in

A guide to ecosystem models and their environmental applications

  • 1.

    Lindenmayer, D. et al. The complementarity of single-species and ecosystem-oriented research in conservation research. Oikos 116, 1220–1226 (2007).

    Google Scholar 

  • 2.

    Skern-Mauritzen, M. et al. Ecosystem processes are rarely included in tactical fisheries management. Fish Fish. 17, 165–175 (2016).

    Google Scholar 

  • 3.

    Geary, W. L., Nimmo, D. G., Doherty, T. S., Ritchie, E. G. & Tulloch, A. I. T. Threat webs: reframing the co‐occurrence and interactions of threats to biodiversity. J. Appl. Ecol. 56, https://doi.org/10.1111/1365-2664.13427 (2019).

  • 4.

    Buckley, Y. M. & Han, Y. Managing the side effects of invasion control. Science 344, 975–976 (2014).

    CAS  Google Scholar 

  • 5.

    Zavaleta, E. S., Hobbs, R. J. & Mooney, H. A. Viewing invasive species removal in a whole-ecosystem context. Trends Ecol. Evol. 16, 454–459 (2001).

    Google Scholar 

  • 6.

    DeFries, R. & Nagendra, H. Ecosystem management as a wicked problem. Science 356, 265–270 (2017).

    CAS  Google Scholar 

  • 7.

    Carpenter, S. R. et al. Early warnings of regime shifts: a whole-ecosystem experiment. Science 332, 1079 (2011).

    CAS  Google Scholar 

  • 8.

    Evans, M. C., Davila, F., Toomey, A. & Wyborn, C. Embrace complexity to improve conservation decision making. Nat. Ecol. Evol. 1, 1588 (2017).

    Google Scholar 

  • 9.

    Dorresteijn, I. et al. Incorporating anthropogenic effects into trophic ecology: predator–prey interactions in a human-dominated landscape. Proc. R. Soc. B, https://doi.org/10.1098/rspb.2015.1602 (2015).

  • 10.

    Didham, R. K., Tylianakis, J. M., Gemmell, N. J., Rand, T. A. & Ewers, R. M. Interactive effects of habitat modification and species invasion on native species decline. Trends Ecol. Evol. 22, 489–496 (2007).

    Google Scholar 

  • 11.

    Brown, C. J., Saunders, M. I., Possingham, H. P. & Richardson, A. J. Managing for interactions between local and global stressors of ecosystems. PLoS ONE 8, e65765 (2013).

    CAS  PubMed Central  PubMed  Google Scholar 

  • 12.

    Peters, D. P. C. & Okin, G. S. A Toolkit for ecosystem ecologists in the time of big science. Ecosystems 20, 259–266 (2017).

    Google Scholar 

  • 13.

    Fulton, E. A. Approaches to end-to-end ecosystem models. J. Mar. Syst. 81, 171–183 (2010).

    Google Scholar 

  • 14.

    Waltner-Toews, D., Kay James, J., Neudoerffer, C. & Gitau, T. Perspective changes everything: managing ecosystems from the inside out. Front. Ecol. Environ. 1, 23–30 (2003).

    Google Scholar 

  • 15.

    Evans, M. R., Norris, K. J. & Benton, T. G. Predictive ecology: systems approaches. Philos. Trans. R. Soc. B 367, 163–169 (2012).

    Google Scholar 

  • 16.

    Smith, A. D. M., Fulton, E. J., Hobday, A. J., Smith, D. C. & Shoulder, P. Scientific tools to support the practical implementation of ecosystem-based fisheries management. ICES J. Mar. Sci. 64, 633–639 (2007).

    Google Scholar 

  • 17.

    Baker, C. M. et al. A novel approach to assessing the ecosystem-wide impacts of reintroductions. Ecol. Appl. 29, https://doi.org/10.1002/eap.1811 (2018).

  • 18.

    Purves, D. et al. Ecosystems: time to model all life on Earth. Nature 493, 295 (2013).

    CAS  Google Scholar 

  • 19.

    Sutherland, W. J. Predicting the ecological consequences of environmental change: a review of the methods. J. Appl. Ecol. 43, 599–616 (2006).

