in

A trophic latitudinal gradient revealed in anchovy and sardine from the Western Mediterranean Sea using a multi-proxy approach

  • 1.

    FAO. The State of Mediterranean and Black Sea Fisheries (FAO, Rome, 2018).

    Google Scholar 

  • 2.

    Coll, M., Albo-Puigserver, M., Navarro, J., Palomera, I. & Dambacher, J. M. Who is to blame? Plausible pressures on small pelagic fish population changes in the northwestern Mediterranean Sea. Mar. Ecol. Prog. Ser. 617–618, 277–294 (2019).

    ADS  Article  Google Scholar 

  • 3.

    Palomera, I. et al. Small pelagic fish in the NW Mediterranean Sea: an ecological review. Prog. Oceanogr. 74, 377–396 (2007).

    ADS  Article  Google Scholar 

  • 4.

    Coll, M., Palomera, I., Tudela, S. & Dowd, M. Food-web dynamics in the South Catalan Sea ecosystem (NW Mediterranean) for 1978–2003. Ecol. Modell. 217, 95–116 (2008).

    Article  Google Scholar 

  • 5.

    Cardona, L., Martínez-Iñigo, L., Mateo, R. & González-Solís, J. The role of sardine as prey for pelagic predators in the western Mediterranean Sea assessed using stable isotopes and fatty acids. Mar. Ecol. Prog. Ser. 531, 1–14 (2015).

    ADS  CAS  Article  Google Scholar 

  • 6.

    Quattrocchi, F. Modelling the relationships of medium and long-term variations of the Anchovy and Sardine catches in the Catalan Sea (NW Mediterranean) with the environmental drivers. (Polytechnique University of Catalunya & Instituto de Ciencias del Mar (ICM), CSIC, 2017).

  • 7.

    Van Beveren, E. et al. The fisheries history of small pelagics in the Northern Mediterranean. ICES J. Mar. Sci. 73, 1474–1484 (2016).

    Article  Google Scholar 

  • 8.

    SAC-WGSASP. Technical Report of the Working Group on Stock Assessment of Small Pelagic Species (WGSASP). (2018).

  • 9.

    Coll, M. & Bellido, J. M. Evaluation of the population status and specific management alternatives for the small pelagic fish stocks in the Northwestern Mediterranean Sea (SPELMED). (2018).

  • 10.

    Pennino, M. G. et al. Current and future influence of environmental factors on small pelagic fish distributions in the Northwestern Mediterranean Sea. Front. Mar. Sci. https://doi.org/10.3389/fmars.2020.00622 (2020).

    Article  Google Scholar 

  • 11.

    Brosset, P. et al. Spatio-temporal patterns and environmental controls of small pelagic fish body condition from contrasted Mediterranean areas. Prog. Oceanogr. 151, 149–162 (2017).

    ADS  Article  Google Scholar 

  • 12.

    Saraux, C. et al. Small pelagic fish dynamics: a review of mechanisms in the Gulf of Lions. Deep. Res. Part II(159), 52–61 (2018).

    Google Scholar 

  • 13.

    Costalago, D. & Palomera, I. Feeding of European pilchard (Sardina pilchardus) in the northwestern Mediterranean: from late larvae to adults. Sci. Mar. 78, 41–54 (2014).

    Article  Google Scholar 

  • 14.

    Le Bourg, B. et al. Trophic niche overlap of sprat and commercial small pelagic teleosts in the Gulf of Lions (NW Mediterranean Sea). J. Sea Res. 103, 138–146 (2015).

    Article  Google Scholar 

  • 15.

    Nikolioudakis, N., Palomera, I., Machias, A. & Somarakis, S. Diel feeding intensity and daily ration of the sardine Sardina pilchardus. Mar. Ecol. Prog. Ser. 437, 215–228 (2011).

    ADS  Article  Google Scholar 

  • 16.

    Nikolioudakis, N., Isari, S., Pitta, P. & Somarakis, S. Diet of sardine Sardina pilchardus: an ‘end-to-end’ field study. Mar. Ecol. Prog. Ser. 453, 173–188 (2012).

    ADS  Article  Google Scholar 

  • 17.

    Nikolioudakis, N., Isari, S. & Somarakis, S. Trophodynamics of anchovy in a non-upwelling system: direct comparison with sardine. Mar. Ecol. Prog. Ser. 500, 215–229 (2014).

    ADS  Article  Google Scholar 

  • 18.

    Tudela, S. & Palomera, I. Diel feeding intensity and daily ration in the anchovy Engraulis encrasicolus in the northwest Mediterranean Sea during the spawning period. Mar. Ecol. Prog. Ser. 129, 55–61 (1995).

