in

µgreen-db: a reference database for the 23S rRNA gene of eukaryotic plastids and cyanobacteria

  • 1.

    Elbert, W. et al. Contribution of cryptogamic covers to the global cycles of carbon and nitrogen. Nature Geoscience 5, 459–462, https://doi.org/10.1038/ngeo1486 (2012).

  • 2.

    Ramanan, R., Kim, B. H., Cho, D. H., Oh, H. M. & Kim, H. S. Algae-bacteria interactions: Evolution, ecology and emerging applications. Biotechnology Advances 34, 14–29, https://doi.org/10.1016/j.biotechadv.2015.12.003 (2016).

  • 3.

    Rippin, M., Lange, S., Sausen, N. & Becker, B. Biodiversity of biological soil crusts from the Polar Regions revealed by metabarcoding. FEMS Microbiology Ecology 94, 1–15, https://doi.org/10.1093/femsec/fiy036 (2018).

  • 4.

    Tesson, S. V. M., Skjøth, C. A., Šantl-Temkiv, T. & Löndahl, J. Airborne Microalgae: Insights, Opportunities, and Challenges. Applied and Environmental Microbiology 82, 1978–1991, https://doi.org/10.1128/AEM.03333-15 (2016).

  • 5.

    Zancan, S., Trevisan, R. & Paoletti, M. G. Soil algae composition under different agro-ecosystems in North-Eastern Italy. Agriculture, Ecosystems and Environment 112, 1–12, https://doi.org/10.1016/j.agee.2005.06.018 (2006).

    • Article
    • Google Scholar
  • 6.

    Azam, F. & Malfatti, F. Microbial structuring of marine ecosystems. Nature Reviews Microbiology 5, 782–791, https://doi.org/10.1038/nrmicro1747 (2007).

  • 7.

    Schenk, P. M. et al. Second Generation Biofuels: High-Efficiency Microalgae for Biodiesel Production. BioEnergy Research 1, 20–43, https://doi.org/10.1007/s12155-008-9008-8 (2008).

    • Article
    • Google Scholar
  • 8.

    Hoffmann, L. Algae of terrestrial habitats. The Botanical Review 55, 77–105, https://doi.org/10.1007/BF02858529 (1989).

    • Article
    • Google Scholar
  • 9.

    Palinska, K. A. & Surosz, W. Taxonomy of cyanobacteria: A contribution to consensus approach. Hydrobiologia 740, 1–11, https://doi.org/10.1007/s10750-014-1971-9 (2014).

    • Article
    • Google Scholar
  • 10.

    Soo, R. M. et al. An expanded genomic representation of the phylum cyanobacteria. Genome Biology and Evolution 6, 1031–1045, https://doi.org/10.1093/gbe/evu073 (2014).

  • 11.

    Singh, J. S., Kumar, A., Rai, A. N. & Singh, D. P. Cyanobacteria: A precious bio-resource in agriculture, ecosystem, and environmental sustainability. Front. Microbiol. 7, https://doi.org/10.3389/fmicb.2016.00529, (2016).

  • 12.

    Lewis, L. A. Chlorophyta on land: Independent lineages of green eukaryotes from arid lands. Algae Cyanobacteria Extrem. Environ. 569–582 (2007).

  • 13.

    Pfister, L. et al. Terrestrial diatoms as tracers in catchment hydrology: a review. Wiley Interdiscip. Rev. Water 4, e1241, https://doi.org/10.1002/wat2.1241, (2017).

    • Article
    • Google Scholar
  • 14.

    Wanner, M. et al. Soil Testate Amoebae and Diatoms as Bioindicators of an Old Heavy Metal Contaminated Floodplain in Japan. Microb. Ecol. 79, 123–133, https://doi.org/10.1007/s00248-019-01383-x, (2019).

  • 15.

    Andersen, R. A. Diversity of eukaryotic algae. Biodiversity and Conservation 1, 267–292, https://doi.org/10.1007/BF00693765 (1992).

    • Article
    • Google Scholar
  • 16.

    Bhattacharya, D. & Medlin, L. Algal Phylogeny and the Origin of Land Plants. Plant Physiology 116, 9–15, https://doi.org/10.1104/pp.116.1.9 (1998).

  • 17.