    Google Scholar 

  • 20.

    Seidl, R. To model or not to model, that is no longer the question for ecologists. Ecosystems 20, 222–228 (2017).

    PubMed Central  PubMed  Google Scholar 

  • 21.

    Rastetter, E. B. Modeling for understanding v. modeling for numbers. Ecosystems 20, 215–221 (2017).

    Google Scholar 

  • 22.

    Yates, K. L. et al. Outstanding challenges in the transferability of ecological models. Trends Ecol. Evol. 33, 790–802 (2018).

    Google Scholar 

  • 23.

    Schweiger, E. W., Grace, J. B., Cooper, D., Bobowski, B. & Britten, M. Using structural equation modeling to link human activities to wetland ecological integrity. Ecosphere 7, e01548 (2016).

    Google Scholar 

  • 24.

    Evans, M. R. Modelling ecological systems in a changing world. Philos. Trans. R. Soc. B 367, 181–190 (2012).

    Google Scholar 

  • 25.

    Fulton, E. A., Smith, A. D. M. & Johnson, C. R. Effect of complexity on marine ecosystem models. Mar. Ecol. Prog. Ser. 253, 1–16 (2003).

    Google Scholar 

  • 26.

    Lotze, H. K. et al. Global ensemble projections reveal trophic amplification of ocean biomass declines with climate change. Proc. Natl Acad. Sci. USA 116, 12097–12912 (2019).

    Google Scholar 

  • 27.

    Lindenmayer, D. et al. A checklist for ecological management of landscapes for conservation. Ecol. Lett. 11, 78–91 (2007).

    Google Scholar 

  • 28.

    Guillera-Arroita, G. et al. Is my species distribution model fit for purpose? Matching data and models to applications. Glob. Ecol. Biogeogr. 24, 276–292 (2015).

    Google Scholar 

  • 29.

    Levins, R. The strategy of model building in population biology. Am. Sci. 54, 421–431 (1966).

    Google Scholar 

  • 30.

    Dambacher, J. M., Li, H. W. & Rossignol, P. A. Qualitative predictions in model ecosystems. Ecol. Model. 161, 79–93 (2003).

    Google Scholar 

  • 31.

    Baker, C. M., Holden, M. H., Plein, M., McCarthy, M. A. & Possingham, H. P. Informing network management using fuzzy cognitive maps. Biol. Conserv. 224, 122–128 (2018).

    Google Scholar 

  • 32.

    Dexter, N., Ramsey, D. S., MacGregor, C. & Lindenmayer, D. Predicting ecosystem wide impacts of wallaby management using a fuzzy cognitive map. Ecosystems 15, 1363–1379 (2012).

    Google Scholar 

  • 33.

    Dakos, V. & Bascompte, J. Critical slowing down as early warning for the onset of collapse in mutualistic communities. Proc. Natl Acad. Sci. USA 111, 17546–17551 (2014).

    CAS  PubMed  Google Scholar 

  • 34.

    McDonald-Madden, E. et al. Using food-web theory to conserve ecosystems. Nat. Commun. 7, 10245 (2016).

    CAS  PubMed Central  PubMed  Google Scholar 

  • 35.

    Harfoot, M. B. et al. Emergent global patterns of ecosystem structure and function from a mechanistic general ecosystem model. PLoS Biol. 12, e1001841 (2014).

    PubMed Central  PubMed  Google Scholar 

  • 36.

    Fulton, E. A. et al. Lessons in modelling and management of marine ecosystems: the Atlantis experience. Fish Fish. 12, 171–188 (2011).

    Google Scholar 

  • 37.

    Priester, C. R., Melbourne-Thomas, J., Klocker, A. & Corney, S. Abrupt transitions in dynamics of a NPZD model across Southern Ocean fronts. Ecol. Model. 359, 372–382 (2017).

    CAS  Google Scholar 

  • 38.

    McCann, R. K., Marcot, B. G. & Ellis, R. Bayesian belief networks: applications in ecology and natural resource management. Can. J. Res. 36, 3053–3062 (2006).

    Google Scholar 

  • 39.

