in

A global assessment of the drivers of threatened terrestrial species richness

  • 1.

    Carvalho, S. B. et al. Spatial conservation prioritization of biodiversity spanning the evolutionary continuum. Nat. Ecol. Evol. 1, 151 (2017).

  • 2.

    CBD (Convention on Biological Diversity). Strategic Plan for Biodiversity 2011-2020, Including Aichi Biodiversity Targets: https://www.cbd.int/sp/. (2011).

  • 3.

    Pimm, S. L., Russell, G. J., Gittleman, J. L. & Brooks, T. M. The future of biodiversity. Science 269, 347 LP–347350 (1995).

  • 4.

    Tittensor, D. P. et al. A mid-term analysis of progress toward international biodiversity targets. Science 346, 241–244 (2014).

  • 5.

    Butchart, S. H. M. et al. Global biodiversity: indicators of recent declines. Science 328, 1164–1168 (2010).

  • 6.

    Watson, J. E. M. & Venter, O. A global plan for nature conservation. Nature 550, 48 (2017).

  • 7.

    Mace, G. M. et al. Aiming higher to bend the curve of biodiversity loss. Nat. Sustain. 1, 448–451 (2018).

    • Article
    • Google Scholar
  • 8.

    Arlidge, W. N. S. et al. A global mitigation hierarchy for nature conservation. Bioscience 68, 336–347 (2018).

  • 9.

    Pimm, S. L., Jenkins, C. N. & Li, B. V. How to protect half of Earth to ensure it protects sufficient biodiversity. Sci. Adv. 4, eaat2616 (2018).

  • 10.

    Brooks, T. M. et al. Global biodiversity conservation priorities. Science 313, 58 LP–58 61 (2006).

  • 11.

    Grenyer, R. et al. Global distribution and conservation of rare and threatened vertebrates. Nature 444, 93–96 (2006).

  • 12.

    Jenkins, C. N., Pimm, S. L. & Joppa, L. N. Global patterns of terrestrial vertebrate diversity and conservation. Proc. Natl. Acad. Sci. USA 110, E2602 LP–E2602610 (2013).

  • 13.

    Orme, C. D. L. et al. Global hotspots of species richness are not congruent with endemism or threat. Nature 436, 1016–1019 (2005).

  • 14.

    Pimm, S. L. et al. The biodiversity of species and their rates of extinction, distribution, and protection. Science. 344, 1246752 (2014).

  • 15.

    Veach, V., Di Minin, E., Pouzols, F. M. & Moilanen, A. Species richness as criterion for global conservation area placement leads to large losses in coverage of biodiversity. Divers. Distrib. 23, 715–726 (2017).

    • Article
    • Google Scholar
  • 16.

    Roll, U. et al. The global distribution of tetrapods reveals a need for targeted reptile conservation. Nat. Ecol. Evol. 1, 1677–1682 (2017).

  • 17.

    Westgate, M. J., Barton, P. S., Lane, P. W. & Lindenmayer, D. B. Global meta-analysis reveals low consistency of biodiversity congruence relationships. Nat. Commun. 5, 3899 (2014).

  • 18.

    Le Saout, S. et al. Protected areas and effective biodiversity conservation. Science 342, 803 LP–803805 (2013).

  • 19.

    Tilman, D. et al. Future threats to biodiversity and pathways to their prevention. Nature 546, 73 (2017).

  • 20.

    Di Marco, M., Venter, O., Possingham, H. P. & Watson, J. E. M. Changes in human footprint drive changes in species extinction risk. Nat. Commun. 9, 4621 (2018).

  • 21.

    Cardillo, M. et al. Human population density and extinction risk in the world’s carnivores. PLoS Biol. 2, e197 (2004).

  • 22.

    Pacifici, M. et al. Species/’ traits influenced their response to recent climate change. Nat. Clim. Change 7, 205–208 (2017).

  • 23.

