in

A mesophotic black coral forest in the Adriatic Sea

  • 1.

    Opresko, D. M. Revision of the Antipatharia (Cnidaria: Anthozoa). Part I. Establishment of a new family, Myriopathidae. Zool. Meded. 75, 343–370 (2001).

    • Google Scholar
  • 2.

    ICES. Report of the Working Group on Deep-Water Ecology. ICES Advisory Committee on Ecosystems (WGDEC). ICES Document CM 2007/ACE:01 (2007).

  • 3.

    FAO, Food and Agricultural Organization. International Guidelines for the Management of Deep-sea Fisheries in the High Seas (FAO, 2009).

  • 4.

    Rossi, S., Bramanti, L., Gori, A. & Orejas, C. An overview of the animal forests of the world In Marine animal forests: the ecology of benthic biodiversity hotspots (ed. Rossi, S., Bramanti, L., Gori, A. & Orejas, C.) 1–26 (Springer International Publishing, 2017).

  • 5.

    Chimienti, G., Mastrototaro, F. & D’Onghia, G. Mesophotic and Deep-Sea Vulnerable Coral Habitats of the Mediterranean Sea: Overview and Conservation Perspectives. IntechOpen https://doi.org/10.5772/intechopen.90024 (2019).

  • 6.

    Chimienti, G., Bo, M., Taviani, M. & Mastrototaro, F. Occurrence and biogeography of Mediterranean cold-water corals in Mediterranean Cold-Water Corals: Past, Present and Future (ed. Orejas, C. & Jiménez, C.) 213–243 (Springer International Publishing, 2019).

  • 7.

    Bo, M., Canese, S. & Bavestrello, G. Discovering Mediterranean black coral forests: Parantipathes larix (Anthozoa: Hexacorallia) in the Tuscan Archipelago, Italy. It. J. Zool. 81, 112–125 (2014).

    • Article
    • Google Scholar
  • 8.

    Bo, M., Tazioli, S., Spanò, N. & Bavestrello, G. Antipathella subpinnata (Antipatharia, Myriopathidae) in Italian seas. Ital. J. Zool. 75, 185–195 (2008).

    • Article
    • Google Scholar
  • 9.

    Bo, M. et al. Characteristics of a black coral meadow in the twilight zone of the central Mediterranean Sea. Mar. Ecol. Prog. Ser. 397, 53–61 (2009).

  • 10.

    Deidun, A. et al. First characterisation of a Leiopathes glaberrima (Cnidaria: Anthozoa: Antipatharia) forest in Maltese exploited fishing grounds. Ital. J. Zool. 82(2), 271–280 (2015).

    • Google Scholar
  • 11.

    De Matos, V. et al. First record of Antipathella subpinnata (Antozoa, Antipatharia) in the Azores (NE Atlantic), with description of the first monotypic garden of this species. Deep-sea Res. Pt II 99, 113–121 (2014).

    • Article
    • Google Scholar
  • 12.

    Otero, M. M. et al. Overview of the conservation status of Mediterranean anthozoans. IUCN, x + 73 p (2017).

  • 13.

    OSPAR. Descriptions of Habitats on the OSPAR List of Threatened and/or Declining Species and Habitats. OSPAR Agreement 2008-07 (2008).

  • 14.

    Cau, A. et al. Deepwater corals biodiversity along roche du large ecosystems with different habitat complexity along the south Sardinia continental margin (CW Mediterranean Sea). Mar. Biol. 162, 1865–1878 (2015).

    • Article
    • Google Scholar
  • 15.

    Gravier, C. Notes on the Antipatharians of the Gulf of Naples. Pubblicazioni della Stazione Zoologica di Napoli 2, 223–240 (1918).

    • Google Scholar
  • 16.

    OCEANA. OSPAR Workshop on the Improvement of the Definitions of Habitats on the Ospar List, 20–21 October 2011, Bergen, Norway. Background Document for Discussion: “Coral Gardens”, “Deep-Sea Sponge Aggregations” and “Sea pen and Burrowing Megafauna Communities”, 81 p (2011).

  • 17.

    Gaino, E. & Scoccia, F. Gamete spawning in Antipathella subpinnata (Anthozoa, Antipatharia): a structural and ultrastructural investigation. Zoomorphology 129, 213–219 (2010).

    • Article
    • Google Scholar
  • 18.

