in

A spatial-temporal continuous dataset of the transpiration to evapotranspiration ratio in China from 1981–2015

  • 1.

    Jasechko, S. et al. Terrestrial water fluxes dominated by transpiration. Nature 496, 347–350 (2013).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 2.

    Jung, M. et al. Recent decline in the global land evapotranspiration trend due to limited moisture supply. Nature 467, 951–954 (2010).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 3.

    Kool, D. et al. A review of approaches for evapotranspiration partitioning. Agric. For. Meteorol. 184, 56–70 (2014).

    ADS  Article  Google Scholar 

  • 4.

    Fisher, J. B. et al. The future of evapotranspiration: Global requirements for ecosystem functioning, carbon and climate feedbacks, agricultural management, and water resources. Water Resour. Res. 53, 2618–2626 (2017).

    ADS  Article  Google Scholar 

  • 5.

    Alkama, R. & Cescatti, A. Biophysical climate impacts of recent changes in global forest cover. Science 351, 600–604 (2016).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 6.

    Zeng, Z. et al. Climate mitigation from vegetation biophysical feedbacks during the past three decades. Nat. Clim. Change 7, 432–436 (2017).

    ADS  Article  Google Scholar 

  • 7.

    Lian, X. et al. Partitioning global land evapotranspiration using CMIP5 models constrained by observations. Nat. Clim. Change 8, 640–646 (2018).

    ADS  Article  Google Scholar 

  • 8.

    Niu, Z. et al. An increasing trend in the ratio of transpiration to total terrestrial evapotranspiration in China from 1982 to 2015 caused by greening and warming. Agric. For. Meteorol. 279, 107701 (2019).

    ADS  Article  Google Scholar 

  • 9.

    Piao, S. et al. Characteristics, drivers and feedbacks of global greening. Nat. Rev. Earth Environ. 1, 14–27 (2020).

  • 10.

    Schlesinger, W. H. & Jasechko, S. Transpiration in the global water cycle. Agric. For. Meteorol. 189–190, 115–117 (2014).

    ADS  Article  Google Scholar 

  • 11.

    Good, S. P., Noone, D. & Bowen, G. Hydrologic connectivity constrains partitioning of global terrestrial water fluxes. Science 349, 175–177 (2015).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 12.

    Martens, B. et al. GLEAM v3: Satellite-based land evaporation and root-zone soil moisture. Geosci. Model Dev. 10, 1903–1925 (2017).

    ADS  Article  Google Scholar 

  • 13.

    Coenders-Gerrits, A. M. et al. Uncertainties in transpiration estimates. Nature 506, E1–2 (2014).

    CAS  PubMed  Article  Google Scholar 

  • 14.

    Evaristo, J., Jasechko, S. & McDonnell, J. J. Global separation of plant transpiration from groundwater and streamflow. Nature 525, 91–94 (2015).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 15.

    Ren, X., Lu, Q., He, H., Zhang, L. & Niu, Z. Estimation and analysis of the ratio of transpiration to evapotranspiration in forest ecosystems along the North-South Transect of East China. J. Geogr. Sci. 29, 1807–1822 (2019).

    Article  Google Scholar 

  • 16.

    Wei, H. et al. Modeling evapotranspiration and its components in Qianyanzhou Plantation based on remote sensing data. J. Nat. Res. 27, 778–789 (2012).

    Google Scholar 

  • 17.

    Schlaepfer, D. R. et al. Terrestrial water fluxes dominated by transpiration: Comment. Ecosphere 5, 9 (2014).

    Article  Google Scholar 

  • 18.

    Maxwell, R. M. & Condon, L. E. Connections between groundwater flow and transpiration partitioning. Science 353, 377–380 (2016).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 19.

    Zhang, Y. et al. Multi-decadal trends in global terrestrial evapotranspiration and its components. Sci. Rep. 6, 19124 (2016).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 20.

    Gu, C. et al. Partitioning evapotranspiration using an optimized satellite-based ET model across biomes. Agric. For. Meteorol. 259, 355–363 (2018).

    ADS  Article  Google Scholar 

  • 21.

    Wang-Erlandsson, L., van der Ent, R. J., Gordon, L. J. & Savenije, H. H. G. Contrasting roles of interception and transpiration in the hydrological cycle – Part 1: Temporal characteristics over land. Earth Syst. Dynam. 5, 441–469 (2014).

