & Love, D. M. What plant hydraulics can tell us about responses to climate-change droughts. New Phytol. 207, 14–27 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    28.Roberts, J., Osvaldo, M. R. C. & De Aguiar, L. F. Stomatal and boundary-layer conductances in an Amazonian terra firme rain forest. J. Appl. Ecol. 27, 336–353 (1990).Article 

    Google Scholar 
    29.Olson, M. E. et al. Plant height and hydraulic vulnerability to drought and cold. Proc. Natl Acad. Sci. USA 115, 7551–7556 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    30.McGregor, I. R. et al. Tree height and leaf drought tolerance traits shape growth responses across droughts in a temperate broadleaf forest. New Phytol. https://doi.org/10.1111/nph.16996 (2020).31.Mencuccini, M. et al. Size-mediated ageing reduces vigour in trees. Ecol. Lett. 8, 1183–1190 (2005).CAS 
    PubMed 
    Article 

    Google Scholar 
    32.McDowell, N. G. et al. The interdependence of mechanisms underlying climate-driven vegetation mortality. Trends Ecol. Evol. 26, 523–532 (2011).PubMed 
    Article 

    Google Scholar 
    33.Phillips, O. L. et al. Drought–mortality relationships for tropical forests. New Phytol. 187, 631–646 (2010).PubMed 
    Article 

    Google Scholar 
    34.Nepstad, D. C., Tohver, I. M., Ray, D., Moutinho, P. & Cardinot, G. Mortality of large trees and lianas following experimental drought in an Amazon forest. Ecology 88, 2259–2269 (2007).PubMed 
    Article 

    Google Scholar 
    35.da Costa, A. C. L. et al. Effect of 7 yr of experimental drought on vegetation dynamics and biomass storage of an eastern Amazonian rainforest. New Phytol. 187, 579–591 (2010).PubMed 
    Article 

    Google Scholar 
    36.Rowland, L. et al. Death from drought in tropical forests is triggered by hydraulics not carbon starvation. Nature 528, 119–122 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    37.Bartholomew, D. C. et al. Small tropical forest trees have a greater capacity to adjust carbon metabolism to long-term drought than large canopy trees. Plant Cell Environ. 43, 2380–2393 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    38.Fauset, S. et al. Drought-induced shifts in the floristic and functional composition of tropical forests in Ghana. Ecol. Lett. 15, 1120–1129 (2012).PubMed 
    Article 

    Google Scholar 
    39.Zuleta, D., Duque, A., Cardenas, D., Muller-Landau, H. C. & Davies, S. J. Drought-induced mortality patterns and rapid biomass recovery in a terra firme forest in the Colombian Amazon. Ecology 98, 2538–2546 (2017).PubMed 
    Article 

    Google Scholar 
    40.van der Meer, P. J. & Bongers, F. Patterns of tree-fall and branch-fall in a tropical rain forest in French Guiana. J. Ecol. 84, 19–29 (1996).Article 

    Google Scholar 
    41.Parker, G. G. in Forest canopies (eds Lowman, M. D. & Nadkarni, N. M.) 73–106 (Academic Press, 1995).42.Terborgh, J., Huanca Nuñez, N., Feeley, K. & Beck, H. Gaps present a trade-off between dispersal and establishment that nourishes species diversity. Ecology 101, e02996 (2020).PubMed 
    Article 

    Google Scholar 
    43.Ribeiro, G. H. P. M. et al. Mechanical vulnerability and resistance to snapping and uprooting for Central Amazon tree species. For. Ecol. Manag. 380, 1–10 (2016).Article 

    Google Scholar 
    44.Peterson, C. J. et al. Critical wind speeds suggest wind could be an important disturbance agent in Amazonian forests. Forestry 92, 444–459 (2019).Article 

    Google Scholar 
    45.Uriarte, M., Thompson, J. & Zimmerman, J. K. Hurricane María tripled stem breaks and doubled tree mortality relative to other major storms. Nat. Commun. 10, 1362 (2019).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    46.Silvério, D. V. et al. Fire, fragmentation, and windstorms: a recipe for tropical forest degradation. J. Ecol. 107, 656–667 (2019).Article 

    Google Scholar 
    47.van Wilgen, B. W., Biggs, H. C., Mare, N. & O’Regan, S. P. A fire history of the savanna ecosystems in the Kruger National Park, South Africa, between 1941 and 1996. S. Afr. J. Sci. 96, 167–178 (2000).
    Google Scholar 
    48.Tutin, C. E. G., White, L. J. T. & Mackanga-Missandzou, A. Lightning strike burns large forest tree in the Lope Reserve, Gabon. Glob. Ecol. Biogeog. Lett. 5, 36–41 (1996).Article 

    Google Scholar 
    49.Magnusson, W. E., Lima, A. P. & de Lima, O. Group lightning mortality of trees in a Neotropical forest. J. Trop. Ecol. 12, 899–903 (1996).Article 

    Google Scholar 
    50.Anderson, J. A. R. Observations on climatic damage in peat swamp forest in Sarawak. Commonw. Forestry Rev. 43, 145–158 (1964).
    Google Scholar 
    51.Gora, E. M., Burchfield, J. C., Muller-Landau, H. C., Bitzer, P. M. & Yanoviak, S. P. Pantropical geography of lightning-caused disturbance and its implications for tropical forests. Glob. Change Biol. 26, 5017–5026 (2020).Article 

    Google Scholar 
    52.Gora, E. M. et al. A mechanistic and empirically-supported lightning risk model for forest trees. J. Ecol. 108, 1956–1966 (2020).Article 

    Google Scholar 
    53.Alencar, A., Nepstad, D. & Diaz, M. C. V. Forest understory fire in the Brazilian Amazon in ENSO and non-ENSO years: area burned and committed carbon emissions. Earth Interact. 10, 1–17 (2009).Article 

    Google Scholar 
    54.Brando, P. M. et al. Droughts, wildfires, and forest carbon cycling: A pantropical synthesis. Annu. Rev. Earth Planet. Sci. 47, 555–581 (2019).CAS 
    Article 

    Google Scholar 
    55.Cochrane, M. A. Fire science for rainforests. Nature 421, 913–919 (2003).CAS 
    PubMed 
    Article 

    Google Scholar 
    56.Kauffman, J. B. & Uhl, C. in Fire in the Tropical Biota. Ecological Studies (Analysis and Synthesis) Vol. 84 (ed. Goldammer, J. G.) (Springer, 1990).57.Pfeiffer, M., Spessa, A. & Kaplan, J. O. A model for global biomass burning in preindustrial time: LPJ-LMfire (v1.0). Geosci. Model Dev. 6, 643–685 (2013).Article 
    CAS 