    Ballesteros, E. Mediterranean coralligenous assemblages: a synthesis of present knowledge. Oceanogr. Mar. Biol. Annu. Rev. 44, 123–195 (2006).

    • Google Scholar
  • 19.

    Ingrosso, G. et al. Mediterranean bioconstructions along the Italian coast. Adv. Mar. Biol. 79, 61–136 (2018).

    • Article
    • Google Scholar
  • 20.

    Cushman-Roisin, B., Gacic, M., Poulain, P. M., Artegiani, A. Physical oceanography of the Adriatic Sea: past, present and future. Springer Netherlands (2001).

  • 21.

    Millot, C. & Taupier-Letage, I. Circulation in the Mediterranean Sea in The Mediterranean Sea. Handbook of Environmental Chemistry, 5K (ed. Saliot, A.) (Springer, 2005).

  • 22.

    Chimienti, G., Bo, M. & Mastrototaro, F. Know the distribution to assess the changes: Mediterranean cold-water coral bioconstructions. Rend. Lincei Sci. Fis. Nat. 29, 583–588 (2018).

    • Article
    • Google Scholar
  • 23.

    Grange, K. R. Antipathes fiordensis, a new species of black coral (Coelenterata: Antipatharia) from New Zealand. N. Z. J. Zool. 17, 279–282 (1990).

    • Article
    • Google Scholar
  • 24.

    Walker, T. A. & Bull, G. D. A newly discovered method of reproduction in gorgonian coral. Mar. Ecol. Prog. Ser. 12, 137–143 (1983).

  • 25.

    Wallace, C. C. Reproduction, recruitment and fragmentation in nine sympatric species of the coral genus Acropora. Mar. Biol. 88, 217–233 (1985).

    • Article
    • Google Scholar
  • 26.

    Hand, C. & Uhlinger, K. R. Asexual reproduction by transverse fission and some anomalies in the sea anemone Nematostella vectensis. Invertebr. Biol. 114(1), 9–18 (1995).

    • Article
    • Google Scholar
  • 27.

    Orejas, C., Gori, A. & Gili, J. M. Growth rate of live Lophelia pertusa and Madrepora oculata from the Mediterranean Sea maintained in aquaria. Coral Reefs 27, 255 (2008).

  • 28.

    Coppari, M. et al. Fragmentation, re-attachment ability and growth rate of the Mediterranean black coral Antipathella subpinnata. Coral Reef 38, 1–14 (2019).

  • 29.

    Chimienti, G., Angeletti, L. & Mastrototaro, F. Withdrawal behaviour of the red sea pen Pennatula rubra (Cnidaria: Pennatulacea). Eur. Zool. J. 85(1), 64–70 (2018a).

    • Article
    • Google Scholar
  • 30.

    Chimienti, G. et al. Towards non-invasive methods to assess population structure and biomass in vulnerable sea pen fields. Sensors 19, 2255 (2019b).

    • Article
    • Google Scholar
  • 31.

    Genin, A., Dayton, P. K., Lonsdale, P. F. & Spiess, F. N. Corals on seamount peaks provide evidence of current acceleration over deep-sea topography. Nature 322, 59–61 (1986).

  • 32.

    Trincardi, F. et al. The impact of cascading currents on the Bari Canyon System, SW-Adriatic. Margin (Central Mediterranean). Mar. Geol. 246(2–4), 208–230 (2007).

  • 33.

    Angeletti, L. et al. New deep-water cnidarian sites in the southern Adriatic Sea. Mediterr. Mar. Sci. 15(2), 263–273 (2014).

  • 34.

    Chimienti, G. et al. An explorative assessment of the importance of Mediterranean Coralligenous habitat to local economy: The case of recreational diving. J. Environ. Account. Manag. 5(4), 310–320 (2017).

    • Google Scholar
  • 35.

    Abramoff, M. D., Magelhaes, P. J. & Ram, S. J. Image processing with ImageJ. Biophoton Int. 11(7), 36–42 (2004).

    • Google Scholar
  • 36.

    Schneider, C. A., Rasband, W. S. & Eliceiri, K. W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 9(7), 671–675 (2012).

  • 37.

    Weinberg, S. The minimal area problem in invertebrate communities of Mediterranean rocky substrata. Mar. Biol. 49, 33–40 (1978).

