in

A large-scale assessment of lakes reveals a pervasive signal of land use on bacterial communities

  • 1.

    Adrian R, O’Reilly CM, Zagarese H, Baines SB, Hessen DO, Keller W, et al. Lakes as sentinels of climate change. Limnol Oceanogr. 2009;54:2283–97.

    PubMed  PubMed Central  Google Scholar 

  • 2.

    Tranvik LJ, Downing JA, Cotner JB, Loiselle SA, Striegl RG, Ballatore TJ, et al. Lakes and reservoirs as regulators of carbon cycling and climate. Limnol Oceanogr. 2009;54:2298–314.

    Google Scholar 

  • 3.

    Arbuckle KE, Downing JA. The influence of watershed land use on lake N: P in a predominantly agricultural landscape. Limnol Oceanogr. 2001;46:970–5.

    Google Scholar 

  • 4.

    Taranu ZE, Gregory-Eaves I. Quantifying relationships among phosphorus, agriculture, and lake depth at an inter-regional scale. Ecosystems. 2008;11:715–25.

    Google Scholar 

  • 5.

    Heisler J, Glibert PM, Burkholder JM, Anderson DM, Cochlan W, Dennison WC, et al. Eutrophication and harmful algal blooms: a scientific consensus. Harmful Algae. 2008;8:3–13.

    PubMed  PubMed Central  Google Scholar 

  • 6.

    Scavia D, David Allan J, Arend KK, Bartell S, Beletsky D, Bosch NS, et al. Assessing and addressing the re-eutrophication of Lake Erie: Central basin hypoxia. J Gt Lakes Res. 2014;40:226–46.

    Google Scholar 

  • 7.

    Bastviken D, Cole J, Pace M, Tranvik L. Methane emissions from lakes: dependence of lake characteristics, two regional assessments, and a global estimate. Glob Biogeochem Cycles. 2004;18:1–12.

    Google Scholar 

  • 8.

    Novotny EV, Murphy D, Stefan HG. Increase of urban lake salinity by road deicing salt. Sci Total Environ. 2008;406:131–44.

    PubMed  Google Scholar 

  • 9.

    Dugan HA, Bartlett SL, Burke SM, Doubek JP, Krivak-Tetley FE, Skaff NK, et al. Salting our freshwater lakes. Proc Natl Acad Sci USA. 2017;114:4453–8.

    PubMed  Google Scholar 

  • 10.

    Hobbie SE, Finlay JC, Janke BD, Nidzgorski DA, Millet DB, Baker LA. Contrasting nitrogen and phosphorus budgets in urban watersheds and implications for managing urban water pollution. Proc Natl Acad Sci. 2017;114:4177–82.

    PubMed  Google Scholar 

  • 11.

    Shade A, Kent AD, Jones SE, Newton RJ, Triplett EW, McMahon KD. Interannual dynamics and phenology of bacterial communities in a eutrophic lake. Limnol Oceanogr. 2007;52:487–94.

    Google Scholar 

  • 12.

    Kara EL, Hanson PC, Hu YH, Winslow L, McMahon KD. A decade of seasonal dynamics and co-occurrences within freshwater bacterioplankton communities from eutrophic Lake Mendota, WI, USA. ISME J. 2013;7:680–4.

    PubMed  Google Scholar 

  • 13.

    Marmen S, Blank L, Al-Ashhab A, Malik A, Ganzert L, Lalzar M, et al. The role of land use types and water chemical properties in structuring the microbiome of a connected lake system. Front Microbiol. 2020;11:1–16.

    Google Scholar 

  • 14.

    Environment Canada Whole organism responses and intersex severity in rainbow darter (Etheostoma caeruleum) following exposures to municipal wastewater in the Grand River basin, ON, Canada. Part A, Municipal Water Use Rep. 2011;159:2011–301.

    Google Scholar 

  • 15.

    Huot Y, Brown CA, Potvin G, Antoniades D, Baulch HM, Beisner BE, et al. The NSERC Canadian Lake Pulse Network: a national assessment of lake health providing science for water management in a changing climate. Sci Total Environ. 2019;695:133668.

    PubMed  Google Scholar 

  • 16.

    Lu Y, Wang R, Zhang Y, Su H, Wang P, Jenkins A, et al. Ecosystem health towards sustainability. Ecosyst Heal Sustain. 2015;1:1–15.