    Bode, M. et al. Revealing beliefs: using ensemble ecosystem modelling to extrapolate expert beliefs to novel ecological scenarios. Methods Ecol. Evol. 8, 1012–1021 (2017).

    Google Scholar 

  • 40.

    Lester, R. E. & Fairweather, P. G. Ecosystem states: creating a data-derived, ecosystem-scale ecological response model that is explicit in space and time. Ecol. Model. 222, 2690–2703 (2011).

    CAS  Google Scholar 

  • 41.

    Lester, R. E., Fairweather, P. G., Webster, I. T. & Quin, R. A. Scenarios involving future climate and water extraction: ecosystem states in the estuary of Australia’s largest river. Ecol. Appl. 23, 984–998 (2013).

    PubMed  Google Scholar 

  • 42.

    Dubois, D. M. A model of patchiness for prey–predator plankton populations. Ecol. Model. 1, 67–80 (1975).

    Google Scholar 

  • 43.

    Pauly, D., Christensen, V. & Walters, C. Ecopath, Ecosim, and Ecospace as tools for evaluating ecosystem impact of fisheries. ICES J. Mar. Sci. 57, 697–706 (2000).

    Google Scholar 

  • 44.

    Fulton, E. A., Smith, A. D., Smith, D. C. & Johnson, P. An integrated approach is needed for ecosystem based fisheries management: insights from ecosystem-level management strategy evaluation. Plos ONE 9, e84242 (2014).

    PubMed Central  PubMed  Google Scholar 

  • 45.

    Tulloch, V. J. D., Plagányi, É. E., Brown, C., Richardson, A. J. & Matear, R. Future recovery of baleen whales is imperiled by climate change. Glob. Change Biol. 25, 1263–1281 (2019).

    Google Scholar 

  • 46.

    Rodríguez, J. P. et al. A practical guide to the application of the IUCN Red List of Ecosystems criteria. Philos. Trans. R. Soc. B 370, 20140003 (2015).

    Google Scholar 

  • 47.

    Crabtree, S. A., Bird, D. W. & Bird, R. B. Subsistence transitions and the simplification of ecological networks in the Western Desert of Australia. Hum. Ecol. 47, https://doi.org/10.1007/s10745-019-0053-z (2019).

  • 48.

    Planque, B. Projecting the future state of marine ecosystems, “la grande illusion”? ICES J. Mar. Sci. 73, 204–208 (2015).

    Google Scholar 

  • 49.

    Walters, C. & Maguire, J.-J. Lessons for stock assessment from the northern cod collapse. Rev. Fish. Biol. Fish. 6, 125–137 (1996).

    Google Scholar 

  • 50.

    García-Díaz, P. et al. A concise guide to developing and using quantitative models in conservation management. Conserv. Sci. Pract. 1, e11 (2019).

    PubMed Central  PubMed  Google Scholar 

  • 51.

    Morse, N. et al. Novel ecosystems in the Anthropocene: a revision of the novel ecosystem concept for pragmatic applications. Ecol. Soc. 19, https://doi.org/10.5751/ES-06192-190212 (2014).

  • 52.

    Fulton, E. & Gorton, R. Adaptive Futures for SE Australian Fisheries & Aquaculture: Climate Adaptation Simulations (FRDC/CSIRO, 2014).

  • 53.

    Kurz, W. A. et al. Mountain pine beetle and forest carbon feedback to climate change. Nature 452, 987 (2008).

    CAS  Google Scholar 

  • 54.

    Plagányi, É. E. Models for an Ecosystem Approach to Fisheries (FAO, 2007).

  • 55.

    Hunter, D. O., Britz, T., Jones, M. & Letnic, M. Reintroduction of Tasmanian devils to mainland Australia can restore top-down control in ecosystems where dingoes have been extirpated. Biol. Conserv. 191, 428–435 (2015).

    Google Scholar 

  • 56.

    Baker, C., Bode, M. & McCarthy, M. Models that predict ecosystem impacts of reintroductions should consider uncertainty and distinguish between direct and indirect effects. Biol. Conserv. 196, 211–212 (2016).

    Google Scholar 

  • 57.