    • Article
    • Google Scholar
  • 38.

    Ambroso, S. et al. Spatial distribution patterns of the soft corals Alcyonium acaule and Alcyonium palmatum in coastal bottoms (Cap de Creus, northwestern Mediterranean Sea). Mar. Biol. 160, 3059–3070 (2014).

    • Article
    • Google Scholar
  • 39.

    Chimienti, G., Angeletti, L., Rizzo, L., Tursi, A. & Mastrototaro, F. ROV vs trawling approaches in the study of benthic communities: the case of Pennatula rubra (Cnidaria: Pennatulacea). J. Mar. Biol. Assoc. U. K. 98(8), 1859–1869 (2018).

    • Article
    • Google Scholar
  • 40.

    Linares, C., Coma, R., Garrabou, J., Díaz, D. & Zabala, M. Size distribution, density and disturbance in two Mediterranean gorgonians: Paramuricea clavata and Eunicella singularis. J. Appl. Ecol. 45(2), 688–699 (2008).

    • Article
    • Google Scholar
  • 41.

    Komsta, L. & Novomestky, F. Moments, cumulants, skewness, kurtosis and related tests. R package version 0.13 http://CRAN.R-project.org/package=moments (2012).

  • 42.

    Anscombe, F. J. & Gynn, W. J. Distribution of the kurtosis statistic b2 for normal samples. Biometrika 70, 227–234 (1983).

    • MathSciNet
    • Google Scholar
  • 43.

    DHI. Mike 3 flow model: hydrodynamic module-scientific documentation. DHI Software 2016, Hørsholm, Denmark (2016).

  • 44.

    Rodi, W. Examples of calculation methods for flow and mixing in stratified fluids. J. Geophys. Res. Ocean. 92(C5), 5305–5328 (1987).

  • 45.

    Galperin, B. & Orszag, S. A. Large Eddy Simulation of Complex Engineering and Geophysical Flows 3–36 (Cambridge University Press, 1993).

  • 46.

    De Padova, D., De Serio, F., Mossa, M. & Armenio, E. Investigation of the current circulation offshore Taranto by using field measurements and numerical model. Proceedings of the IEEE International Instrumentation and Measurement Technology Conference, 1–5 (IEEE, 2017).

  • 47.

    De Carolis, G., Adamo, M., Pasquariello, G., De Padova, D. & Mossa, M. Quantitative characterization of marine oil slick by satellite near-infrared imagery and oil drift modelling: The Fun Shai Hai case study. Int. J. Remote Sens. 34(5), 1838–1854 (2013).

    • Article
    • Google Scholar
  • 48.

    Armenio, E. et al. Semi enclosed basin monitoring and analysis of meteo, wave, tide and current data. Proceedings of the IEEE Workshop on Environmental, Energy, and Structural Monitoring Systems, 174–179 (IEEE, 2016).

  • 49.

    Armenio, E., De Padova, D., De Serio, F. & Mossa, M. Monitoring system for the sea: Analysis of meteo, wave and current data. Workshop on Metrology for the Sea, MetroSea 2017: Learning to Measure Sea Health Parameters, 143–148 (IMEKO TC19, 2017).

  • 50.

    De Padova, D., Mossa, M., Adamo, M., De Carolis, G. & Pasquariello, G. Synergistic use of an oil drift model and remote sensing observations for oil spill monitoring. Environ. Sci. Pollut. Res. 24, 5530–5543 (2017).

    • Article
    • Google Scholar
  • 51.

    Armenio, E., De Padova, D., De Serio, F. & Mossa, M. Monitoring System in Mar Grande Basin (Ionian Sea). IEEE International Workshop on Metrology for the Sea; Learning to Measure Sea Health Parameters, 104–109 (MetroSea, 2018).

  • 52.

    Armenio, E., Ben Meftah, M., De Padova, D., De Serio, F. & Mossa, M. Monitoring Systems and Numerical Models to Study Coastal Sites. Sensors 19(7), 1552 (2019).

    • Article
    • Google Scholar
  • 53.

    De Serio, F. et al. Detecting sensitive areas in confined shallow basins. Environ. Model. Softw. 126, 104659 (2020).

    • Article
    • Google Scholar

  • Source: Ecology - nature.com

    Transportation policymaking in Chinese cities

    Solar energy farms could offer second life for electric vehicle batteries