    Google Scholar 
    58.Nepstad, D. C. et al. Large-scale impoverishment of Amazonian forests by logging and fire. Nature 398, 505–508 (1999).CAS 
    Article 

    Google Scholar 
    59.Ray, D., Nepstad, D. & Moutinho, P. Micrometeorological and canopy controls of fire susceptibility in a forested Amazon landscape. Ecol. Appl. 15, 1664–1678 (2005).Article 

    Google Scholar 
    60.Brando, P. M. et al. Fire-induced tree mortality in a neotropical forest: the roles of bark traits, tree size, wood density and fire behavior. Glob. Change Biol. 18, 630–641 (2012).Article 

    Google Scholar 
    61.Barlow, J., Peres, C. A., Lagan, B. O. & Haugaasen, T. Large tree mortality and the decline of forest biomass following Amazonian wildfires. Ecol. Lett. 6, 6–8 (2003).Article 

    Google Scholar 
    62.Liebhold, A. M., MacDonald, W. L., Bergdahl, D. & Mastro, V. C. Invasion by Exotic Forest Pests: A Threat to Forest Ecosystems Forest Science Monographs 30 (Society of American Foresters, 1995).63.McGregor, I. R. et al. Tree height and leaf drought tolerance traits shape growth responses across droughts in a temperate broadleaf forest. New Phytol. https://doi.org/10.1111/nph.16996 (2020).64.Gilbert, G. S. & Hubbell, S. P. Plant diseases and the conservation of tropical forests. BioScience 46, 98–106 (1996).Article 

    Google Scholar 
    65.Liu, X. et al. Dilution effect of plant diversity on infectious diseases: latitudinal trend and biological context dependence. Oikos 129, 457–465 (2020).Article 

    Google Scholar 
    66.Chen, L. et al. Differential soil fungus accumulation and density dependence of trees in a subtropical forest. Science 366, 124 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    67.Bell, T., Freckleton, R. P. & Lewis, O. T. Plant pathogens drive density-dependent seedling mortality in a tropical tree. Ecol. Lett. 9, 569–574 (2006).PubMed 
    Article 

    Google Scholar 
    68.Peters, H. A. Neighbour-regulated mortality: the influence of positive and negative density dependence on tree populations in species-rich tropical forests. Ecol. Lett. 6, 757–765 (2003).Article 

    Google Scholar 
    69.Gilbert, G. S., Foster, R. B. & Hubbell, S. P. Density and distance-to-adult effects of a canker disease of trees in a moist tropical forest. Oecologia 98, 100–108 (1994).CAS 
    PubMed 
    Article 

    Google Scholar 
    70.Coley, P. D. & Barone, J. A. Herbivory and plant defenses in tropical forests. Annu. Rev. Ecol. Syst. 27, 305–335 (1996).Article 

    Google Scholar 
    71.Suresh, H. S., Dattaraja, H. S. & Sukumar, R. Relationship between annual rainfall and tree mortality in a tropical dry forest: results of a 19-year study at Mudumalai, southern India. For. Ecol. Manag. 259, 762–769 (2010).Article 

    Google Scholar 
    72.Forrister, D. L., Endara, M.-J., Younkin, G. C., Coley, P. D. & Kursar, T. A. Herbivores as drivers of negative density dependence in tropical forest saplings. Science 363, 1213 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    73.Stephenson, N. L., Das, A. J., Ampersee, N. J., Bulaon, B. M. & Yee, J. L. Which trees die during drought? The key role of insect host-tree selection. J. Ecol. 107, 2383–2401 (2019).Article 

    Google Scholar 
    74.Wing, L. D. & Buss, I. O. Elephants and forests. Wildl. Monogr. 19, 3–92 (1970).75.Berzaghi, F. et al. Carbon stocks in central African forests enhanced by elephant disturbance. Nat. Geosci. 12, 725–729 (2019).CAS 
    Article 

    Google Scholar 
    76.Muller-Landau, H. C. et al. Testing metabolic ecology theory for allometric scaling of tree size, growth and mortality in tropical forests. Ecol. Lett. 9, 575–588 (2006).PubMed 
    Article 

    Google Scholar 
    77.Rüger, N. et al. Beyond the fast–slow continuum: demographic dimensions structuring a tropical tree community. Ecol. Lett. 7, 1075–1084 (2018).Article 

    Google Scholar 
    78.Montgomery, R. A. & Chazdon, R. L. Forest structure, canopy architecture, and light transmittance in old-growth and secondgrowth tropical rain forests. Ecology 82, 2707–2718 (2001).Article 

    Google Scholar 
    79.Kobe, R. K. Carbohydrate allocation to storage as a basis of interspecific variation in sapling survivorship and growth. Oikos 80, 226–233 (1997).Article 

    Google Scholar 
    80.Waring, B. G. & Powers, J. S. Overlooking what is underground: root:shoot ratios and coarse root allometric equations for tropical forests. For. Ecol. Manag. 385, 10–15 (2017).Article 

    Google Scholar 
    81.Poorter, H. et al. Biomass allocation to leaves, stems and roots: meta-analyses of interspecific variation and environmental control. New Phytol. 193, 30–50 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    82.Casper, B. B. & Jackson, R. B. Plant competition underground. Annu. Rev. Ecol. Syst. 28, 545–570 (1997).Article 

    Google Scholar 
    83.Coomes, D. A., Duncan, R. P., Allen, R. B. & Truscott, J. Disturbances prevent stem size–density distributions in natural forests from following scaling relationships. Ecol. Lett. 6, 980–989 (2003).Article 

    Google Scholar 
    84.Pillet, M. et al. Disentangling competitive vs. climatic drivers of tropical forest mortality. J. Ecol. 106, 1165–1179 (2018).Article 

    Google Scholar 
    85.Rozendaal, D. M. A. et al. Competition influences tree growth, but not mortality, across environmental gradients in Amazonia and tropical Africa. Ecology 101, e03052 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    86.Rodríguez-Ronderos, M. E., Bohrer, G., Sanchez-Azofeifa, A., Powers, J. S. & Schnitzer, S. A. Contribution of lianas to plant area index and canopy structure in a Panamanian forest. Ecology 97, 3271–3277 (2016).PubMed 
    Article 

    Google Scholar 
    87.Schnitzer, S. A., Kuzee, M. E. & Bongers, F. Disentangling above- and below-ground competition between lianas and trees in a tropical forest. J. Ecol. 93, 1115–1125 (2005).Article 

    Google Scholar 
    88.Putz, F. E. The natural history of lianas on Barro Colorado Island, Panama. Ecology 65, 1713–1724 (1984).Article 

    Google Scholar 
    89.van der Heijden, G. M. F., Powers, J. S. & Schnitzer, S. A. Lianas reduce carbon accumulation and storage in tropical forests. Proc. Natl Acad. Sci. USA 112, 13267–13271 (2015).PubMed 
    Article 
    CAS 