    ADS  Article  Google Scholar 

  • 22.

    Kuppel, S. et al. Model-data fusion across ecosystems: from multisite optimizations to global simulations. Geosci. Model Dev. 7, 2581–2597 (2014).

    ADS  Article  Google Scholar 

  • 23.

    García, M. et al. Actual evapotranspiration in drylands derived from in-situ and satellite data: Assessing biophysical constraints. Remote Sens. Environ. 131, 103–118 (2013).

    ADS  Article  Google Scholar 

  • 24.

    Zhu, G. F. et al. Simultaneously assimilating multivariate data sets into the two-source evapotranspiration model by Bayesian approach: application to spring maize in an arid region of northwestern China. Geosci. Model Dev. 7, 1467–1482 (2014).

    ADS  Article  Google Scholar 

  • 25.

    Zhang, K., Ma, J., Zhu, G., Ma, T., Han, T. & Feng, L. Parameter sensitivity analysis and optimization for a satellite-based evapotranspiration model across multiple sites using Moderate Resolution Imaging Spectroradiometer and flux data. J. Geophys. Res. Atmos. 122, 230–245 (2017).

    ADS  Article  Google Scholar 

  • 26.

    Reinds, G. J., van Oijen, M., Heuvelink, G. B. M. & Kros, H. Bayesian calibration of the VSD soil acidification model using European forest monitoring data. Geoderma 146, 475–488 (2008).

    ADS  CAS  Article  Google Scholar 

  • 27.

    Zhu, G., Su, Y., Li, X., Zhang, K. & Li, C. Estimating actual evapotranspiration from an alpine grassland on Qinghai-Tibetan plateau using a two-source model and parameter uncertainty analysis by Bayesian approach. J. Hydrol. 476, 42–51 (2013).

    ADS  Article  Google Scholar 

  • 28.

    Liu, Y., Liu, R., Chen, J. M. Retrospective retrieval of long-term consistent global leaf area index (1981–2011) from combined AVHRR and MODIS data. Journal of Geophysical Research: Biogeosci. 117, G04003 (2012).

  • 29.

    Xiao, Z. et al. Use of general regression neural networks for generating the GLASS leaf area index product from time-series MODIS surface reflectance. IEEE T. Geosci. Remote 52, 209–223 (2014).

    ADS  Article  Google Scholar 

  • 30.

    Xiao, Z., Liang, S., Wang, J., Xiang, Y., Zhao, X. & Song, J. Long-time-series global land surface satellite leaf area index product derived from MODIS and AVHRR surface reflectance. IEEE T. Geosci. Remote 54, 5301–5318 (2016).

    ADS  Article  Google Scholar 

  • 31.

    Wang, J., Wang, J., Ye, H., Liu, Y. & He, H. An interpolated temperature and precipitation dataset at 1-km grid resolution in China (2000–2012). China Scientific Data 2, 88–95 (2017).

    ADS  Google Scholar 

  • 32.

    Gao, Y., He, H., Zhang, L., Lu, Q., Yu, G. & Zhang, Z. Spatio-temporal variation characteristics of surface net radiation in China over the past 50 years. Int. J Geogr. Inf. Sci. 15, 1–10 (2013). (in Chinese)

  • 33.

    Ren, X., He, H., Zhang, L. & Yu, G. Global radiation, photosynthetically active radiation, and the diffuse component dataset of China, 1981–2010. Earth Syst. Sci. Data 10, 1217–1226 (2018).

    ADS  Article  Google Scholar 

  • 34.

    Liu, J., Liu, M., Deng, X., Zhuang, D., Zhang, Z. & Luo, D. The land use and land cover change database and its relative studies in China. J. Geogr. Sci. 12, 275–282 (2002).

    Article  Google Scholar 

  • 35.

    Ning, J. et al. Spatiotemporal patterns and characteristics of land-use change in China during 2010-2015. J. Geogr. Sci. 28, 547–562 (2018).

    Article  Google Scholar 

  • 36.

    Zhang, Y. Energy and water budget of a poplar plantation in suburban Beijing (Beijing Forestry University, 2010). (in Chinese)

  • 37.

    Cui, S. Study on the CO2flux of a larch plantation in NE China by the micrometeorological method (Northeast Forestry University, 2007). (in Chinese)

  • 38.