    Bunnefeld, N., Hoshino, E. & Milner-Gulland, E. J. Management strategy evaluation: a powerful tool for conservation? Trends Ecol. Evol. 26, 441–447 (2011).

    Google Scholar 

  • 58.

    Morello, E. B. et al. Model to manage and reduce crown-of-thorns starfish outbreaks. Mar. Ecol. Prog. Ser. 512, 167–183 (2014).

    Google Scholar 

  • 59.

    Punt, A. E., Butterworth, D. S., de Moor, C. L., De Oliveira, J. A. A. & Haddon, M. Management strategy evaluation: best practices. Fish Fish. 17, 303–334 (2016).

    Google Scholar 

  • 60.

    Edwards, C. T. T., Bunnefeld, N., Balme, G. A. & Milner-Gulland, E. J. Data-poor management of African lion hunting using a relative index of abundance. Proc. Natl Acad. Sci. USA 111, 539–543 (2014).

    CAS  Google Scholar 

  • 61.

    Mapstone, B. et al. Management strategy evaluation for line fishing in the Great Barrier Reef: balancing conservation and multi-sector fishery objectives. Fish. Res. 94, 315–329 (2008).

    Google Scholar 

  • 62.

    Roemer, G. W., Donlan, C. J. & Courchamp, F. Golden eagles, feral pigs, and insular carnivores: how exotic species turn native predators into prey. Proc. Natl Acad. Sci. USA 99, 791–796 (2002).

    CAS  Google Scholar 

  • 63.

    Lurgi, M., Ritchie, E. G. & Fordham, D. A. Eradicating abundant invasive prey could cause unexpected and varied biodiversity outcomes: the importance of multispecies interactions. J. Appl. Ecol. 55, 2396–2407 (2018).

    Google Scholar 

  • 64.

    Raymond, B., McInnes, J., Dambacher, J. M., Way, S. & Bergstrom, D. M. Qualitative modelling of invasive species eradication on subantarctic Macquarie Island. J. Appl. Ecol. 48, 181–191 (2011).

    Google Scholar 

  • 65.

    Levins, R. Discussion paper: the qualitative analysis of partially specified systems. Ann. NY Acad. Sci. 231, 123–138 (1974).

    CAS  Google Scholar 

  • 66.

    Baker, C. M., Gordon, A. & Bode, M. Ensemble ecosystem modeling for predicting ecosystem response to predator reintroduction. Conserv. Biol. 31, 376–384 (2017).

    Google Scholar 

  • 67.

    Amstrup, S. C. et al. Greenhouse gas mitigation can reduce sea-ice loss and increase polar bear persistence. Nature 468, 955–958 (2010).

    CAS  Google Scholar 

  • 68.

    Trifonova, N., Maxwell, D., Pinnegar, J., Kenny, A. & Tucker, A. Predicting ecosystem responses to changes in fisheries catch, temperature, and primary productivity with a dynamic Bayesian network model. ICES J. Mar. Sci. 74, 1334–1343 (2017).

    Google Scholar 

  • 69.

    McCarthy, M. A., Andelman, S. J. & Possingham, H. P. Reliability of relative predictions in population viability analysis. Conserv. Biol. 17, 982–989 (2003).

    Google Scholar 

  • 70.

    Jamiyansharav, K., Fernández-Giménez, M. E., Angerer, J. P., Yadamsuren, B. & Dash, Z. Plant community change in three Mongolian steppe ecosystems 1994–2013: applications to state-and-transition models. Ecosphere 9, https://doi.org/10.1002/ecs2.2145 (2018).

  • 71.

    Rayner, M. J., Hauber, M. E., Imber, M. J., Stamp, R. K. & Clout, M. N. Spatial heterogeneity of mesopredator release within an oceanic island system. Proc. Natl Acad. Sci. USA 104, 20862–20865 (2007).

    CAS  Google Scholar 

  • 72.

    Melbourne-Thomas, J. et al. Regional‐scale scenario modeling for coral reefs: a decision support tool to inform management of a complex system. Ecol. Appl. 21, 1380–1398 (2011).

    Google Scholar 

  • 73.