    Google Scholar 
    90.Visser, M. D. et al. Tree species vary widely in their tolerance for liana infestation: A case study of differential host response to generalist parasites. J. Ecol. 106, 781–794 (2018).CAS 
    Article 

    Google Scholar 
    91.Schnitzer, S. A. & Bongers, F. The ecology of lianas and their role in forests. Trends Ecol. Evol. 17, 223–230 (2002).Article 

    Google Scholar 
    92.García León, M. M., Martínez Izquierdo, L., Mello, F. N. A., Powers, J. S. & Schnitzer, S. A. Lianas reduce community-level canopy tree reproduction in a Panamanian forest. J. Ecol. 106, 737–745 (2018).Article 
    CAS 

    Google Scholar 
    93.Reis, S. M. et al. Causes and consequences of liana infestation in Southern Amazonia. J. Ecol. 108, 2184–2197 (2020).Article 

    Google Scholar 
    94.Sheil, D., Salim, A., Chave, J., Vanclay, J. & Hawthorne, W. D. Illumination–size relationships of 109 coexisting tropical forest tree species. J. Ecol. 94, 494–507 (2006).Article 

    Google Scholar 
    95.Myers, J. A. & Kitajima, K. Carbohydrate storage enhances seedling shade and stress tolerance in a neotropical forest. J. Ecol. 95, 383–395 (2007).CAS 
    Article 

    Google Scholar 
    96.Hartmann, H. & Trumbore, S. Understanding the roles of nonstructural carbohydrates in forest trees—from what we can measure to what we want to know. New Phytol. 211, 386–403 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    97.Enquist, B. J., West, G. B., Charnov, E. L. & Brown, J. H. Allometric scaling of production and life-history variation in vascular plants. Nature 401, 907–911 (1999).CAS 
    Article 

    Google Scholar 
    98.Hubau, W. et al. The persistence of carbon in the African forest understory. Nat. Plants 5, 133–140 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    99.Chambers, J. Q., Higuchi, N. & Schimel, J. P. Ancient trees in Amazonia. Nature 391, 135–136 (1998).CAS 
    Article 

    Google Scholar 
    100.Poorter, L. & Kitajima, K. Carbohydrate storage and light requirements of tropical moist and dry forest tree species. Ecology 88, 1000–1011 (2007).PubMed 
    Article 

    Google Scholar 
    101.Conrath, U. et al. Priming: getting ready for battle. Mol. Plant Microbe Interact. 19, 1062–1071 (2006).CAS 
    PubMed 
    Article 

    Google Scholar 
    102.Arellano, G., Medina, N. G., Tan, S., Mohamad, M. & Davies, S. J. Crown damage and the mortality of tropical trees. New Phytol. 221, 169–179 (2018).PubMed 
    Article 

    Google Scholar 
    103.Zhang, Y.-J. et al. Size‐dependent mortality in a Neotropical savanna tree: the role of height‐related adjustments in hydraulic architecture and carbon allocation. Plant Cell Environ. 32, 1456–1466 (2009).CAS 
    PubMed 
    Article 

    Google Scholar 
    104.Feldpausch, T. R. et al. Amazon forest response to repeated droughts. Glob. Biogeochem. Cycles 30, 964–982 (2016).CAS 
    Article 

    Google Scholar 
    105.Phillips, O. L. et al. Drought sensitivity of the Amazon rainforest. Science 323, 1344–1347 (2009).CAS 
    PubMed 
    Article 

    Google Scholar 
    106.Harel, M. & Price, C. Thunderstorm trends over Africa. J. Clim. 33, 2741–2755 (2020).Article 

    Google Scholar 
    107.IPCC Climate Change 2014: Impacts, Adaptation, and Vulnerability (Cambridge Univ. Press, 2014).108.Fu, Z. et al. Recovery time and state change of terrestrial carbon cycle after disturbance. Environ. Res. Lett. 12, 104004 (2017).Article 

    Google Scholar 
    109.Poorter, L. et al. Biomass resilience of Neotropical secondary forests. Nature 530, 211–214 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    110.Cook-Patton, S. C. et al. Mapping carbon accumulation potential from global natural forest regrowth. Nature 585, 545–550 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    111.Esquivel-Muelbert, A. et al. Compositional response of Amazon forests to climate change. Glob. Change Biol. 25, 39–56 (2019).Article 

    Google Scholar 
    112.Hirota, M., Holmgren, M., Van Nes, E. H. & Scheffer, M. Global resilience of tropical forest and savanna to critical transitions. Science 334, 232–235 (2011).CAS 
    PubMed 
    Article 

    Google Scholar 
    113.Banin, L. et al. What controls tropical forest architecture? Testing environmental, structural and floristic drivers. Glob. Ecol. Biogeogr. 21, 1179–1190 (2012).Article 

    Google Scholar 
    114.Brando, P. et al. Effects of partial throughfall exclusion on the phenology of Coussarea racemosa (Rubiaceae) in an east-central Amazon rainforest. Oecologia 150, 181–189 (2006).PubMed 
    Article 

    Google Scholar 
    115.Lugo, A. E. & Scatena, F. N. Background and catastrophic tree mortality in tropical moist, wet, and rain forests. Biotropica 28, 585–599 (1996).Article 

    Google Scholar 
    116.Feeley, K. J., Bravo-Avila., Fadrique, B., Perez, T. M. & Zuleta, D. Climate-driven changes in the composition of New World plant communities. Nat. Clim. Change 10, 965–970 (2020).CAS 
    Article 

    Google Scholar 
    117.Brienen, R. J. W. et al. Forest carbon sink neutralized by pervasive growth–lifespan trade-offs. Nat. Commun. 11, 4241 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    118.Bugmann, H. et al. Tree mortality submodels drive simulated long-term forest dynamics: assessing 15 models from the stand to global scale. Ecosphere 10, e02616 (2019).Article 

    Google Scholar 
    119.Arellano, G., Zuleta, D. & Davies, S. J. Tree death and damage: A standardized protocol for frequent surveys in tropical forests. J. Veg. Sci. 32, e12981 (2021).Article 

    Google Scholar 
    120.Chan, K.-J., Phillips, O. L., Monteagudo, A., Torres-Lezama, A. & Vásquez Martínez, R. How do trees die? Mode of death in northern Amazonia. J. Veg. Sci. 20, 260–268 (2009).Article 

    Google Scholar  More

  • in

    Distant drivers of deforestation

    1.Curtis, P. G., Slay, C. M., Harris, N. L., Tyukavina, A. & Hansen, M. C. Science 361, 1108–1111 (2018).CAS 
    Article 

    Google Scholar 
    2.Pendrill, F., Persson, U. M., Godar, J. & Kastner, T. Environ. Res. Lett. 14, 055003 (2019).Article 