    Zhu, G. et al. Energy flux partitioning and evapotranspiration in a sub-alpine spruce forest ecosystem. Hydrol. Process. 28, 5093–5104 (2014).

    Article  Google Scholar 

  • 39.

    Lin, E., Jiang, H. & Chen, Y. Water vapor flux variation and net radiation for a Phyllostachys violascens stand in Taihuyuan. Journal of Zhejiang A&F University 30, 313–318 (2013). (in Chinese)

    Google Scholar 

  • 40.

    Wang, Z. Energy balance and water vapor flux of snail control and schistosomiasis prevention forests ecosystem in Yangtze River beach land (Chinese Academy of Forestry, 2008). (in Chinese)

  • 41.

    Wang, W. et al. Characteristics of latent heat flux over Cunninghamia lanceolata plantations in Huitong county. Journal of Central South University of Forestry & Technology 31, 192–197 (2011). in Chinese.

    ADS  CAS  Google Scholar 

  • 42.

    Guo, L. The Variations of Water Use Efficiency and Evapotranspiration over a Plantation in the Southern Part of Hilly Areas of North-China (Chinese Academy of Forestry, 2010) (in Chinese)

  • 43.

    Li, Z., Zhang, Y., Wang, S., Yuan, G., Yang, Y. & Cao, M. Evapotranspiration of a tropical rain forest in Xishuangbanna, southwest China. Hydrol. Process. 24, 2405–2416 (2010).

    Google Scholar 

  • 44.

    Tan, Z., Zhang, Y., Schaefer, D., Yu, G., Liang, N. & Song, Q. An old-growth subtropical Asian evergreen forest as a large carbon sink. Atmos. Environ. 45, 1548–1554 (2011).

    ADS  CAS  Article  Google Scholar 

  • 45.

    Wilske, B. et al. Poplar plantation has the potential to alter the water balance in semiarid Inner Mongolia. J. Environ. Manage. 90, 2762–2770 (2009).

    PubMed  Article  Google Scholar 

  • 46.

    Han, S., Huang, L., Wang, Z., Wei, Y., Zhang, X. Ecosystem respiration and its controlling factors in the riparian wetland of Yangtze River. Acta ecologica sinica 29 (2009).

  • 47.

    Liu, S., Xu, Z., Zhu, Z., Jia, Z. & Zhu, M. Measurements of evapotranspiration from eddy-covariance systems and large aperture scintillometers in the Hai River Basin, China. J. Hydrol. 487, 24–38 (2013).

    ADS  Article  Google Scholar 

  • 48.

    Ouyang, Z., Mei, X., Li, Y. & Guo, J. Measurements of water dissipation and water use efficiency at the canopy level in a peach orchard. AgrI. Water Manage. 129, 80–86 (2013).

    Article  Google Scholar 

  • 49.

    Zhang, Y., Shen, Y., Xu, X., Sun, H., Li, F. & Wang, Q. Characteristics of the water–energy–carbon fluxes of irrigated pear (Pyrus bretschneideri Rehd) orchards in the North China Plain. Agri. Water Manage. 128, 140–148 (2013).

    Article  Google Scholar 

  • 50.

    Tan, Z. et al. Rubber plantations act as water pumps in tropical China. Geophys. Res. Lett. 38, L24406 (2011).

    ADS  Article  Google Scholar 

  • 51.

    Liu, R., Li, Y. & Wang, Q. Variations in water and CO2 fluxes over a saline desert in western China. Hydrol. Process. 26, 513–522 (2012).

    ADS  CAS  Article  Google Scholar 

  • 52.

    Chen, S. et al. Energy balance and partition in Inner Mongolia steppe ecosystems with different land use types. Agr. Forest Meteorol. 149, 1800–1809 (2009).

    ADS  Article  Google Scholar 

  • 53.

    Liu, H. & Feng, J. Seasonal and interannual variations of evapotranspiration and energy exchange over different land surfaces in a semiarid area of China. J. Appl. Meteorol. Clim. 51, 1875–1888 (2012).

    Article  Google Scholar 

  • 54.

    Shen, Y., Zhang, Y., Scanlon, B. R., Lei, H., Yang, D. & Yang, F. Energy/water budgets and productivity of the typical croplands irrigated with groundwater and surface water in the North China Plain. Agr. Forest Meteorol. 181, 133–142 (2013).

    ADS  Article  Google Scholar 

  • 55.