    Briscoe, N. J. et al. Forecasting species range dynamics with process-explicit models: matching methods to applications. Ecol. Lett. 22, 1940–1956 (2019).

    Google Scholar 

  • 74.

    Fordham, D. A. et al. Adapted conservation measures are required to save the Iberian lynx in a changing climate. Nat. Clim. Change 3, 899–903 (2013).

    Google Scholar 

  • 75.

    Fedriani, J. M. et al. Assisting seed dispersers to restore oldfields: an individual‐based model of the interactions among badgers, foxes and Iberian pear trees. J. Appl. Ecol. 55, 600–611 (2018).

    Google Scholar 

  • 76.

    Breckling, B., Müller, F., Reuter, H., Hölker, F. & Fränzle, O. Emergent properties in individual-based ecological models—introducing case studies in an ecosystem research context. Ecol. Model. 186, 376–388 (2005).

    Google Scholar 

  • 77.

    Grimm, V., Ayllón, D. & Railsback, S. F. Next-generation individual-based models integrate biodiversity and ecosystems: yes we can, and yes we must. Ecosystems 20, 229–236 (2017).

    Google Scholar 

  • 78.

    Walters, C., Christensen, V. & Pauly, D. Structuring dynamic models of exploited ecosystems from trophic mass-balance assessments. Rev. Fish. Biol. Fish. 7, 139–172 (1997).

    Google Scholar 

  • 79.

    Pachzelt, A., Rammig, A., Higgins, S. & Hickler, T. Coupling a physiological grazer population model with a generalized model for vegetation dynamics. Ecol. Model. 263, 92–102 (2013).

    Google Scholar 

  • 80.

    Pimm, S. L., Lawton, J. H. & Cohen, J. E. Food web patterns and their consequences. Nature 350, 669–674 (1991).

    Google Scholar 

  • 81.

    Bodini, A. Reconstructing trophic interactions as a tool for understanding and managing ecosystems: application to a shallow eutrophic lake. Can. J. Fish. Aquat. Sci. 57, 1999–2009 (2000).

    Google Scholar 

  • 82.

    Greenville, A. C., Wardle, G. M. & Dickman, C. R. Desert mammal populations are limited by introduced predators rather than future climate change. R. Soc. Open Sci. 4, https://doi.org/10.1098/rsos.170384 (2017).

  • 83.

    Pasanen‐Mortensen, M. et al. The changing contribution of top-down and bottom-up limitation of mesopredators during 220 years of land use and climate change. J. Anim. Ecol. 86, 566–576 (2017).

    Google Scholar 

  • 84.

    Vitousek, P. M., Mooney, H. A., Lubchenco, J. & Melillo, J. M. Human domination of Earth’s ecosystems. Science 277, 494–499 (1997).

    CAS  Google Scholar 

  • 85.

    Bliege Bird, R. & Nimmo, D. Restore the lost ecological functions of people. Nat. Ecol. Evol. 2, https://doi.org/10.1038/s41559-018-0576-5 (2018).

  • 86.

    Côté, I. M., Darling, E. S. & Brown, C. J. Interactions among ecosystem stressors and their importance in conservation. Proc. R. Soc. B 283, 20152592 (2016).

    Google Scholar 

  • 87.

    Kuijper, D. et al. Paws without claws? Ecological effects of large carnivores in anthropogenic landscapes. Proc. R. Soc. B 283, 20161625 (2016).

    Google Scholar 

  • 88.

    Moran, D., Laycock, H. & White, P. C. L. The role of cost-effectiveness analysis in conservation decision-making. Biol. Conserv. 143, 826–827 (2010).

    Google Scholar 

  • 89.

    Evans, M. R. et al. Predictive systems ecology. Proc. R. Soc. B 280, https://doi.org/10.1098/rspb.2013.1452 (2013).

  • 90.

    Adams, M. P. et al. Informing management decisions for ecological networks, using dynamic models calibrated to noisy time-series data. Ecol. Lett. 23, 607–619 (2020).

    Google Scholar 

  • 91.