    Google Scholar 
    3.Zhang, Q. et al. J. Clean. Prod. 250, 119503 (2020).Article 

    Google Scholar 
    4.Hoang, N. T. & Kanemoto, K. Nat. Ecol. Evol. https://doi.org/10.1038/s41559-021-01417-z (2021).5.Hansen, M. C. et al. Science 342, 850–853 (2013).CAS 
    Article 

    Google Scholar 
    6.System of Environmental-Economic Accounting 2012—Experimental Ecosystem Accounting (United Nations, European Commission, Food and Agriculture Organization, Organization for Economic Co-operation and Development & World Bank, 2014).7.Wilting, H. C., Schipper, A. M., Ivanova, O., Ivanova, D. & Huijbregts, M. A. J. J. Ind. Ecol. 25, 79–94 (2021).Article 

    Google Scholar 
    8.Bruckner, M. et al. Environ. Sci. Technol. 53, 11302–11312 (2019).CAS 
    Article 

    Google Scholar 
    9.Summary for Policymakers of the Global Assessment Report on Biodiversity and Ecosystem Services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES, 2019). More

  • in

    Reversed evolution of grazer resistance to cyanobacteria

    1.Vitousek, P. M., Mooney, H. A., Lubchenco, J. & Melillo, J. M. Human domination of Earth’s ecosystems. Science 277, 494–499 (1997).CAS 
    Article 

    Google Scholar 
    2.Paerl, H. W. & Huisman, J. Blooms like it hot. Science 320, 57–58 (2008).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    3.Dudgeon, D. Multiple threats imperil freshwater biodiversity in the Anthropocene. Curr. Biol. 29, R960–R967 (2019).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    4.Müller-Navarra, D. C., Brett, M. T., Liston, A. M. & Goldman, C. R. A highly unsaturated fatty acid predicts carbon transfer between primary producers and consumers. Nature 403, 74 (2000).ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    5.von Elert, E., Martin-Creuzburg, D. & Le Coz, J. R. Absence of sterols constrains carbon transfer between cyanobacteria and a freshwater herbivore (Daphnia galeata). Proc. R. Soc. Lond. B: Biol. Sci. 270, 1209–1214 (2003).Article 
    CAS 

    Google Scholar 
    6.Wilson, A. E., Sarnelle, O. & Tillmanns, A. R. Effects of cyanobacterial toxicity and morphology on the population growth of freshwater zooplankton: Meta-analyses of laboratory experiments. Limnol. Oceanogr. 51, 1915–1924 (2006).ADS 
    Article 

    Google Scholar 
    7.Martin-Creuzburg, D., von Elert, E. & Hoffmann, K. H. Nutritional constraints at the cyanobacteria—Daphnia magna interface: the role of sterols. Limnol. Oceanogr. 53, 456–468 (2008).ADS 
    Article 

    Google Scholar 
    8.Gustafsson, S. & Hansson, L.-A. Development of tolerance against toxic cyanobacteria in Daphnia. Aquat. Ecol. 38, 37–44 (2004).Article 

    Google Scholar 
    9.Paerl, H. W. & Fulton, R. S. in Ecology of harmful algae 95–109 (Springer, 2006).10.Schaffner, L. R. et al. Consumer-resource dynamics is an eco-evolutionary process in a natural plankton community. Nat. Ecol. Evol. 3, 1351–1358 (2019).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    11.Kerfoot, W. C., Robbins, J. A. & Weider, L. J. A new approach to historical reconstruction: combining descriptive and experimental paleolimnology. Limnol. Oceanogr. 44, 1232–1247 (1999).ADS 
    Article 

    Google Scholar 
    12.Hairston, N. G. Jr. et al. Lake ecosystems: rapid evolution revealed by dormant eggs. Nature 401, 446 (1999).ADS 
    Article 

    Google Scholar 
    13.Hairston, N. G. Jr. et al. Natural selection for grazer resistance to toxic cyanobacteria: evolution of phenotypic plasticity? Evolution 55, 2203–2214 (2001).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    14.Jochimsen, M. C., Kümmerlin, R. & Straile, D. Compensatory dynamics and the stability of phytoplankton biomass during four decades of eutrophication and oligotrophication. Ecol. Lett. 16, 81–89 (2013).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    15.Güde, H. & Straile, D. Bodensee: Ökologie und anthropogene Belastungen eines tiefen Voralpensees (Schweizerbart, 2016).16.Wallace, A. R. On the tendency of species to form varieties; and on the perpetuation of varieties and species by natural means of selection. III Tendency Var. Depart Indefinitely Orig. Type J Proc Linn Soc Lond. (1858).17.Darwin, C. The Origin of Species and the Descent of Man (Modern Library, 1859).18.Lahti, D. C. et al. Relaxed selection in the wild. Trends Ecol. Evol. 24, 487–496 (2009).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    19.Hendry, A. P., Farrugia, T. J. & Kinnison, M. T. Human influences on rates of phenotypic change in wild animal populations. Mol. Ecol. 17, 20–29 (2008).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    20.Fong, D. W., Kane, T. C. & Culver, D. C. Vestigialization and loss of nonfunctional characters. Annu. Rev. Ecol. Syst. 26, 249–268 (1995).Article 

    Google Scholar 
    21.Levinton, J. S. et al. Rapid loss of genetically based resistance to metals after the cleanup of a Superfund site. Proc. Natl Acad. Sci. 100, 9889–9891 (2003).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    22.Turko, P., Sigg, L., Hollender, J. & Spaak, P. Rapid evolutionary loss of metal resistance revealed by hatching decades-old eggs: rapid loss of lead resistance. Evolution 70, 398–407 (2016).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    23.Schwander, T., Crespi, B. J., Gries, R. & Gries, G. Neutral and selection-driven decay of sexual traits in asexual stick insects. Proc. R. Soc. B: Biol. Sci. 280, 20130823 (2013).Article 

    Google Scholar 
    24.Kettlewell, H. B. D. Further selection experiments on industrial melanism in the Lepidoptera. Heredity 10, 287–301 (1956).Article 

    Google Scholar 
    25.Hairston, N. G. & Dillon, T. A. Fluctuating selection and response in a population of freshwater copepods. Evolution 44, 1796–1805 (1990).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    26.Grant, P. R. & Grant, B. R. Evolution of character displacement in Darwin’s Finches. Science 313, 224–226 (2006).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    27.Straile, D. & Geller, W. Crustacean zooplankton in Lake Constance from 1920 to 1995: response to eutrophication and re-oligotrophication. Adv. Limnol. 53, 255–274 (1998).28.Hairston, N. G. Jr. & Kearns, C. M. Temporal dispersal: ecological and evolutionary aspects of zooplankton egg banks and the role of sediment mixing. Integr. Comp. Biol. 42, 481–491 (2002).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    29.Ghalambor, C. K., McKAY, J. K., Carroll, S. P. & Reznick, D. N. Adaptive versus non-adaptive phenotypic plasticity and the potential for contemporary adaptation in new environments. Funct. Ecol. 21, 394–407 (2007).Article 