    Zhou, G., Wang, Y. Dynamics of carbon budgets in typical corn and rice ecosystems in Liaohe delta. In: Proceedings of Low Carbon Agriculture Symposium. 133–142 (2010). (in Chinese)

  • 56.

    Zhou, S. et al. Evapotranspiration of a drip-irrigated, film-mulched cotton field in northern Xinjiang, China. Hydrol. Process. 26, 1169–1178 (2012).

    ADS  Article  Google Scholar 

  • 57.

    Zheng, H. et al. Spatial variation in annual actual evapotranspiration of terrestrial ecosystems in China: Results from eddy covariance measurements. J. Geogr. Sci. 26, 1391–1411 (2016).

    Article  Google Scholar 

  • 58.

    Gu, S. et al. Characterizing evapotranspiration over a meadow ecosystem on the Qinghai-Tibetan Plateau. J. Geophys. Res.: Atmos. 113, D08118 (2008).

    ADS  Google Scholar 

  • 59.

    Li, J. et al. Characterizing the evapotranspiration of a degraded grassland in the Sanjiangyuan region of Qinghai province. Acta Prataculturae Sinica 21, 223–233 (2012). (in Chinese)

    Google Scholar 

  • 60.

    Yu, G., Wen, X., Sun, X., Tanner, B. D., Lee, X. & Chen, J. Overview of ChinaFLUX and evaluation of its eddy covariance measurement. Agr. Forest Meteorol. 137, 125–137 (2006).

    ADS  Article  Google Scholar 

  • 61.

    Ma, L., Lu, P., Zhao, P., Rao, X., Cai, X. & Zeng, X. Diurnal, daily, seasonal and annual patterns of sap-flux-scaled transpiration from an Acacia mangium plantation in South China. Ann. For. Sci. 65, 9 (2008).

    Article  Google Scholar 

  • 62.

    Ouyang, S. et al. Stand Transpiration Estimates from Recalibrated Parameters for the Granier Equation in a Chinese Fir (Cunninghamia lanceolata) Plantation in Southern China. Forests 9, 162 (2018).

    Article  Google Scholar 

  • 63.

    Song, L., Zhu, J., Li, M., Zhang, J., Zheng, X. & Wang, K. Canopy transpiration of Pinus sylvestris var. mongolica in a sparse wood grassland in the semiarid sandy region of Northeast China. Agr. Forest Meteorol. 250, 192–201 (2018).

    ADS  Article  Google Scholar 

  • 64.

    Zhang, H., Wei, W., Chen, L. & Yang, L. Evaluating canopy transpiration and water use of two typical planted tree species in the dryland Loess Plateau of China. Ecohydrology 10, 10 (2017).

    Google Scholar 

  • 65.

    Zhang, H., Wei, W., Chen, L. & Wang, L. Effects of terracing on soil water and canopy transpiration of Pinus tabulaeformis in the Loess Plateau of China. Ecol. Eng. 102, 557–564 (2017).

    Article  Google Scholar 

  • 66.

    Chang, X., Zhao, W., Liu, H., Wei, X., Liu, B. & He, Z. Qinghai spruce (Picea crassifolia) forest transpiration and canopy conductance in the upper Heihe River Basin of arid northwestern China. Agr. Forest Meteorol. 198–199, 209–220 (2014).

    ADS  Article  Google Scholar 

  • 67.

    Fang, S., Zhao, C. & Jian, S. Canopy transpiration of Pinus tabulaeformis plantation forest in the Loess Plateau region of China. Environ. Earth Sci. 75, 9 (2016).

    Article  CAS  Google Scholar 

  • 68.

    Liu, Q., Zeng, H. & Ma, Z. Carbon sequestration of Pinus elliottii plantation in relation with water consumption in subtropical China. Acta Ecologica Sinica 28, 5322–5330 (2008). (in Chinese)

    CAS  Google Scholar 

  • 69.

    Fu, S., Sun, L. & Luo, Y. Canopy conductance and stand transpiration of Populus simonii Carr in response to soil and atmospheric water deficits in farmland shelterbelt, Northwest China. Agrofor. Syst. 91, 1165–1180 (2017).

    Article  Google Scholar 

  • 70.

    Jiao, L., Lu, N., Sun, G., Ward, E. & Fu, B. Biophysical controls on canopy transpiration in a black locust (Robinia pseudoacacia) plantation on the semi-arid Loess Plateau, China. Ecohydrology 9, 1068–1081 (2016).