    Clerck, O., Bogaert, K. A., & Leliaert, F. Diversity and Evolution of Algae. Genomic Insights Into the Biology of Algae 64, https://doi.org/10.1016/B978-0-12-391499-6.00002-5 (2012).

  • 18.

    Keeling, P. J. Diversity and evolutionary history of plastids and their hosts. American Journal of Botany 91, 1481–1493, https://doi.org/10.3732/ajb.91.10.1481 (2004).

  • 19.

    Leliaert, F. et al. Phylogeny and Molecular Evolution of the Green Algae. Critical Reviews in Plant Sciences 31, 1–46, https://doi.org/10.1080/07352689.2011.615705 (2012).

    • Article
    • Google Scholar
  • 20.

    Lowe, R. L., & LaLiberte, G. D. Benthic Stream Algae: Distribution and Structure. Methods in Stream Ecology: Third Edition (Vol. 1). Elsevier Inc. https://doi.org/10.1016/B978-0-12-416558-8.00011-1 (2017).

  • 21.

    Pipe, A. E., & Shubert, L. E. The use of algae as indicators of soil fertility. Algae as Ecological Indicators. Academic Press, London, 213–233. (1984).

  • 22.

    Sauvage, T., Schmidt, W. E., Suda, S. & Fredericq, S. A metabarcoding framework for facilitated survey of endolithic phototrophs with tufA. BMC Ecology 16, 1–21, https://doi.org/10.1186/s12898-016-0068-x (2016).

    • Article
    • Google Scholar
  • 23.

    Hügler, M. & Sievert, S. M. Beyond the Calvin Cycle: Autotrophic Carbon Fixation in the Ocean. Annual Review of Marine Science 3, 261–289, https://doi.org/10.1306/06210404037 (2011).

  • 24.

    Muñoz-Rojas, M. et al. Cyanobacteria inoculation enhances carbon sequestration in soil substrates used in dryland restoration. Science of the Total Environment 636, 1149–1154, https://doi.org/10.1016/j.scitotenv.2018.04.265 (2018).

  • 25.

    Luo, W., Pflugmacher, S., Pröschold, T., Walz, N. & Krienitz, L. Genotype versus Phenotype Variability in Chlorella and Micractinium (Chlorophyta, Trebouxiophyceae). Protist 157, 315–333, https://doi.org/10.1016/j.protis.2006.05.006 (2006).

  • 26.

    Proschold, T., & Leliaert, F. Systematics of the green algae: conflict of classic and modern approaches BT – Unravelling the algae: the past, present, and future of algal systematics. Unravelling the Algae: The Past, Present, and Future of Algal Systematics 75, 124–153, Retrieved from papers2://publication/uuid/7B8D0095-F34D-4006-A354-E35FA472816E (2007).

  • 27.

    Cho, D. H. et al. Microalgal diversity fosters stable biomass productivity in open ponds treating wastewater. Scientific Reports 7, 1–11, https://doi.org/10.1038/s41598-017-02139-8 (2017).

  • 28.

    Kim, E. et al. Newly identified and diverse plastid-bearing branch on the eukaryotic tree of life. Proceedings of the National Academy of Sciences 108, 1496–1500, https://doi.org/10.1073/pnas.1013337108 (2011).

  • 29.

    Oliveira, M. C. et al. High-throughput sequencing for algal systematics. European Journal of Phycology 53, 256–272, https://doi.org/10.1080/09670262.2018.1441446 (2018).

  • 30.

    Seppey, C. V. W. et al. Distribution patterns of soil microbial eukaryotes suggests widespread algivory by phagotrophic protists as an alternative pathway for nutrient cycling. Soil Biology and Biochemistry 112, 68–76, https://doi.org/10.1016/j.soilbio.2017.05.002 (2017).

  • 31.

    Sherwood, A. R., Dittbern, M. N., Johnston, E. T. & Conklin, K. Y. A metabarcoding comparison of windward and leeward airborne algal diversity across the Ko’olau mountain range on the island of O’ahu, Hawai’i 1. Journal of Phycology 53, 437–445, https://doi.org/10.1111/jpy.12502 (2017).

  • 32.

    Vasselon, V., Domaizon, I., Rimet, F., Kahlert, M. & Bouchez, A. Application of high-throughput sequencing (HTS) metabarcoding to diatom biomonitoring: Do DNA extraction methods matter? Freshwater Science 36, 162–177, https://doi.org/10.1086/690649 (2017).