    Google Scholar 
    30.Conover, D. O., Duffy, T. A. & Hice, L. A. The covariance between genetic and environmental influences across ecological gradients: reassessing the evolutionary significance of countergradient and cogradient variation. Ann. N. Y. Acad. Sci. 1168, 100–129 (2009).ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    31.Conover, D. O. & Schultz, E. T. Phenotypic similarity and the evolutionary significance of countergradient variation. Trends Ecol. Evol. 10, 248–252 (1995).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    32.Merilä, J., Kruuk, L. E. B. & Sheldon, B. C. Cryptic evolution in a wild bird population. Nature 412, 76–79 (2001).ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    33.Garant, D., Kruuk, L. E. B., McCleery, R. H. & Sheldon, B. C. Evolution in a changing environment: a case study with Great Tit fledging mass. Am. Nat. 164, E115–E129 (2004).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    34.Ellegren, H. & Sheldon, B. C. Genetic basis of fitness differences in natural populations. Nature 452, 169–175 (2008).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    35.Yoshida, T., Hairston, N. G. Jr. & Ellner, S. P. Evolutionary trade–off between defence against grazing and competitive ability in a simple unicellular alga, Chlorella vulgaris. Proc. R. Soc. Lond. B: Biol. Sci. 271, 1947–1953 (2004).Article 

    Google Scholar 
    36.Kümmerlin, R. E. Taxonomical response of the phytoplankton community of Upper Lake Constance (Bodensee-Obersee) to eutrophication and re-oligotrophication. Arch. Hydrobiol. Spec. Issues Adv. Limnol. 53, 109–117 (1998).
    Google Scholar 
    37.Spaak, P., Fox, J. & Hairston, N. G. Jr. Modes and mechanisms of a Daphnia invasion. Proc. R. Soc. B: Biol. Sci. 279, 2936–2944 (2012).Article 

    Google Scholar 
    38.Brede, N. et al. The impact of human-made ecological changes on the genetic architecture of Daphnia species. Proc. Natl Acad. Sci. 106, 4758–4763 (2009).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    39.Straile, D. Zooplankton biomass dynamics in oligotrophic versus eutrophic conditions: a test of the PEG model. Freshw. Biol. 60, 174–183 (2015).Article 

    Google Scholar 
    40.Carroll, S. P. et al. Applying evolutionary biology to address global challenges. Science 346, 1245993–1245993 (2014).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    41.Güde, H., Rossknecht, H. & Wagner, G. Anthropogenic impacts on the trophic state of Lake Constance during the 20 super (th) century. Adv. Limnol. Stuttg. 53, 85–108 (1998).42.Isanta Navarro, J., Kowarik, C., Wessels, M., Straile, D. & Martin‐Creuzburg, D. Resilience to changes in lake trophic state: Nutrient allocation into Daphnia resting eggs. Ecol. Evol. 9, 12813–12825 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    43.IGKB, I. G. für den B. Jahresbericht der Internationalen Gewässerschutzkommission für den Bodensee: Limnologischer Zustand des Bodensees Nr. 42 (2016-2017). (2018).44.De Stasio, B. T. The seed bank of a freshwater crustacean: copepodology for the plant ecologist. Ecology 70, 1377–1389 (1989).Article 

    Google Scholar 
    45.Cáceres, C. E. & Hairston, N. G. Jr. Benthic-pelagic coupling in planktonic crustaceans: the role of the benthos. Arch. Hydrobiol. 52, 163–174 (1998).
    Google Scholar 
    46.Brendonck, L. & De Meester, L. Egg banks in freshwater zooplankton: evolutionary and ecological archives in the sediment. Hydrobiologia 491, 65–84 (2003).Article 

    Google Scholar 
    47.Hairston, N. G. Jr. & De Meester, L. Daphnia paleogenetics and environmental change: deconstructing the evolution of plasticity. Int. Rev. Hydrobiol. 93, 578–592 (2008).Article 

    Google Scholar 
    48.Frisch, D. et al. A millennial-scale chronicle of evolutionary responses to cultural eutrophication in. Daphnia. Ecol. Lett. 17, 360–368 (2014).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    49.Fox, J. A. Hatching timing of Daphnia mendotae diapausing eggs of different ages. Fundam. Appl. Limnol./Arch. Hydrobiol. 168, 19–26 (2007).Article 

    Google Scholar 
    50.Jankowski, T. & Straile, D. A comparison of egg-bank and long-term plankton dynamics of two Daphnia species, D. hyalina and D. galeata: Potentials and limits of reconstruction. Limnol. Oceanogr. 48, 1948–1955 (2003).ADS 
    Article 

    Google Scholar 
    51.Keller, B. & Spaak, P. Nonrandom sexual reproduction and diapausing egg production in a Daphnia hybrid species complex. Limnol. Oceanogr. 49, 1393–1400 (2004).ADS 
    Article 

    Google Scholar 
    52.Wessels, M., Mohaupt, K., Kümmerlin, R. & Lenhard, A. Reconstructing past eutrophication trends from diatoms and biogenic silica in the sediment and the pelagic zone of Lake Constance, Germany. J. Paleolimnol. 21, 171–192 (1999).ADS 
    Article 

    Google Scholar 
    53.Wessels, M., Lenhard, A., Giovanoli, F. & Bollhöfer, A. High resolution time series of lead and zinc in sediments of Lake Constance. Aquat. Sci. 57, 291–304 (1995).Article 

    Google Scholar 
    54.Alric, B. et al. Local human pressures influence gene flow in a hybridizing Daphnia species complex. J. Evol. Biol. 29, 720–735 (2016).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    55.Brede, N. et al. Microsatellite markers for European. Daphnia. Mol. Ecol. Notes 6, 536–539 (2006).CAS 
    Article 

    Google Scholar 
    56.Belkhir, K., Borsa, P., Chikhi, L., Raufaste, N. & Bonhomme, F. GENETIX 4.05, logiciel sous Windows TM pour la ge ́ne ́tique des populations. (1996).57.Jüttner, F., Leonhardt, J. & Möhren, S. Environmental factors affecting the formation of mesityloxide, dimethylallylic alcohol and other volatile compounds excreted by Anabaena cylindrica. J. Gen. Microbiol. 129, 407–412 (1983).
    Google Scholar  More

  • in

    Diapause vs. reproductive programs: transcriptional phenotypes in a keystone copepod

    1.Record, N. R. et al. Copepod diapause and the biogeography of the marine lipidscape. J. Biogeogr. 45, 2238–2251 (2018).Article 