    Article  Google Scholar 

  • 71.

    Zhang, J., Guan, J., Shi, W., Yamanaka, N. & Du, S. Interannual variation in stand transpiration estimated by sap flow measurement in a semi-arid black locust plantation, Loess Plateau, China. Ecohydrology 8, 137–147 (2015).

    Article  Google Scholar 

  • 72.

    Yan, M. et al. Sapflow-Based Stand Transpiration in a Semiarid Natural Oak Forest on China’s Loess Plateau. Forests 7, 13 (2016).

    Article  Google Scholar 

  • 73.

    Mo, K., Chen, L., Zhou, J., Fang, X., Kang, M. & Zhang, Z. Transpiration responses of a poplar plantation to the environmental conditions on a floodplain in Northern China. Acta Ecologica Sinica 34, 5812–5822 (2014). (in Chinese)

    Google Scholar 

  • 74.

    Zhao, W., Chang, X. & Zhang, Z. Transpiration of a Linze jujube orchard in an arid region of China. Hydrol. Process. 23, 1461–1470 (2009).

    ADS  Article  Google Scholar 

  • 75.

    Gao, J., Meng, P., Zhang, J., Jia, C. & Ren, Y. Analysis on Transpiration and Difference between Evapotranspiration and Precipitation of Apricot Trees in the Rocky Mountain Area of Northern China. J. Agrometeorol. 30, 538–542 (2009).

    Google Scholar 

  • 76.

    Ren, Q., Meng, P., Zhang, J., Gao, J. & Li, C. Transpiration Variation of the Poplar Shelterbelts and Its Relation to the Meteorological Factors in the Cropland of North China Plain. Forest Research 21, 797–802 (2008).

    Google Scholar 

  • 77.

    Wang, D., Wang, G. & Anagnostou, E. Evaluation of canopy interception schemes in band surface models. J. Hydrol. 347, 308–318 (2007).

    ADS  Article  Google Scholar 

  • 78.

    Liu, X., Zhang, J., Xie, D., Zhuang, J., Shao, Y. & Zhang, S. Temporal variation for canopy transpiration and its cooling properties in a Quercus acutissima forest of suburban Nanjing. Journal of Zhejiang A&F University 32, 529–536 (2015).

    Google Scholar 

  • 79.

    Chen, L. et al. Response of transpiration to rain pulses for two tree species in a semiarid plantation. Int. J. Biometeorol. 58, 1569–1581 (2014).

    ADS  PubMed  Article  Google Scholar 

  • 80.

    Chen, L., Zhang, Z., Li, Z., Tang, J., Caldwell, P. & Zhang, W. Biophysical control of whole tree transpiration under an urban environment in Northern China. J. Hydrol. 402, 388–400 (2011).

    ADS  Article  Google Scholar 

  • 81.

    Ji, X., Zhao, W., Kang, E., Jin, B. & Xu, S. Transpiration from three dominant shrub species in a desert-oasis ecotone of arid regions of Northwestern China. Hydrol. Process. 30, 4841–4854 (2016).

    ADS  Article  Google Scholar 

  • 82.

    Zhao, P., Kang, S., Li, S., Ding, R., Tong, L. & Du, T. Seasonal variations in vineyard ET partitioning and dual crop coefficients correlate with canopy development and surface soil moisture. Agr. Water Manage. 197, 19–33 (2018).

    Article  Google Scholar 

  • 83.

    Chen, Y., Lee, G., Lee, P. & Oikawa, T. Model analysis of grazing effect on above-ground biomass and above-ground net primary production of a Mongolian grassland ecosystem. J. Hydrol. 333, 155–164 (2007).

    ADS  Article  Google Scholar 

  • 84.

    Jiang, X., Kang, S., Li, F., Du, T., Tong, L. & Comas, L. Evapotranspiration partitioning and variation of sap flow in female and male parents of maize for hybrid seed production in arid region. Agr. Water Manage. 176, 132–141 (2016).

    Article  Google Scholar 

  • 85.

    Gao, X., Mei, X., Gu, F., Hao, W., Gong, D. & Li, H. Evapotranspiration partitioning and energy budget in a rainfed spring maize field on the Loess Plateau, China. CATENA 166, 249–259 (2018).

    Article  Google Scholar 

  • 86.