    Davies, R. G. et al. Human impacts and the global distribution of extinction risk. Proc. R. Soc. B Biol. Sci. 273, 2127 LP–2122133 (2006).

    • Article
    • Google Scholar
  • 24.

    Hawkins, B. A. et al. Energy, water, and broad-scale geographic patterns of species richness. Ecology 84, 3105–3117 (2003).

    • Article
    • Google Scholar
  • 25.

    Rohde, K. Latitudinal gradients in species diversity: the search for the primary cause. Oikos 65, 514–527 (1992).

    • Article
    • Google Scholar
  • 26.

    Stein, A., Gerstner, K. & Kreft, H. Environmental heterogeneity as a universal driver of species richness across taxa, biomes and spatial scales. Ecol. Lett. 17, 866–880 (2014).

  • 27.

    Mittelbach, G. et al. Evolution and the latitudinal diversity gradient: speciation, extinction and biogeography. Ecol. Lett. 10, 315–331 (2007).

  • 28.

    Howard, C., Flather, C. H. & A. Stephens, P. What drives at-risk species richness? Environmental factors are more influential than anthropogenic factors or biological traits. Conserv. Lett. 12, e12624 (2018).

    • Google Scholar
  • 29.

    Holt, B. G. et al. An update of Wallace’s zoogeographic regions of the world. Science 339, 74 LP–74 78 (2013).

  • 30.

    Kier, G. et al. A global assessment of endemism and species richness across island and mainland regions. Proc. Natl. Acad. Sci. USA 106, 9322–9327 (2009).

  • 31.

    Kerr, J. T. & Currie, D. J. Effects of human activity on global extinction risk. Conserv. Biol. 9, 1528–1538 (2018).

    • Article
    • Google Scholar
  • 32.

    Luck, G. W. The relationships between net primary productivity, human population density and species conservation. J. Biogeogr. 34, 201–212 (2007).

    • Article
    • Google Scholar
  • 33.

    Vamosi, J. C. & Vamosi, S. M. Extinction risk escalates in the tropics. PLoS One 3, e3886 (2008).

  • 34.

    Chown, S. L., van Rensburg, B. J., Gaston, K. J., Ana, S. L. R. & van Jaarsveld, A. S. Energy, species richness, and human population size: conservation implications at a national scale. Ecol. Appl. 13, 1233–1241 (2003).

    • Article
    • Google Scholar
  • 35.

    Weir, J. T. & Schluter, D. The latitudinal gradient in recent speciation and extinction rates of birds and mammals. Science 315, 1574 LP–1571576 (2007).

  • 36.

    Greenberg, D. A. & Mooers, A. Ø. Linking speciation to extinction: diversification raises contemporary extinction risk in amphibians. Evol. Lett. 1, 40–48 (2017).

  • 37.

    Davies, T. J. et al. Extinction risk and diversification are linked in a plant biodiversity hotspot. PLoS Biol. 9, e1000620 (2011).

  • 38.

    Wilcove, D. S., Rothstein, D., Dubow, J., Phillips, A. & Losos, E. Quantifying threats to imperiled species in the United States: Assessing the relative importance of habitat destruction, alien species, pollution, overexploitation, and disease. Bioscience 48, 607–615 (1998).

    • Article
    • Google Scholar
  • 39.

    Flather, C. H., Knowles, M. S. & Kendall, I. A. Threatened and endangered species geography. Bioscience 48, 365–376 (1998).

    • Article
    • Google Scholar
  • 40.

    Bellard, C., Cassey, P. & Blackburn, T. M. Alien species as a driver of recent extinctions. Biol. Lett. 12, 20150623 (2016).

  • 41.

    Ducatez, S. & Shine, R. Drivers of extinction risk in terrestrial vertebrates. Conserv. Lett. https://doi.org/10.1111/conl.12258 (2017).

    • Article
    • Google Scholar
  • 42.