    Plagányi, É. E. et al. Multispecies fisheries management and conservation: tactical applications using models of intermediate complexity. Fish Fish. 15, 1–22 (2014).

    Google Scholar 

  • 92.

    Hui, C. & Richardson, D. M. How to invade an ecological network. Trends Ecol. Evol. 34, 121–131 (2018).

    Google Scholar 

  • 93.

    Chadès, I., Curtis, J. M. R. & Martin, T. G. Setting realistic recovery targets for two interacting endangered species, sea otter and northern abalone. Conserv. Biol. 26, 1016–1025 (2012).

    Google Scholar 

  • 94.

    Pesendorfer, M. et al. Oak habitat recovery on California’s largest islands: scenarios for the role of corvid seed dispersal. J. Appl. Ecol. 55, 1185–1194 (2017).

    Google Scholar 

  • 95.

    Schuwirth, N. et al. How to make ecological models useful for environmental management. Ecol. Model. 411, 108784 (2019).

    Google Scholar 

  • 96.

    Davis, K. J., Chadès, I., Rhodes, J. R. & Bode, M. General rules for environmental management to prioritise social–ecological systems research based on a value of information approach. J. Appl. Ecol. 56, https://doi.org/10.1111/1365-2664.13425 (2019).

  • 97.

    Mokany, K. et al. Integrating modelling of biodiversity composition and ecosystem function. Oikos 125, 10–19 (2015).

    Google Scholar 

  • 98.

    Tulloch, A. I. T., Chadès, I. & Lindenmayer, D. B. Species co-occurrence analysis predicts management outcomes for multiple threats. Nat. Ecol. Evol. 2, 465–474 (2018).

    Google Scholar 

  • 99.

    Lohr, C. A. et al. Modeling dynamics of native and invasive species to guide prioritization of management actions. Ecosphere 8, e01822 (2017).

    Google Scholar 

  • 100.

    Nicol, S., Fuller Richard, A., Iwamura, T. & Chadès, I. Adapting environmental management to uncertain but inevitable change. Proc. R. Soc. B 282, 20142984 (2015).

    Google Scholar 

  • 101.

    Blanchard, J. L., Heneghan, R. F., Everett, J. D., Trebilco, R. & Richardson, A. J. From bacteria to whales: using functional size spectra to model marine ecosystems. Trends Ecol. Evol. 32, 174–186 (2017).

    Google Scholar 

  • 102.

    Andersen, K. H., Jacobsen, N. S. & Farnsworth, K. D. The theoretical foundations for size spectrum models of fish communities. Can. J. Fish. Aquat. Sci. 73, 575–588 (2015).

    Google Scholar 

  • 103.

    Nicol, S., Sabbadin, R., Peyrard, N. & Chadès, I. Finding the best management policy to eradicate invasive species from spatial ecological networks with simultaneous actions. J. Appl. Ecol. 54, 1989–1999 (2017).

    Google Scholar 

  • 104.

    Milner‐Gulland, E. J., Shea, K. & Punt, A. Embracing uncertainty in applied ecology. J. Appl. Ecol. 54, 2063–2068 (2017).

    PubMed Central  PubMed  Google Scholar 

  • 105.

    Dietze, M. C. et al. Iterative near-term ecological forecasting: needs, opportunities, and challenges. Proc. Natl Acad. Sci. USA 115, 1424–1432 (2018).

    CAS  Google Scholar 

  • 106.

    Gregr, E. J. & Chan, K. M. A. Leaps of faith: how implicit assumptions compromise the utility of ecosystem models for decision-making. BioScience 65, 43–54 (2015).

    Google Scholar 

  • 107.

    Hill, S. L. et al. Model uncertainty in the ecosystem approach to fisheries. Fish Fish. 8, 315–336 (2007).

    Google Scholar 

  • 108.

    Spence, M. A. et al. A general framework for combining ecosystem models. Fish Fish. 19, 1031–1042 (2018).

    Google Scholar 

  • 109.

    Wood, S. N. & Thomas, M. B. Super-sensitivity to structure in biological models. Proc. R. Soc. B 266, 565–570 (1999).

    Google Scholar 

  • 110.