    Hou, L., Wenninger, J., Shen, J., Zhou, Y., Bao, H. & Liu, H. Assessing crop coefficients for Zea mays in the semi-arid Hailiutu River catchment, northwest China. Agr. water manage. 140, 37–47 (2014).

    Article  Google Scholar 

  • 87.

    Zhou, G. et al. Measured sap flow and estimated evapotranspiration of tropical Eucalyptus urophylla plantations in south China. Acta Botanica Sinica 46, 202–210 (2004).

    Google Scholar 

  • 88.

    Liu, X. et al. Partitioning evapotranspiration in an intact forested watershed in southern China. Ecohydrology 8, 1037–1047 (2015).

    Article  Google Scholar 

  • 89.

    Tian, F., Zhao, C. & Feng, Z. Simulating evapotranspiration of Qinghai spruce (Picea crassifolia) forest in the Qilian Mountains, northwestern China. J. Arid Environ. 75, 648–655 (2011).

    ADS  Article  Google Scholar 

  • 90.

    Zhao, W. et al. Evapotranspiration partitioning, stomatal conductance, and components of the water balance: A special case of a desert ecosystem in China. J. Hydrol. 538, 374–386 (2016).

    ADS  Article  Google Scholar 

  • 91.

    Qiu, G., Li, C. & Yan, C. Characteristics of soil evaporation, plant transpiration and water budget of Nitraria dune in the arid Northwest China. Agr. Forest Meteorol. 203, 107–117 (2015).

    ADS  Article  Google Scholar 

  • 92.

    Zhang, Y., Kang, S., Ward, E. J., Ding, R., Zhang, X. & Zheng, R. Evapotranspiration components determined by sap flow and microlysimetry techniques of a vineyard in northwest China: Dynamics and influential factors. Agr. Water Manage. 98, 1207–1214 (2011).

    Article  Google Scholar 

  • 93.

    Zhou, S., Liu, W. & Lin, W. The ratio of transpiration to evapotranspiration in a rainfed maize field on the Loess Plateau of China. Water Sci. Tech.: W. Sup. 17, 221–228 (2017).

    Google Scholar 

  • 94.

    Huang, X., Hao, Y., Wang, Y., Cui, X., Mo, X. & Zhou, X. Partitioning of evapotranspiration and its relation to carbon dioxide fluxes in Inner Mongolia steppe. J. arid environ. 74, 1616–1623 (2010).

    ADS  Article  Google Scholar 

  • 95.

    Priestley, C. & Taylor, R. On the assessment of surface heat flux and evaporation using large-scale parameters. Month. Weather Rev. 100, 81–92 (1972).

    ADS  Article  Google Scholar 

  • 96.

    Talsma, C. J. et al. Partitioning of evapotranspiration in remote sensing-based models. Agr. Forest Meteorol. 260, 131–143 (2018).

    ADS  Article  Google Scholar 

  • 97.

    Fisher, J. B., Tu, K. P. & Baldocchi, D. D. Global estimates of the land–atmosphere water flux based on monthly AVHRR and ISLSCP-II data, validated at 16 FLUXNET sites. Remote Sens. Environ. 112, 901–919 (2008).

    ADS  Article  Google Scholar 

  • 98.

    Sobol’, I. M. On sensitivity estimation for nonlinear mathematical models. Matematicheskoe modelirovanie 2, 112–118 (1990).

    MathSciNet  MATH  Google Scholar 

  • 99.

    Sobol’, I. M. Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates. Math. Comput. Simul. 55, 271–280 (2001).

    MathSciNet  MATH  Article  Google Scholar 

  • 100.

    Braswell, B. H., Sacks, W. J., Linder, E. & Schimel, D. S. Estimating diurnal to annual ecosystem parameters by synthesis of a carbon flux model with eddy covariance net ecosystem exchange observations. Glob. Change Biol. 11, 335–355 (2005).

    ADS  Article  Google Scholar 

  • 101.

    Niu, Z. et al. A spatial-temporal continuous dataset of the transpiration to evapotranspiration ratio in China from 1981–2015. Open Science Framework https://doi.org/10.17605/OSF.IO/MERZN (2020).

  • 102.

    Hu, Z. M. et al. Partitioning of evapotranspiration and its controls in four grassland ecosystems: Application of a two-source model. Agric. For. Meteorol. 149, 1410–1420 (2009).

    ADS  Article  Google Scholar 

  • 103.