    Scheele, B. C. et al. Amphibian fungal panzootic causes catastrophic and ongoing loss of biodiversity. Science 363, 1459 LP–1451463 (2019).

  • 43.

    Bairlein, F. Migratory birds under threat. Science 354, 547 LP–547548 (2016).

  • 44.

    Harrison, S., Viers, J. H., Thorne, J. H. & Grace, J. B. Favorable environments and the persistence of naturally rare species. Conserv. Lett. 1, 65–74 (2008).

    • Article
    • Google Scholar
  • 45.

    Arita, H. T. & Rodríguez, P. Local-regional relationships and the geographical distribution of species. Glob. Ecol. Biogeogr. 13, 15–21 (2004).

    • Article
    • Google Scholar
  • 46.

    Thuiller, W., Araujo, M. B. & Lavorel, S. Do we need land-cover data to model species distributions in Europe? J. Biogeogr. 31, 353–361 (2004).

    • Article
    • Google Scholar
  • 47.

    Keil, P. et al. Spatial scaling of extinction rates: Theory and data reveal nonlinearity and a major upscaling and downscaling challenge. Glob. Ecol. Biogeogr. 27, 2–13 (2018).

    • Article
    • Google Scholar
  • 48.

    Mace, G. M. et al. Quantification of extinction risk: IUCN’s System for classifying threatened species. Conserv. Biol. 22, 1424–1442 (2008).

  • 49.

    IUCN. The IUCN Red List of Threatened Species Version 2016-1. http://www.iucnredlist.org (2016).

  • 50.

    Collen, B., Ram, M., Zamin, T. & McRae, L. The tropical biodiversity data gap: addressing disparity in global monitoring. Trop. Conserv. Sci. 1, 75–88 (2008).

    • Article
    • Google Scholar
  • 51.

    Colwell, R. K. & Lees, D. C. The mid-domain effect: geometric constraints on the geography of species richness. Trends Ecol. Evol. 15, 70–76 (2000).

  • 52.

    Khatiwada, J. R. et al. Amphibian community structure along elevation gradients in eastern Nepal Himalaya. BMC Ecol. 19, 19 (2019).

  • 53.

    Kluge, J., Kessler, M. & Dunn, R. R. What drives elevational patterns of diversity? A test of geometric constraints, climate and species pool effects for pteridophytes on an elevational gradient in Costa Rica. Glob. Ecol. Biogeogr. 15, 358–371 (2006).

    • Article
    • Google Scholar
  • 54.

    Pautasso, M. Scale dependence of the correlation between human population presence and vertebrate and plant species richness. Ecol. Lett. 10, 16–24 (2007).

  • 55.

    Polaina, E., González-Suárez, M., Kuemmerle, T., Kehoe, L. & Revilla, E. From tropical shelters to temperate defaunation: The relationship between agricultural transition stage and the distribution of threatened mammals. Glob. Ecol. Biogeogr. 27, 647–657 (2018).

    • Article
    • Google Scholar
  • 56.

    Whittaker, R. J. & Fernández-Palacios, J. M. Island biogeography: ecology, evolution, and conservation (Oxford University Press, 2007).

  • 57.

    Rosenzweig, M. L., L, R. M. & Press, C. U. Species Diversity in Space and Time (Cambridge University Press, 1995).

  • 58.

    BirdLife International and NatureServe. Bird species distribution maps of the world. Version 6.0. (BirdLife International, Cambridge, UK, 2016).

    • Google Scholar
  • 59.

    Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G. & Jarvis, A. Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol. 25, 1965–1978 (2005).

    • Article
    • Google Scholar
  • 60.

    Danielson, J. J. & Gesch, D. B. Global multi-resolution terrain elevation data 2010 (GMTED2010). (2011).

  • 61.

    Magurran, A. E. Measuring biological diversity. (Wiley, 2013).

  • 62.