    Google Scholar 
    2.Conover, R. J. & Corner, E. D. S. Respiration and nitrogen excretion by some marine zooplankton in relation to their life cycles. J. Mar. Biol. Assoc. UK 48, 49–75 (1968).Article 

    Google Scholar 
    3.Kattner, G. et al. Perspectives on marine zooplankton lipids. Can. J. Fish. Aquat. Sci. 64, 1628–1639 (2007).CAS 
    Article 

    Google Scholar 
    4.Beaugrand, G., Brander, K. M., Lindley, J. A., Souissi, S. & Reid, P. C. Plankton effect on cod recruitment in the North Sea. Nature 426, 661–664 (2003).CAS 
    PubMed 
    Article 

    Google Scholar 
    5.Coyle, K. et al. Climate change in the southeastern Bering Sea: impacts on pollock stocks and implications for the oscillating control hypothesis. Fish. Oceanogr. 20, 139–156 (2011).Article 

    Google Scholar 
    6.Liu, H., Bi, H. & Peterson, W. T. Large-scale forcing of environmental conditions on subarctic copepods in the northern California Current system. Prog. Oceanogr. 134, 404–412 (2015).Article 

    Google Scholar 
    7.Peterson, W. T. et al. The pelagic ecosystem in the Northern California Current off Oregon during the 2014–2016 warm anomalies within the context of the past 20 years. J. Geophys. Res. Oceans 122, 7267–7290 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    8.Bi, H., Peterson, W. T., Lamb, J. & Casillas, E. Copepods and salmon: characterizing the spatial distribution of juvenile salmon along the Washington and Oregon coast, USA. Fish. Oceanogr. 20, 125–138 (2011).Article 

    Google Scholar 
    9.Kirby, R. R. & Beaugrand, G. Trophic amplification of climate warming. Proc. R. Soc. B 276, 4095–4103 (2009).PubMed 
    Article 

    Google Scholar 
    10.Hirche, H.-J. Temperature and plankton II. Effect on respiration and swimming activity in copepods from the Greenland Sea. Mar. Biol. 94, 347–356 (1987).Article 

    Google Scholar 
    11.Mahara, N., Pakhomov, E. A., Jackson, J. M. & Hunt, B. P. Seasonal zooplankton development in a temperate semi-enclosed basin: two years with different spring bloom timing. J. Plankton Res. 41, 309–328 (2019).CAS 
    Article 

    Google Scholar 
    12.Hooff, R. C. & Peterson, W. T. Copepod biodiversity as an indicator of changes in ocean and climate conditions of the northern California current ecosystem. Limnol. Oceanogr. 51, 2607–2620 (2006).Article 

    Google Scholar 
    13.Keister, J. E., Di Lorenzo, E., Morgan, C., Combes, V. & Peterson, W. Zooplankton species composition is linked to ocean transport in the Northern California Current. Glob. Change Biol. 17, 2498–2511 (2011).Article 

    Google Scholar 
    14.Johnson, C. L. et al. Characteristics of Calanus finmarchicus dormancy patterns in the Northwest Atlantic. ICES J. Mar. Sci. 65, 339–350 (2008).Article 

    Google Scholar 
    15.Ji, R. B., Edwards, M., Mackas, D. L., Runge, J. A. & Thomas, A. C. Marine plankton phenology and life history in a changing climate: current research and future directions. J. Plankton Res. 32, 1355–1368 (2010).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    16.Weydmann, A., Walczowski, W., Carstensen, J. & Kwaśniewski, S. Warming of Subarctic waters accelerates development of a key marine zooplankton Calanus finmarchicus. Glob. Change Biol. 24, 172–183 (2018).Article 

    Google Scholar 
    17.Niehoff, B., Madsen, S., Hansen, B. & Nielsen, T. Reproductive cycles of three dominant Calanus species in Disko Bay, West Greenland. Mar. Biol. 140, 567–576 (2002).Article 

    Google Scholar 
    18.Meise, C. J. & O’Reilly, J. E. Spatial and seasonal patterns in abundance and age-composition of Calanus finmarchicus in the Gulf of Maine and on Georges Bank: 1977–1987. Deep-Sea Res. II 43, 1473–1501 (1996).Article 

    Google Scholar 
    19.Fiksen, Ø. The adaptive timing of diapause–a search for evolutionarily robust strategies in Calanus finmarchicus. ICES J. Mar. Sci. 57, 1825–1833 (2000).Article 

    Google Scholar 
    20.Miller, C. B., Crain, J. A. & Morgan, C. A. Oil storage variability in Calanus finmarchicus. ICES J. Mar. Sci. 57, 1786–1799 (2000).Article 

    Google Scholar 
    21.Miller, C. B., Cowles, T. J., Wiebe, P. H., Copley, N. J. & Grigg, H. Phenology in Calanus finmarchicus – Hypotheses about control mechanisms. Mar. Ecol. Prog. Ser. 72, 79–91 (1991).Article 

    Google Scholar 
    22.Speirs, D. C. et al. Ocean-scale modelling of the distribution, abundance, and seasonal dynamics of the copepod Calanus finmarchicus. Mar. Ecol. Prog. Ser. 313, 173–192 (2006).Article 

    Google Scholar 
    23.Tarrant, A. M. et al. Transcriptional profiling of metabolic transitions during development and diapause preparation in the copepod Calanus finmarchicus. Integr. Comp. Biol. 56, 1157–1169 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    24.Baumgartner, M. F. & Tarrant, A. M. The physiology and ecology of diapause in marine copepods. Annu. Rev. Mar. Sci. 9, 387–411 (2017).Article 

    Google Scholar 
    25.Wilson, R. J., Banas, N. S., Heath, M. R. & Speirs, D. C. Projected impacts of 21st century climate change on diapause in Calanus finmarchicus. Glob. Change Biol. 22, 3332–3340 (2016).Article 

    Google Scholar 
    26.Jónasdóttir, S. H., Visser, A. W., Richardson, K. & Heath, M. R. Seasonal copepod lipid pump promotes carbon sequestration in the deep North Atlantic. Proc. Natl Acad. Sci. USA. 112, 12122–12126 (2015).PubMed 
    Article 
    CAS 

    Google Scholar 
    27.Jónasdóttir, S. H., Wilson, R. J., Gislason, A. & Heath, M. R. Lipid content in overwintering Calanus finmarchicus across the Subpolar Eastern North Atlantic Ocean. Limnol. Oceanogr. 64, 2029–2043 (2019).Article 
    CAS 

    Google Scholar 
    28.Varpe, Ø. Fitness and phenology: annual routines and zooplankton adaptations to seasonal cycles. J. Plankton Res. 34, 267–276 (2012).Article 