    Zhu, X. J. et al. Spatiotemporal variations of T /ET (the ratio of transpiration to evapotranspiration) in three forests of Eastern China. Ecolog. Indic. 52, 411–421 (2015).

    Article  Google Scholar 

  • 104.

    Miralles, D. G. et al. Global land-surface evaporation estimated from satellite-based observations. Hydrol. Earth Sys. Sc. 15, 453–469 (2011).

    ADS  Article  Google Scholar 

  • 105.

    McNally, A. et al. A land data assimilation system for sub-Saharan Africa food and water security applications. Sci. Data 4, 1–19 (2017).

    Article  Google Scholar 

  • 106.

    Rodel, lM. et al. The global land data assimilation system. B. Am. Meteorol. Soc. 85, 381–394 (2004).

    ADS  Article  Google Scholar 

  • 107.

    Wei, Y. et al. NACP MsTMIP: Global and North American Driver Data for Multi-Model Intercomparison. ORNL DAAC, Oak Ridge, Tennessee, USA https://doi.org/10.3334/ORNLDAAC/1220 (2014).

  • 108.

    Burkey, J. Mann-Kendall Tau-b with Sen’s Method (enhanced). MATLAB Central File Exchange https://www.mathworks.com/matlabcentral/fileexchange/11190-mann-kendall-tau-b-with-sen-s-method-enhanced (2020).

  • 109.

    Zeng, Z., Peng, L. & Piao, S. Response of terrestrial evapotranspiration to Earth’s greening. Curr. Opin. Env. Sust. 33, 9–25 (2018).

    Article  Google Scholar 

  • 110.

    Wang, W., Cui, W., Wang, X. J. & Chen, X. Evaluation of GLDAS-1 and GLDAS-2 Forcing Data and Noah Model Simulations over China at the Monthly Scale. J. Hydrometeorol. 17, 2815–2833 (2016).

    ADS  Article  Google Scholar 

  • 111.

    Keenan, T. F., Carbone, M. S., Reichstein, M. & Richardson, A. D. The model-data fusion pitfall: assuming certainty in an uncertain world. Oecologia 167, 587–597 (2011).

    ADS  PubMed  Article  Google Scholar 

  • 112.

    Talsma, C. J. et al. Sensitivity of evapotranspiration components in remote sensing-based models. Remote Sens. 10, 1601 (2018).

    ADS  Article  Google Scholar 

  • 113.

    Mu, Q., Zhao, M. & Running, S. W. Improvements to a MODIS global terrestrial evapotranspiration algorithm. Remote. Sens. Environ. 115, 1781–1800 (2011).

    ADS  Article  Google Scholar 

  • 114.

    Ter Braak, C. J. A Markov Chain Monte Carlo version of the genetic algorithm Differential Evolution: easy Bayesian computing for real parameter spaces. Sta. Comput. 16, 239–249 (2006).

    MathSciNet  Article  Google Scholar 

  • 115.

    Wang, L., Good, S. P. & Caylor, K. K. Global synthesis of vegetation control on evapotranspiration partitioning. Geophys. Res. Lett. 41, 6753–6757 (2014).

    ADS  Article  Google Scholar 

  • 116.

    Wei, Z. et al. Revisiting the contribution of transpiration to global terrestrial evapotranspiration. Geophys. Res. Lett. 44, 2792–2801 (2017).

    ADS  Article  Google Scholar 

  • 117.

    Miralles, D. G. et al. The WACMOS-ET project – Part 2: Evaluation of global terrestrial evaporation data sets. Hysrol. Earth Syst. Sc. 20, 823–842 (2016).

    ADS  Article  Google Scholar 

  • 118.

    Lawrence, D. M., et al. Parameterization improvements and functional and structural advances in Version 4 of the Community Land Model. J. Adv. Model. Earth Sy. 3, M03001 (2011).

  • 119.

    Lawrence, D. M., Thornton, P. E., Oleson, K. W. & Bonan, G. B. The Partitioning of Evapotranspiration into Transpiration, Soil Evaporation, and Canopy Evaporation in a GCM: Impacts on Land–Atmosphere Interaction. J. Hydrometeorol. 8, 862–880 (2007).

    ADS  Article  Google Scholar 


  • Source: Ecology - nature.com

    Moist heat stress extremes in India enhanced by irrigation

    These bizarre ancient species are rewriting animal evolution