    ADS  Article  Google Scholar 

  • 19.

    Tudela, S. & Palomera, I. A Trophic ecology of the European anchovy Engraulis encrasicolus in the Catalan Sea (northwest Mediterranean). Mar. Ecol. Prog. Ser. 160, 121–134 (1997).

    ADS  Article  Google Scholar 

  • 20.

    Brosset, P. et al. Linking small pelagic dietary shifts with ecosystem changes in the Gulf of Lions. Mar. Ecol. Prog. Ser. 554, 157–171 (2016).

    ADS  Article  Google Scholar 

  • 21.

    Albo-Puigserver, M. Ecological and functional role of small and medium pelagic fish in the northwestern Mediterranean Sea. (Polytechnique University of Catalunya & Instituto de Ciencias del Mar (ICM), CSIC, 2019).

  • 22.

    Amundsen, P. & Sánchez-Hernández, J. Feeding studies take guts: critical review and recommendations of methods for stomach contents analysis in fish. J. Fish Biol. 95, 1364–1373 (2019).

    PubMed  Article  Google Scholar 

  • 23.

    Jakubavičiūtė, E., Bergström, U., Eklöf, J. S., Haenel, Q. & Bourlat, S. J. DNA metabarcoding reveals diverse diet of the three-spined stickleback in a coastal ecosystem. PLoS ONE 12, e0186929 (2017).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 24.

    Nielsen, J. M., Clare, E. L., Hayden, B., Brett, M. T. & Kratina, P. Diet tracing in ecology: Method comparison and selection. Methods Ecol. Evol. 9, 278–291 (2018).

    Article  Google Scholar 

  • 25.

    Leray, M. et al. A new versatile primer set targeting a short fragment of the mitochondrial COI region for metabarcoding metazoan diversity: application for characterizing coral reef fish gut contents. Front. Zool. 10, 34 (2013).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 26.

    Berry, O. et al. Comparison of morphological and DNA metabarcoding analyses of diets in exploited marine fishes. Mar. Ecol. Prog. Ser. 540, 167–181 (2015).

    ADS  CAS  Article  Google Scholar 

  • 27.

    Casey, J. M. et al. Reconstructing hyperdiverse food webs: Gut content metabarcoding as a tool to disentangle trophic interactions on coral reefs. Methods Ecol. Evol. 10, 1157–1170 (2019).

    Article  Google Scholar 

  • 28.

    Thomas, A. C., Deagle, B. E., Eveson, J. P., Harsch, C. H. & Trites, A. W. Quantitative DNA metabarcoding: improved estimates of species proportional biomass using correction factors derived from control material. Mol. Ecol. Resour. 16, 714–726 (2016).

    CAS  PubMed  Article  Google Scholar 

  • 29.

    Baker, R., Buckland, A. & Sheaves, M. Fish gut content analysis: Robust measures of diet composition. Fish Fish 15, 170–177 (2014).

    Article  Google Scholar 

  • 30.

    Pacella, S. R. et al. Incorporation of diet information derived from Bayesian stable isotope mixing models into mass-balanced marine ecosystem models: A case study from the Marennes-Oléron Estuary France. Ecol. Modell. 267, 127–137 (2013).

    CAS  Article  Google Scholar 

  • 31.

    Parnell, A. C. et al. Bayesian stable isotope mixing models. Environmetrics 24, 387–399 (2013).

    MathSciNet  Google Scholar 

  • 32.

    Stock, B. C. et al. Analyzing mixing systems using a new generation of Bayesian tracer mixing models. PeerJ 6, e5096 (2018).

    PubMed  PubMed Central  Article  Google Scholar 

  • 33.

    Carreon-Martinez, L., Johnson, T. B., Ludsin, S. A. & Heath, D. D. Utilization of stomach content DNA to determine diet diversity in piscivorous fishes. J. Fish Biol. 78, 1170–1182 (2011).

    CAS  PubMed  Article  Google Scholar 

  • 34.

    Hunter, J. R. & Kimbrell, C. A. Egg cannibalism in the Northern anchovy Engraulis mordax. Fish. Bull. 78, 811–816 (1980).

    Google Scholar 

  • 35.

    Vander Zanden, M. J., Clayton, M. K., Moody, E. K., Solomon, C. T. & Weidel, B. C. Stable isotope turnover and half-life in animal tissues: a literature synthesis. PLoS ONE 10, e0116182 (2015).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 36.

    Bearhop, S., Adams, C. E., Waldron, S., Fuller, R. A. & MacLeod, H. Determining trophic niche width: a novel approach using stable isotope analysis. J. Anim. Ecol. 73, 1007–1012 (2004).

    Article  Google Scholar 

  • 37.