    • Article
    • Google Scholar
  • 33.

    Logares, R. et al. Metagenomic 16S rDNA Illumina tags are a powerful alternative to amplicon sequencing to explore diversity and structure of microbial communities. Environ. Microbiol. 16, 2659–2671, https://doi.org/10.1111/1462-2920.12250, (2014).

  • 34.

    Pernice, M. C. et al. Large variability of bathypelagic microbial eukaryotic communities across the world’s oceans. ISME J. 10, 945–958, https://doi.org/10.1038/ismej.2015.170, (2016).

  • 35.

    Eriksson, K. M. et al. Community-level analysis of psbA gene sequences and irgarol tolerance in marine periphyton. Applied and Environmental Microbiology 75, 897–906, https://doi.org/10.1128/AEM.01830-08 (2009).

  • 36.

    Hall, J. D., Fucikova, K., Lo, C., Lewis, L. A. & Karol, K. G. An assessment of proposed DNA barcodes in freshwater green algae. Cryptogamie Algologie 31, 529–555, https://doi.org/10.1111/gcbb.12105 (2010).

    • Article
    • Google Scholar
  • 37.

    Marcelino, V. R. & Verbruggen, H. Multi-marker metabarcoding of coral skeletons reveals a rich microbiome and diverse evolutionary origins of endolithic algae. Scientific Reports 6, 1–9, https://doi.org/10.1038/srep31508 (2016).

  • 38.

    Saunders, G. W. & Kucera, H. An evaluation of rbcL, tufA, UPA, LSU and ITS as DNA barcode markers for the marine green macroalgae INTRODUCTION. Algologie 31, 487–528 (2010).

    • Google Scholar
  • 39.

    Sherwood, A. R., Conklin, K. Y. & Liddy, Z. J. What’s in the air? Preliminary analyses of Hawaiian airborne algae and land plant spores reveal a diverse and abundant flora. Phycologia 53, 579–582, https://doi.org/10.2216/14-059.1 (2014).

    • Article
    • Google Scholar
  • 40.

    Bradley, I. M., Pinto, A. J. & Guest, J. S. Design and Evaluation of Illumina MiSeq-Compatible, 18S rRNA Gene-Specific Primers for Improved Characterization of Mixed Phototrophic Communities. Applied and Environmental Microbiology 82, 5878–5891, https://doi.org/10.1128/AEM.01630-16 (2016).

  • 41.

    Gutell, R. R., Larsen, N. & Woese, C. R. Lessons from an evolving rRNA: 16S and 23S rRNA structures from a comparative perspective. Microbiological Reviews 58, 10–26, https://doi.org/10.1038/468755a (1994).

  • 42.

    Pei, A. et al. Diversity of 23S rRNA Genes within Individual Prokaryotic Genomes. PLoS One 4, e5437, https://doi.org/10.1371/journal.pone.0005437 (2009).

  • 43.

    Presting, G. G. Identification of conserved regions in the plastid genome: implications for DNA barcoding and biological function. Canadian Journal of Botany 84, 1434–1443, https://doi.org/10.1139/b06-117 (2006).

  • 44.

    Sherwood, A. R. & Presting, G. G. Universal primers amplify a 23S rDNA plastid marker in eukaryotic algae and cyanobacteria. Journal of Phycology 43, 605–608, https://doi.org/10.1111/j.1529-8817.2007.00341.x (2007).

    • Article
    • Google Scholar
  • 45.

    Lentendu, G. et al. Effects of long-term differential fertilization on eukaryotic microbial communities in an arable soil: A multiple barcoding approach. Molecular Ecology 23, 3341–3355, https://doi.org/10.1111/mec.12819 (2014).

  • 46.

    Sherwood, A. R., Kurihara, A., Conklin, K. Y., Sauvage, T. & Presting, G. G. The Hawaiian Rhodophyta Biodiversity Survey (2006-2010): a summary of principal findings. BMC Plant Biology 10, 258, https://doi.org/10.1186/1471-2229-10-258 (2010).

  • 47.

    Berney, C. et al. UniEuk: Time to Speak a Common Language in Protistology! J. Eukaryot. Microbiol. 64, 407–411, https://doi.org/10.1111/jeu.12414 (2017).