    Runge, M. C., Converse, S. J. & Lyons, J. E. Which uncertainty? Using expert elicitation and expected value of information to design an adaptive program. Biol. Conserv. 144, 1214–1223 (2011).

    Google Scholar 

  • 111.

    Bal, P. et al. Quantifying the value of monitoring species in multi‐species, multi‐threat systems. Methods Ecol. Evol. 9, 1706–1717 (2018).

    Google Scholar 

  • 112.

    Fulton, E. A., Blanchard, J. L., Melbourne-Thomas, J., Plagányi, É. E. & Tulloch, V. J. D. Where the ecological gaps remain, a modelers’ perspective. Front. Ecol. Evol. 7, 424 (2019).

    Google Scholar 

  • 113.

    Wallach, A. D. et al. Trophic cascades in 3D: network analysis reveals how apex predators structure ecosystems. Methods Ecol. Evol. 8, 135–142 (2017).

    Google Scholar 

  • 114.

    Ruscoe, W. A. et al. Unexpected consequences of control: competitive vs. predator release in a four‐species assemblage of invasive mammals. Ecol. Lett. 14, 1035–1042 (2011).

    Google Scholar 

  • 115.

    Bower, S. D. et al. Making tough choices: picking the appropriate conservation decision‐making tool. Conserv. Lett. 11, e12418 (2017).

    Google Scholar 

  • 116.

    Stouffer, D. B. All ecological models are wrong, but some are useful. J. Anim. Ecol. 88, 192–195 (2019).

    Google Scholar 

  • 117.

    Olsen, E. et al. Ecosystem model skill assessment. Yes we can! PLoS ONE 11, e0146467 (2016).

    PubMed Central  PubMed  Google Scholar 

  • 118.

    Cattarino, L. et al. Information uncertainty influences conservation outcomes when prioritizing multi‐action management efforts. J. Appl. Ecol. 55, https://doi.org/10.1111/1365-2664.13147 (2018).

  • 119.

    Greenville, A. C. et al. Biodiversity responds to increasing climatic extremes in a biome-specific manner. Sci. Total Environ. 634, 382–393 (2018).

    CAS  Google Scholar 

  • 120.

    de Visser, S. N., Freymann, B. P. & Olff, H. The Serengeti food web: empirical quantification and analysis of topological changes under increasing human impact. J. Anim. Ecol. 80, 484–494 (2011).

    Google Scholar 

  • 121.

    Curtsdotter, A. et al. Ecosystem function in predator–prey food webs — confronting dynamic models with empirical data. J. Anim. Ecol. 88, 196–210 (2019).

    Google Scholar 

  • 122.

    Greenville, A. C., Nguyen, V., Wardle, G. M. & Dickman, C. R. Making the most of incomplete long-term datasets: the MARSS solution. Aust. Zool. 39, 733–747 (2018).

    Google Scholar 

  • 123.

    Tulloch, A. I. T., Chadès, I. & Possingham, H. P. Accounting for complementarity to maximize monitoring power for species management. Conserv. Biol. 27, 988–999 (2013).

    Google Scholar 

  • 124.

    Araújo, M. B. & New, M. Ensemble forecasting of species distributions. Trends Ecol. Evol. 22, 42–47 (2007).

    Google Scholar 

  • 125.

    Bode, M., Bode, L., Choukroun, S., James, M. K. & Mason, L. B. Resilient reefs may exist, but can larval dispersal models find them? PLoS Biol. 16, e2005964 (2018).

    PubMed Central  PubMed  Google Scholar 

  • 126.

    Tittensor, D., Coll, M. & Walker, N. D. A protocol for the intercomparison of marine fishery and ecosystem models: Fish-MIP v1.0. Geosci. Model Dev. 11, 1421–1442 (2018).

    Google Scholar 

  • 127.

    Prowse, T. A. A. et al. An efficient protocol for the global sensitivity analysis of stochastic ecological models. Ecosphere 7, e01238 (2016).

    Google Scholar 

  • 128.

    McGowan, C. P., Runge, M. C. & Larson, M. A. Incorporating parametric uncertainty into population viability analysis models. Biol. Conserv. 144, 1400–1408 (2011).