    Google Scholar 

  • 17.

    Hering D, Borja A, Carvalho L, Feld CK. Assessment and recovery of European water bodies: Key messages from the WISER project. Hydrobiologia 2013;704:1–9.

    Google Scholar 

  • 18.

    U.S. Environmental Protection Agency. National Lake Assessment: a collaborative survey of the Nation’s Lakes. Washington, DC: EPA 841-R-09-001; 2009.

  • 19.

    Ecological Stratification Working Group. A national ecological framework for Canada. Urbana-Champaign, Illinois: Ecological Stratification Working Group; 1996.

  • 20.

    Glaz P, Gagné JP, Archambault P, Sirois P, Nozais C. Impact of forest harvesting on water quality and fluorescence characteristics of dissolved organic matter in eastern Canadian Boreal Shield lakes in summer. Biogeosciences. 2015;12:6999–7011.

    Google Scholar 

  • 21.

    Patton C, Kryskalla J. Methods of analysis by the U.S. Geological Survey National Water Quality Laboratory—evaluation of alakline digestion as an alternative to kjedahl digestion for determination of total and dissolved nitrogen and phosphorous. Denver, Colorado: Water-Resources Investigations Report 03; 2003.

  • 22.

    U.S. Environmental Protection Agency. Method 200.7: determination of metals and trace elements in water and wastes by inductively coupled plasma-atomic emission spectrometry. Cincinatti, Ohio: U.S. Environmental Protection Agency; 1994.

  • 23.

    U.S. Environmental Protection Agency. Method 300.1: determination of inorganic anions in drinking water by ion chromatography. Cincinatti, Ohio; 1997.

  • 24.

    Wu Y. Barcode Demultiplex for Illumina I1, R1, R2 fastq.gz files. 2014.

  • 25.

    Martin M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J. 2011;17:10.

    Google Scholar 

  • 26.

    Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJA, Holmes SP. DADA2: high-resolution sample inference from Illumina amplicon data. Nat Methods. 2016;13:581–3.

    PubMed  PubMed Central  Google Scholar 

  • 27.

    Rohwer RR, Hamilton JJ, Newton RJ, McMahon KD. TaxAss: leveraging a custom freshwater database achieves fine-scale taxonomic resolution. mSphere. 2018;3:1–14.

    Google Scholar 

  • 28.

    Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, et al. The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. Nucleic Acids Res. 2013;41:590–6.

    Google Scholar 

  • 29.

    McMurdie PJ, Holmes S. Phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE. 2013;8:e61217.

    PubMed  PubMed Central  Google Scholar 

  • 30.

    Price MN, Dehal PS, Arkin AP. FastTree 2—approximately maximum-likelihood trees for large alignments. PLoS ONE. 2010;5:e9490.

    PubMed  PubMed Central  Google Scholar 

  • 31.

    Dray S, Dufour A-B. The ade4 Package: implementing the duality diagram for ecologists. J Stat Softw. 2007;22:1–20.

    Google Scholar 

  • 32.

    Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, Mcglinn D, et al. Vegan: community ecology package. 2016. https://cran.r-project.org; https://github.com/vegandevs/vegan.

  • 33.

    Hair J, Tatham R, Anderson R, Black W. Multivariate data analysis. 5th ed. London: Prentice-Hall; 1998.

    Google Scholar 

  • 34.

    R Development Core Team T. R: a language and environment for statistical computing. Vienna: R Foundation for Statistical Computing; 2009.

    Google Scholar 

  • 35.

    Pinheiro J, Bates D, DebRoy S, Sarkar D, R Development Core Team T. nlme: linear and nonlinear mixed effect models. R package version. 3.1-141; 2019.

  • 36.

    Bates D, Mächler M, Bolker BM, Walker SC. Fitting linear mixed-effects models using lme4. J Stat Softw. 2015;67:1–51.

    Google Scholar 

  • 37.

    Rosseel Y. Lavaan: an R package for structural equation modeling. J Stat Softw. 2012;48:1–37.

    Google Scholar 

  • 38.

    Albanese D, Filosi M, Visintainer R, Riccadonna S, Jurman G, Furlanello C. Minerva and minepy: a C engine for the MINE suite and its R, Python and MATLAB wrappers. Bioinformatics. 2013;29:407–8.