  • 48.

    del Campo, J. et al. EukRef: Phylogenetic curation of ribosomal RNA to enhance understanding of eukaryotic diversity and distribution. PLOS Biology 16, e2005849, https://doi.org/10.1371/journal.pbio.2005849 (2018).

  • 49.

    Adl, S. M. et al. Revisions to the classification, nomenclature, and diversity of eukaryotes. J. Eukaryot. Microbiol. 66, 4–119, https://doi.org/10.1111/jeu.12691 (2019).

  • 50.

    Balvočiūtė, M. & Huson, D. H. SILVA, RDP, Greengenes, NCBI and OTT — how do these taxonomies compare? BMC Genomics 18, 114, https://doi.org/10.1186/s12864-017-3501-4 (2017).

  • 51.

    Quast, C. et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Research, 41(Database issue), D590-6 https://doi.org/10.1093/nar/gks1219 (2013).

    • Article
    • Google Scholar
  • 52.

    Guillou, L. et al. The Protist Ribosomal Reference database (PR2): a catalog of unicellular eukaryote Small Sub-Unit rRNA sequences with curated taxonomy. Nucleic Acids Research 41, D597–D604, https://doi.org/10.1093/nar/gks1160 (2012).

  • 53.

    Decelle, J. et al. PhytoREF: A reference database of the plastidial 16S rRNA gene of photosynthetic eukaryotes with curated taxonomy. Molecular Ecology Resources 15, 1435–1445, https://doi.org/10.1111/1755-0998.12401 (2015).

  • 54.

    Rimet, F. et al. R-Syst::diatom: an open-access and curated barcode database for diatoms and freshwater monitoring. Database, 2016 (August 2018), baw016. https://doi.org/10.1093/database/baw016 (2016).

  • 55.

    Mordret, S. et al. dinoref: A curated dinoflagellate (Dinophyceae) reference database for the 18S rRNA gene. Molecular Ecology Resources 18, 974–987, https://doi.org/10.1111/1755-0998.12781 (2018).

  • 56.

    Rossetto, M. V. & Verbruggen, H. Reference datasets of tufA and UPA markers to identify algae in metabarcoding surveys. Data in Brief 11, 273–276, https://doi.org/10.1016/j.dib.2017.02.013 (2017).

    • Article
    • Google Scholar
  • 57.

    Yoon, T. H. et al. Development of a cost-effective metabarcoding strategy for analysis of the marine phytoplankton community. PeerJ 4, e2115, https://doi.org/10.7717/peerj.2115 (2016).

  • 58.

    Groendahl, S., Kahlert, M. & Fink, P. The best of both worlds: A combined approach for analyzing microalgal diversity via metabarcoding and morphology-based methods. PLoS ONE 12, 1–15, https://doi.org/10.1371/journal.pone.0172808 (2017).

  • 59.

    Zou, S. et al. How DNA barcoding can be more effective in microalgae identification: a case of cryptic diversity revelation in Scenedesmus (Chlorophyceae). Scientific Reports 6, 36822, https://doi.org/10.1038/srep36822 (2016).

  • 60.

    Yilmaz, P., Kottmann, R., Pruesse, E., Quast, C. & Glöckner, F. O. Analysis of 23S rRNA genes in metagenomes – A case study from the Global Ocean Sampling Expedition. Systematic and Applied Microbiology 34, 462–469, https://doi.org/10.1016/j.syapm.2011.04.005 (2011).

  • 61.

    Adl, S. M. et al. The revised classification of eukaryotes. Journal of Eukaryotic Microbiology 59, 429–493, https://doi.org/10.1111/j.1550-7408.2012.00644.x (2012).

  • 62.

    Guiry, M.D. & Guiry, G.M. AlgaeBase. World-wide electronic publication, National University of Ireland, Galway, http://www.algaebase.org; searched on 201 (2018).

  • 63.

    Jones, R. I. Mixotrophy in planktonic protists: an overview. Freshwater Biology 45, 219–226, https://doi.org/10.1046/j.1365-2427.2000.00672.x (2000).

    • Article
    • Google Scholar
  • 64.

    Parker, B. C. Facultative Heterotrophy in Certain Soil Algae from the Ecological Viewpoint. Ecology 42, 381–386, https://doi.org/10.2307/1932089 (1961).