    Singarayer, J. S. & Valdes, P. J. High-latitude climate sensitivity to ice-sheet forcing over the last 120 kyr. Quat. Sci. Rev. 29, 43–55 (2010).

  • 63.

    Davies-Barnard, T., Ridgwell, A., Singarayer, J. & Valdes, P. Quantifying the influence of the terrestrial biosphere on glacial–interglacial climate dynamics. Clim 13, 1381–1401 (2017).

    • ADS
    • Google Scholar
  • 64.

    Voskamp, A., Baker, D. J., Stephens, P. A., Valdes, P. J. & Willis, S. G. Global patterns in the divergence between phylogenetic diversity and species richness in terrestrial birds. J. Biogeogr. 44, 709–721 (2017).

    • Article
    • Google Scholar
  • 65.

    Arino, O. et al. GlobCover: ESA service for global land cover from MERIS. in 2007 IEEE international geoscience and remote sensing symposium 2412–2415 (IEEE, 2007).

  • 66.

    Radeloff, V. C. et al. Housing growth in and near United States protected areas limits their conservation value. Proc. Natl. Acad. Sci. USA 107, 940–945 (2010).

  • 67.

    Ramankutty, N. & Foley, J. A. Estimating historical changes in global land cover: croplands from 1700 to 1992. Glob. Biogeochem. Cycles 13, 997–1027 (1999).

  • 68.

    Turbelin, A. J., Malamud, B. D. & Francis, R. A. Mapping the global state of invasive alien species: patterns of invasion and policy responses. Glob. Ecol. Biogeogr. 26, 78–92 (2017).

    • Article
    • Google Scholar
  • 69.

    Breiman, L. Random forests. Mach. Learn. 45, 5–32 (2001).

  • 70.

    Liaw, A. & Wiener, M. Classification and regression by randomForest. R News 2, (2002).

  • 71.

    R Core Team. R: A language and environment for statistical computing. (2019).

  • 72.

    Freckleton, R. P. On the misuse of residuals in ecology: regression of residuals vs. multiple regression. J. Anim. Ecol. 71, 542–545 (2002).

    • Article
    • Google Scholar
  • 73.

    Araújo, M. B. & Guisan, A. Five (or so) challenges for species distribution modelling. J. Biogeogr. 33, 1677–1688 (2006).

    • Article
    • Google Scholar
  • 74.

    Bagchi, R. et al. Evaluating the effectiveness of conservation site networks under climate change: accounting for uncertainty. Glob. Chang. Biol. 19, 1236–1248 (2013).

  • 75.

    Olson, D. M. et al. Terrestrial ecoregions of the world: A new map of life on earth. Bioscience 51, 933–938 (2001).

    • Article
    • Google Scholar
  • 76.

    Moore, R. T. blockTools: Blocking, assignment, and diagnosing interference in randomized experiments. R package version 0.6-1. (2014).

  • 77.

    Hijmans, R. J. Cross‐validation of species distribution models: removing spatial sorting bias and calibration with a null model. Ecology 93, 679–688 (2012).

  • 78.

    Cohen, J. Statistical power analysis for the behavioral sciences (L. Erlbaum Associates, 1988).

  • 79.

    Ishwaran, H. Variable importance in binary regression trees and forests. Electron. J. Stat. 1, 519–537 (2007).

  • 80.

    Jetz, W. & Freckleton, R. P. Towards a general framework for predicting threat status of data-deficient species from phylogenetic, spatial and environmental information. Philos. Trans. R. Soc. B Biol. Sci. 370, 20140016 (2015).

    • Article
    • Google Scholar
  • 81.

    Jenks, G. F. Visualizing statistical distributions and generalizing process. in Annals of the Association of American Geographers vol. 57 179 (Blackwell, 1967).


  • Source: Ecology - nature.com

    Biodiversity theory backed by island bird data

    Short-term flooding increases CH4 and N2O emissions from trees in a riparian forest soil-stem continuum