    Google Scholar 

  • 129.

    Chee, Y. E. & Wintle, B. A. Linking modelling, monitoring and management: an integrated approach to controlling overabundant wildlife. J. Appl. Ecol. 47, 1169–1178 (2010).

    Google Scholar 

  • 130.

    Plagányi, É. E. & Butterworth, D. S. The Scotia Sea krill fishery and its possible impacts on dependent predators: modeling localized depletion of prey. Ecol. Appl. 22, 748–761 (2012).

    Google Scholar 

  • 131.

    Kinzey, D. & Punt, A. E. Multispecies and single‐species models of fish population dynamics: comparing parameter estimates. Nat. Resour. Model. 22, 67–104 (2009).

    Google Scholar 

  • 132.

    Bode, M. & Possingham, H. Can culling a threatened species increase its chance of persisting? Ecol. Model. 201, 11–18 (2007).

    Google Scholar 

  • 133.

    Poudel, D. & Sandal, L. K. Stochastic optimization for multispecies fisheries in the Barents Sea. Nat. Resour. Model. 28, 219–243 (2015).

    Google Scholar 

  • 134.

    Gray, R. & Wotherspoon, S. Increasing model efficiency by dynamically changing model representations. Environ. Model. Softw. 30, 115–122 (2012).

    Google Scholar 

  • 135.

    Punt, A. E. & Hobday, D. Management strategy evaluation for rock lobster, Jasus edwardsii, off Victoria, Australia: accounting for uncertainty in stock structure. N. Zeal. J. Mar. Freshw. Res. 43, 485–509 (2009).

    Google Scholar 

  • 136.

    Colléter, M. et al. Global overview of the applications of the Ecopath with Ecosim modeling approach using the EcoBase models repository. Ecol. Model. 302, 42–53 (2015).

    Google Scholar 

  • 137.

    Angelini, S. et al. An ecosystem model of intermediate complexity to test management options for fisheries: a case study. Ecol. Model. 319, 218–232 (2016).

    Google Scholar 

  • 138.

    Tulloch, V. J., Plagányi, É. E., Matear, R., Brown, C. J. & Richardson, A. J. Ecosystem modelling to quantify the impact of historical whaling on Southern Hemisphere baleen whales. Fish. Fish. 19, 117–137 (2018).

    Google Scholar 

  • 139.

    Geary, W. L., Ritchie, E. G., Lawton, J. A., Healey, T. R. & Nimmo, D. G. Incorporating disturbance into trophic ecology: fire history shapes mesopredator suppression by an apex predator. J. Appl. Ecol. 55, https://doi.org/10.1111/1365-2664.13125 (2018).

  • 140.

    Marcot, B. G., Holthausen, R. S., Raphael, M. G., Rowland, M. M. & Wisdom, M. J. Using Bayesian belief networks to evaluate fish and wildlife population viability under land management alternatives from an environmental impact statement. Ecol. Manag. 153, 29–42 (2001).

    Google Scholar 

  • 141.

    Elmhagen, B., Ludwig, G., Rushton, S. P., Helle, P. & Lindén, H. Top predators, mesopredators and their prey: interference ecosystems along bioclimatic productivity gradients. J. Anim. Ecol. 79, 785–794 (2010).

    CAS  PubMed  Google Scholar 

  • 142.

    Ritchie, E. et al. Ecosystem restoration with teeth: what role for predators? Trends Ecol. Evol. 27, 265–271 (2012).

    Google Scholar 

  • 143.

    Borsuk, M. E., Stow, C. A. & Reckhow, K. H. A Bayesian network of eutrophication models for synthesis, prediction, and uncertainty analysis. Ecol. Model. 173, 219–239 (2004).

    Google Scholar 

  • 144.

    Christensen, V. & Walters, C. J. Ecopath with Ecosim: methods, capabilities and limitations. Ecol. Model. 172, 109–139 (2004).

    Google Scholar 


  • Source: Ecology - nature.com

    Gene expression during bacterivorous growth of a widespread marine heterotrophic flagellate

    Local management and landscape structure determine the assemblage patterns of spiders in vegetable fields