    Google Scholar 
    29.Denlinger, D. L., Yocum, G. D. & Rinehart, J. P. in Insect Endocrinology (ed Gilbert, L. I.) 430–463 (Academic Press, 2012).30.Hirche, H. J. Diapause in the marine copepod, Calanus finmarchicus – a review. Ophelia 44, 129–143 (1996).Article 

    Google Scholar 
    31.Häfker, N. S. et al. Calanus finmarchicus seasonal cycle and diapause in relation to gene expression, physiology, and endogenous clocks. Limnol. Oceanogr. 63, 2815–2838 (2018).Article 

    Google Scholar 
    32.Roncalli, V. et al. Physiological characterization of the emergence from diapause: a transcriptomics approach. Sci. Rep. 8, 12577 (2018).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    33.Roncalli, V., Cieslak, M. C., Hopcroft, R. R. & Lenz, P. H. Capital breeding in a diapausing copepod: a transcriptomics analysis. Front. Mar. Sci. 7, 56 (2020).Article 

    Google Scholar 
    34.MacRae, T. H. Gene expression, metabolic regulation and stress tolerance during diapause. Cell. Mol. Life Sci. 67, 2405–2424 (2010).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    35.Poelchau, M. F., Reynolds, J. A., Elsik, C. G., Denlinger, D. L. & Armbruster, P. A. Deep sequencing reveals complex mechanisms of diapause preparation in the invasive mosquito, Aedes albopictus. Proc. R. Soc. B 280 (2013).36.Ragland, G. J. & Keep, E. Comparative transcriptomics support evolutionary convergence of diapause responses across Insecta. Physiol. Entomol. 42, 246–256 (2017).CAS 
    Article 

    Google Scholar 
    37.Koštál, V. Eco-physiological phases of insect diapause. J. Insect Physiol. 52, 113–127 (2006).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    38.Tarrant, A. M. et al. Transcriptional profiling of reproductive development, lipid storage and molting throughout the last juvenile stage of the marine copepod Calanus finmarchicus. Front. Zool. 11, 1 (2014).Article 
    CAS 

    Google Scholar 
    39.Jensen, L. K. et al. A multi-generation Calanus finmarchicus culturing system for use in long-term oil exposure experiments. J. Exp. Mar. Biol. Ecol. 333, 71–78 (2006).CAS 
    Article 

    Google Scholar 
    40.Cieslak, M. C., Castelfranco, A. M., Roncalli, V., Lenz, P. H. & Hartline, D. K. t-Distributed Stochastic Neighbor Embedding (t-SNE): a tool for eco-physiological transcriptomic analysis. Mar. Genomics 51, 100723 (2020).PubMed 
    Article 

    Google Scholar 
    41.van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. J. Mach. Learn. Res. 9, 2579–2605 (2008).
    Google Scholar 
    42.Roncalli, V., Cieslak, M. C., Germano, M., Hopcroft, R. R. & Lenz, P. H. Regional heterogeneity impacts gene expression in the sub-arctic zooplankter Neocalanus flemingeri in the northern Gulf of Alaska. Commun. Biol. 2, 1–13 (2019).CAS 
    Article 

    Google Scholar 
    43.Johnson, K. M., Wong, J. M., Hoshijima, U., Sugano, C. S. & Hofmann, G. E. Seasonal transcriptomes of the Antarctic pteropod Limacina helicina antarctica. Mar. Env. Res. 143, 49–59 (2019).CAS 
    Article 

    Google Scholar 
    44.Denlinger, D. L. Regulation of diapause. Annu. Rev. Entomol. 47, 93–122 (2002).CAS 
    PubMed 
    Article 

    Google Scholar 
    45.Denlinger, D. L. & Armbruster, P. A. Mosquito diapause. Annu. Rev. Entomol. 59, 73–93 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    46.Hahn, D. A. & Denlinger, D. L. Energetics of insect diapause. Annu. Rev. Entomol. 56, 103–121 (2011).CAS 
    PubMed 
    Article 

    Google Scholar 
    47.Sim, C. & Denlinger, D. L. Transcription profiling and regulation of fat metabolism genes in diapausing adults of the mosquito Culex pipiens. Physiol. Genomics 39, 202–209 (2009).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    48.Sim, C. & Denlinger, D. L. Insulin signaling and the regulation of insect diapause. Front. Physiol. 4, 189 (2013).49.Andrews, T. S. & Hemberg, M. Identifying cell populations with scRNASeq. Mol. Asp. Med. 59, 114–122 (2018).CAS 
    Article 

    Google Scholar 
    50.Habib, N. et al. Div-Seq: single-nucleus RNA-Seq reveals dynamics of rare adult newborn neurons. Science 353, 925–928 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    51.Arrese, E. L. & Soulages, J. L. Insect fat body: energy, metabolism, and regulation. Annu. Rev. Entomol. 55, 207–225 (2010).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    52.Hahn, D. A. & Denlinger, D. L. Meeting the energetic demands of insect diapause: nutrient storage and utilization. J. Insect Physiol. 53, 760–773 (2007).CAS 
    PubMed 
    Article 

    Google Scholar 
    53.Lee, R. F., Hagen, W. & Kattner, G. Lipid storage in marine zooplankton. Mar. Ecol. Prog. Ser. 307, 273–306 (2006).CAS 
    Article 

    Google Scholar 
    54.Kattner, G. & Hagen, W. Polar herbivorous copepods–different pathways in lipid biosynthesis. ICES J. Mar. Sci. 52, 329–335 (1995).Article 

    Google Scholar 
    55.Miller, C. B., Morgan, C. A., Prahl, F. G. & Sparrow, M. A. Storage lipids of the copepod Calanus finmarchicus from Georges Bank and the Gulf of Maine. Limnol. Oceanogr. 43, 488–497 (1998).CAS 
    Article 

    Google Scholar 
    56.Hirche, H. J. & Niehoff, B. Reproduction of the Arctic copepod Calanus hyperboreus in the Greenland Sea-field and laboratory observations. Pol. Biol. 16, 209–219 (1996).Article 

    Google Scholar 
    57.Niehoff, B. & Hirche, H.-J. Oogenesis and gonad maturation in the copepod Calanus finmarchicus and the prediction of egg production from preserved samples. Pol. Biol. 16, 601–612 (1996).Article 

    Google Scholar 
    58.Koštál, V., Štětina, T., Poupardin, R., Korbelová, J. & Bruce, A. W. Conceptual framework of the eco-physiological phases of insect diapause development justified by transcriptomic profiling. Proc. Natl Acad. Sci. USA. 114, 8532–8537 (2017).PubMed 
    Article 
    CAS 