    • Article
    • Google Scholar
  • 65.

    Starks, T., Shubert, L. & Trainor, F. Ecology of soil algae: a review. Phycologia 20, 65–80, https://doi.org/10.2216/i0031-8884-20-1-65.1 (1981).

    • Article
    • Google Scholar
  • 66.

    Porter, K. G. Phagotrophic phytoflagellates in microbial food webs. Hydrobiologia 159, 89–97, https://doi.org/10.1007/BF00007370 (1988).

    • Article
    • Google Scholar
  • 67.

    Rippka, R. Photoheterotrophy and chemoheterotrophy among unicellular blue-green algae. Archiv Für Mikrobiologie 87, 93–98, https://doi.org/10.1007/BF00424781 (1972).

    • Article
    • Google Scholar
  • 68.

    Kvíderová, J., Souquieres, C. E., & Elster, J. Ecophysiology of photosynthesis of Vaucheria sp. mats in a Svalbard tidal flat. Polar Science, https://doi.org/10.1016/j.polar.2018.11.006 (2018).

  • 69.

    Agrawal, S. C. Factors affecting spore germination in algae – review. Folia Microbiologica 54, 273–302, https://doi.org/10.1007/s12223-009-0047-0 (2009).

  • 70.

    Shields, L. M. & Durrell, L. W. Algae in relation to soil fertility. The Botanical Review 30, 92–128, https://doi.org/10.1007/BF02858614 (1964).

  • 71.

    Starks, T. L. & Shubert, L. E. Colonization and Succession of Algae and Soil-Algal Interactions Associated With Disturbed Areas. Journal of Phycology 18, 99–107, https://doi.org/10.1111/j.1529-8817.1982.tb03162.x (1982).

    • Article
    • Google Scholar
  • 72.

    Cannone, J. J. et al. The Comparative RNA Web (CRW) Site: An online database of comparative sequence and structure information for ribosomal, intron, and other RNAs. BMC Bioinformatics 3, 15, https://doi.org/10.1186/1471-2105-3-2 (2002).

    • Article
    • Google Scholar
  • 73.

    Kumar, S., Stecher, G. & Tamura, K. MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets. Molecular Biology and Evolution 33, 1870–1874, https://doi.org/10.1093/molbev/msw054 (2016).

  • 74.

    Felsenstein, J. Evolutionary trees from DNA sequences: A maximum likelihood approach. Journal of Molecular Evolution 17, 368–376, https://doi.org/10.1007/BF01734359 (1981).

  • 75.

    Nawrocki, E. P. & Eddy, S. R. Infernal 1.1: 100-fold faster RNA homology searches. Bioinformatics 29, 2933–2935, https://doi.org/10.1093/bioinformatics/btt509 (2013).

  • 76.

    Sauze, J. et al. The interaction of soil phototrophs and fungi with pH and their impact on soil CO2, CO18O and OCS exchange. Soil Biology and Biochemistry 115, 371–382, https://doi.org/10.1016/j.soilbio.2017.09.009 (2017).

  • 77.

    Terrat, S. et al. Mapping and predictive variations of soil bacterial richness across France. PLoS One 12, 5–8, https://doi.org/10.1371/journal.pone.0186766 (2017).

  • 78.

    Terrat, S. et al. Molecular biomass and MetaTaxogenomic assessment of soil microbial communities as influenced by soil DNA extraction procedure. Microbial. Biotechnology 5, 135–41, https://doi.org/10.1111/j.1751-7915.2011.00307.x (2012).

  • 79.

    Terrat, S. et al. Meta-barcoded evaluation of the ISO standard 11063 DNA extraction procedure to characterize soil bacterial and fungal community diversity and composition. Microbial Biotechnology 8, 131–142, https://doi.org/10.1111/1751-7915.12162 (2015).

  • 80.

    Kim, B.-R. et al. Deciphering Diversity Indices for a Better Understanding of Microbial Communities. J. Microbiol. Biotechnol. 27, 2089–2093, https://doi.org/10.4014/jmb.1709.09027, (2017).


  • Source: Ecology - nature.com

    Genetically similar temperate phages form coalitions with their shared host that lead to niche-specific fitness effects

    Explained: Cement vs. concrete — their differences, and opportunities for sustainability