    PubMed  Google Scholar 

  • 39.

    Kurtz ZD, Müller CL, Miraldi ER, Littman DR, Blaser MJ, Bonneau RA. Sparse and compositionally robust inference of microbial ecological networks. PLoS Comput Biol. 2015;11:e1004226.

    PubMed  PubMed Central  Google Scholar 

  • 40.

    Banerjee S, Walder F, Büchi L, Meyer M, Held AY, Gattinger A, et al. Agricultural intensification reduces microbial network complexity and the abundance of keystone taxa in roots. ISME J. 2019;13:1722–36.

    PubMed  PubMed Central  Google Scholar 

  • 41.

    Barberán A, Bates ST, Casamayor EO, Fierer N. Using network analysis to explore co-occurrence patterns in soil microbial communities. ISME J. 2012;6:343–51.

    PubMed  Google Scholar 

  • 42.

    Stegen JC, Lin X, Fredrickson JK, Chen X, Kennedy DW, Murray CJ, et al. Quantifying community assembly processes and identifying features that impose them. ISME J. 2013;7:2069–79.

    PubMed  PubMed Central  Google Scholar 

  • 43.

    Benlloch S, López-López A, Casamayor EO, Øvreås L, Goddard V, Daae FL, et al. Prokaryotic genetic diversity throughout the salinity gradient of a coastal solar saltern. Environ Microbiol. 2002;4:349–60.

    PubMed  Google Scholar 

  • 44.

    Abed RMM, Kohls K, De Beer D. Effect of salinity changes on the bacterial diversity, photosynthesis and oxygen consumption of cyanobacterial mats from an intertidal flat of the Arabian Gulf. Environ Microbiol. 2007;9:1384–92.

    PubMed  Google Scholar 

  • 45.

    Lozupone CA, Knight R. Global patterns in bacterial diversity. Proc Natl Acad Sci USA. 2007;104:11436–40.

    PubMed  Google Scholar 

  • 46.

    Wu QL, Zwart G, Schauer M, Kamst-Van Agterveld MP, Hahn MW. Bacterioplankton community composition along a salinity gradient of sixteen high-mountain lakes located on the Tibetan Plateau, China. Appl Environ Microbiol. 2006;72:5478–85.

    PubMed  PubMed Central  Google Scholar 

  • 47.

    Wang J, Yang D, Zhang Y, Shen J, van der Gast C, Hahn MW, et al. Do patterns of bacterial diversity along salinity gradients differ from those observed for macroorganisms? PLoS ONE. 2011;6:e27597.

    PubMed  PubMed Central  Google Scholar 

  • 48.

    Kelly VR, Lovett GM, Weathers KC, Findlay SEG, Strayer DL, Burns DJ, et al. Long-term sodium chloride retention in a rural watershed: legacy effects of road salt on streamwater concentration. Environ Sci Technol. 2008;42:410–5.

    PubMed  Google Scholar 

  • 49.

    Corsi SR, Graczyk DJ, Geis SW, Booth NL, Richards KD. A fresh look at road salt: aquatic toxicity and water-quality impacts on local, regional, and national scales. Environ Sci Technol. 2010;44:7376–82.

    PubMed  PubMed Central  Google Scholar 

  • 50.

    Levine SN, Schindler DW. Influence of nitrogen to phosphorus supply ratios and physicochemical conditions on cyanobacteria and phytoplankton species composition in the Experimental Lakes Area, Canada. Can J Fish Aquat Sci. 1999;56:451–66.

    Google Scholar 

  • 51.

    Stockner JG, Shortreed KS. Response of Anabaena and Synechococcus to manipulation of nitrogen: phosphorus ratios in a lake fertilization experiment. Limnol Oceanogr. 1988;33:1348–61.

    Google Scholar 

  • 52.

    Thad Scott J, McCarthys MJ. Nitrogen fixation may not balance the nitrogen pool in lakes over timescales relevant to eutrophication management. Limnol Oceanogr. 2010;55:1265–70.

    Google Scholar 

  • 53.

    Håkanson L, Blenckner T, Bryhn AC, Hellström SS. The influence of calcium on the chlorophyll-phosphorus relationship and lake Secchi depths. Hydrobiologia. 2005;537:111–23.

    Google Scholar 

  • 54.