    Google Scholar 
    59.Aruda, A. M., Baumgartner, M. F., Reitzel, A. M. & Tarrant, A. M. Heat shock protein expression during stress and diapause in the marine copepod Calanus finmarchicus. J. Insect Physiol. 57, 665–675 (2011).CAS 
    PubMed 
    Article 

    Google Scholar 
    60.Unal, E., Bucklin, A., Lenz, P. H. & Towle, D. W. Gene expression of the marine copepod Calanus finmarchicus: responses to small-scale environmental variation in the Gulf of Maine (NW Atlantic Ocean). J. Exp. Mar. Biol. Ecol. 446, 76–85 (2013).CAS 
    Article 

    Google Scholar 
    61.Ning, J., Wang, M. X., Li, C. L. & Sun, S. Transcriptome sequencing and de novo analysis of the copepod Calanus sinicus using 454 GS FLX. PLoS ONE 8, e63741 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    62.Zhang, Q., Lu, Y.-X. & Xu, W.-H. Proteomic and metabolomic profiles of larval hemolymph associated with diapause in the cotton bollworm, Helicoverpa armigera. BMC Genomics 14, 751 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    63.Hansen, M. et al. A role for autophagy in the extension of lifespan by dietary restriction in C. elegans. PLoS Genet. 4, e24 (2008).64.Qiu, Z. & MacRae, T. H. ArHsp21, a developmentally regulated small heat-shock protein synthesized in diapausing embryos of Artemia franciscana. Biochem. J. 411, 605–611 (2008).CAS 
    PubMed 
    Article 

    Google Scholar 
    65.Lu, M.-X. et al. Diapause, signal and molecular characteristics of overwintering Chilo suppressalis (Insecta: Lepidoptera: Pyralidae). Sci. Rep. 3, 1–9 (2013).CAS 

    Google Scholar 
    66.Forreryd, A., Johansson, H., Albrekt, A.-S. & Lindstedt, M. Evaluation of high throughput gene expression platforms using a genomic biomarker signature for prediction of skin sensitization. BMC Genomics 15, 379 (2014).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    67.Lenz, P. H. et al. De novo assembly of a transcriptome for Calanus finmarchicus (Crustacea, Copepoda)–the dominant zooplankter of the North Atlantic Ocean. PLoS ONE 9, e88589 (2014).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    68.Roncalli, V., Cieslak, M. C. & Lenz, P. H. Transcriptomic responses of the calanoid copepod Calanus finmarchicus to the saxitoxin producing dinoflagellate Alexandrium fundyense. Sci. Rep. 6, 25708 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    69.Roncalli, V., Cieslak, M. C. & Lenz, P. H. Data from: Transcriptomic responses of the calanoid copepod Calanus finmarchicus to the saxitoxin producing dinoflagellate Alexandrium fundyense. Dryad, Dataset (2016).70.Choquet, M. et al. Genetics redraws pelagic biogeography of Calanus. Biol. Lett. 13, 20170588 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    71.Choquet, M. et al. Can morphology reliably distinguish between the copepods Calanus finmarchicus and C. glacialis, or is DNA the only way? Limnol. Oceanogr.: Methods 16, 237–252 (2018).Article 

    Google Scholar 
    72.Skottene, E. et al. A crude awakening: effects of crude oil on lipid metabolism in calanoid copepods terminating diapause. Biol. Bull. 237, 90–110 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    73.Melle, W. & Skjoldal, H. R. Reproduction and development of Calanus finmarchicus, C. glacialis and C. hyperboreus in the Barents Sea. Mar. Ecol. Prog. Ser. 169, 211–228 (1998).Article 

    Google Scholar 
    74.Weydmann, A. et al. Mitochondrial genomes of the key zooplankton copepods Arctic Calanus glacialis and North Atlantic Calanus finmarchicus with the longest crustacean non-coding regions. Sci. Rep. 7, 1–11 (2017).CAS 
    Article 

    Google Scholar 
    75.Lenz, P. H., Lieberman, B., Cieslak, M. C., Roncalli, V. & Hartline, D. K. Transcriptomics and metatranscriptomics in zooplankton: wave of the future? J. Plankton Res. 43, 3–9 (2021).Article 

    Google Scholar 
    76.Langmead, B., Trapnell, C., Pop, M. & Salzberg, S. L. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol. https://doi.org/10.1186/Gb-2009-10-3-R25 (2009).77.Mortazavi, A., Williams, B. A., McCue, K., Schaeffer, L. & Wold, B. Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat. Methods 5, 621 (2008).CAS 
    PubMed 
    Article 

    Google Scholar 
    78.van der Maaten, L. Accelerating t-SNE using tree-based algorithms. J. Mach. Learn. Res. 15, 3221–3245 (2014).
    Google Scholar 
    79.Krijthe, J. H. Rtsne: t-Distributed Stochastic Neighbor Embedding using a Barnes-Hut implementation, version 0.13. (2015).80.Ester, M., Kriegel, H.-P., Sander, J. & Xu, X. A density-based algorithm for discovering clusters in large spatial databases with noise. Proc. Second International Conference on Knowledge Discovery and Data Mining (KDD-96) 96, 226–231 (1996).81.Dunn, J. C. Well-separated clusters and optimal fuzzy partitions. J. Cybern. 4, 95–104 (1974).Article 

    Google Scholar 
    82.Hahsler, M. & Piekenbrock, M. Dbscan: density based clustering of applications with noise (DBSCAN) and related algorithms. R. package version 1, 1–3 (2018).
    Google Scholar 
    83.Desgraupes, B. ClusterCrit: Clustering Indices. R package version 1.2.8. (2018).84.Robinson, M. D., McCarthy, D. J. & Smyth, G. K. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26, 139–140 (2010).CAS 
    PubMed 
    Article 

    Google Scholar 
    85.Langfelder, P. & Horvath, S. WGCNA: an R package for weighted correlation network analysis. BMC Bioinforma. 9, 559 (2008).Article 
    CAS 

    Google Scholar 
    86.Zhang, B. & Horvath, S. A general framework for weighted gene co-expression network analysis. Stat. Appl. Genet. Mol. 4, 17 (2005).87.Supek, F., Bošnjak, M., Škunca, N. & Šmuc, T. REVIGO summarizes and visualizes long lists of gene ontology terms. PLoS ONE 6, e21800 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    88.Alexa, A. & Rahnenfuhrer, J. topGO: enrichment analysis for gene ontology. R. package version 2, 2010 (2010).
    Google Scholar 
    89.Galili, T., O’Callaghan, A., Sidi, J. & Sievert, C. heatmaply: an R package for creating interactive cluster heatmaps for online publishing. Bioinformatics 34, 1600–1602 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    90.Lenz, P. H. et al. Diapause vs. reproductive programs: transcriptional phenotypes in Calanus finmarchicus. Dryad, Dataset, https://doi.org/10.5061/dryad.12jm63xw7 (2021). More