    Eiler A, Heinrich F, Bertilsson S. Coherent dynamics and association networks among lake bacterioplankton taxa. ISME J. 2012;6:330–42.

    PubMed  Google Scholar 

  • 55.

    Peura S, Bertilsson S, Jones RI, Eiler A. Resistant microbial cooccurrence patterns inferred by network topology. Appl Environ Microbiol. 2015;81:2090–7.

    PubMed  PubMed Central  Google Scholar 

  • 56.

    Logares R, Tesson SVM, Canbäck B, Pontarp M, Hedlund K, Rengefors K. Contrasting prevalence of selection and drift in the community structuring of bacteria and microbial eukaryotes. Environ Microbiol. 2018;20:2231–40.

    PubMed  Google Scholar 

  • 57.

    Lindström ES, Kamst-Van Agterveld MP, Zwart G. Distribution of typical freshwater bacterial groups is associated with pH, temperature, and lake water retention time. Appl Environ Microbiol. 2005;71:8201–6.

    PubMed  PubMed Central  Google Scholar 

  • 58.

    Lauber CL, Hamady M, Knight R, Fierer N. Pyrosequencing-based assessment of soil pH as a predictor of soil bacterial community structure at the continental scale. Appl Environ Microbiol. 2009;75:5111–20.

    PubMed  PubMed Central  Google Scholar 

  • 59.

    Xiong J, Liu Y, Lin X, Zhang H, Zeng J, Hou J, et al. Geographic distance and pH drive bacterial distribution in alkaline lake sediments across Tibetan Plateau. Environ Microbiol. 2012;14:2457–66.

    PubMed  PubMed Central  Google Scholar 

  • 60.

    Findlay DL, Kasian SEM. Phytoplankton community responses to acidification of lake 223, experimental lakes area, northwestern Ontario. Water Air Soil Pollut. 1986;30:719–26.

    Google Scholar 

  • 61.

    Findlay DL, Kasian SEM. The effect of incremental pH recovery on the Lake 223 phytoplankton community. Can J Fish Aquat Sci. 1996;53:856–64.

    Google Scholar 

  • 62.

    Maberly SC. Diel, episodic and seasonal changes in pH and concentrations of inorganic carbon in a productive lake. Freshw Biol. 2008;35:579–98.

    Google Scholar 

  • 63.

    Tong Y, Lin G, Ke X, Liu F, Zhu G, Gao G, et al. Comparison of microbial community between two shallow freshwater lakes in middle Yangtze basin, East China. Chemosphere. 2005;60:85–92.

    PubMed  Google Scholar 

  • 64.

    Romina Schiaffino M, Unrein F, Gasol JM, Massana R, Balagué V, Izaguirre I. Bacterial community structure in a latitudinal gradient of lakes: the roles of spatial versus environmental factors. Freshw Biol. 2011;56:1973–91.

    Google Scholar 

  • 65.

    Zeng J, Yang L, Li J, Liang Y, Xiao L, Jiang L, et al. Vertical distribution of bacterial community structure in the sediments of two eutrophic lakes revealed by denaturing gradient gel electrophoresis (DGGE) and multivariate analysis techniques. World J Microbiol Biotechnol. 2009;25:225–33.

    Google Scholar 

  • 66.

    Canfield DE, Bachmann RW. Prediction of total phosphorus concentrations, chlorophyll a, and Secchi depths in natural and artificial lakes. Can J Fish Aquat Sci. 1981;38:414–23.

    Google Scholar 

  • 67.

    Meeuwig JJ, Peters RH. Circumventing phosphorus in lake management: a comparison of chlorophyll a predictions from land-use and phosphorus-loading models. Can J Fish Aquat Sci. 1996;53:1795–806.

    Google Scholar 

  • 68.

    Yang L, Lei K, Meng W, Fu G, Yan W. Temporal and spatial changes in nutrients and chlorophyll-α in a shallow lake, Lake Chaohu, China: an 11-year investigation. J Environ Sci (China). 2013;25:1117–23.

    Google Scholar 

  • 69.

    Kraemer SA, Soucy JPR, Kassen R. Antagonistic interactions of soil pseudomonads are structured in time. FEMS Microbiol Ecol. 2017;93:1–9.

    Google Scholar 


  • Source: Ecology - nature.com

    When the chemical industry met modern architecture

    MIT Energy Conference goes virtual