    Jackson, A. L., Inger, R., Parnell, A. C. & Bearhop, S. Comparing isotopic niche widths among and within communities: SIBER—Stable Isotope Bayesian Ellipses in R. J. Anim. Ecol. 80, 595–602 (2011).

    PubMed  Article  Google Scholar 

  • 38.

    Cannas, R. et al. Report on bioinformatic analyses of the GBS data and report of the population genetic analyses. Evaluation of the population status and specific management alternatives for the small pelagic fish stocks in the Northwestern Mediterranean Sea (SPELMED). (2018).

  • 39.

    Koleff, P., Gaston, K. J. & Lennon, J. J. Measuring beta diversity for presence-absence data. J. Anim. Ecol. 72, 367–382 (2003).

    Article  Google Scholar 

  • 40.

    Southwood, T. R. E. & Henderson, P. A. Ecological Methods (Backwell Science, USA, 2000).

    Google Scholar 

  • 41.

    Pianka, E. R. Niche Overlap and Diffuse Competition. Proc. Natl. Acad. Sci. U. S. A. 71, 2141–2145 (1974).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 42.

    Bachiller, E. & Irigoien, X. Allometric relations and consequences for feeding in small pelagic fish in the Bay of Biscay. ICES J. Mar. Sci. 70, 232–243 (2013).

    Article  Google Scholar 

  • 43.

    Bachiller, E. & Irigoien, X. Trophodynamics and diet overlap of small pelagic fish species in the Bay of Biscay. Mar. Ecol. Prog. Ser. 534, 179–198 (2015).

    ADS  Article  Google Scholar 

  • 44.

    Raab, K. et al. Anchovy Engraulis encrasicolus diet in the North and Baltic Seas. J. Sea Res. 65, 131–140 (2011).

    ADS  Article  Google Scholar 

  • 45.

    Karachle, P. K. & Stergiou, K. I. Feeding and ecomorphology of three clupeoids in the N Aegean Sea. Mediterr. Mar. Sci. 15, 9 (2013).

    Article  Google Scholar 

  • 46.

    Costalago, D., Garrido, S. & Palomera, I. Comparison of the feeding apparatus and diet of European sardines Sardina pilchardus of Atlantic and Mediterranean waters: ecological implications. J. Fish Biol. 86, 1348–1362 (2015).

    CAS  PubMed  Article  Google Scholar 

  • 47.

    Costalago, D., Navarro, J., Álvarez-Calleja, I. & Palomera, I. Ontogenetic and seasonal changes in the feeding habits and trophic levels of two small pelagic fish species. Mar. Ecol. Prog. Ser. 460, 169–181 (2012).

    ADS  Article  Google Scholar 

  • 48.

    Garrido, S. et al. Trophic ecology of pelagic fish species off the Iberian coast: diet overlap, cannibalism and intraguild predation. Mar. Ecol. Prog. Ser. 539, 271–285 (2015).

    ADS  Article  Google Scholar 

  • 49.

    Bacha, M. & Amara, R. Spatial, temporal and ontogenetic variation in diet of anchovy (Engraulis encrasicolus) on the Algerian coast (SW Mediterranean). Estuar. Coast. Shelf Sci. 85, 257–264 (2009).

    ADS  CAS  Article  Google Scholar 

  • 50.

    Brosset, P. et al. Body reserves mediate trade-offs between life-history traits: New insights from small pelagic fish reproduction. R. Soc. Open Sci. 3, 160202 (2016).

    ADS  PubMed  PubMed Central  Article  Google Scholar 

  • 51.

    Bachiller, E., Cotano, U., Boyra, G. & Irigoien, X. Spatial distribution of the stomach weights of juvenile anchovy (Engraulis encrasicolus L.) in the Bay of Biscay. ICES J. Mar. Sci. 70, 362–378 (2013).

    Article  Google Scholar 

  • 52.

    Ventero, A., Iglesias, M. & Villamor, B. Anchovy (Engraulis encrasicolus) otoliths reveal growth differences between two areas of the Spanish Mediterranean Sea. Sci. Mar. 81, 327 (2017).

    Article  Google Scholar 

  • 53.

    Costalago, D., Palomera, I. & Tirelli, V. Seasonal comparison of the diets of juvenile European anchovy Engraulis encrasicolus and sardine Sardina pilchardus in the Gulf of Lions. J. Sea Res. 89, 64–72 (2014).

    ADS  Article  Google Scholar 

  • 54.

    Borme, D., Tirelli, V., Brandt, S. B., Umani, S. F. & Arneri, E. Diet of Engraulis encrasicolus in the northern Adriatic Sea (Mediterranean): ontogenetic changes and feeding selectivity. Mar. Ecol. Prog. Ser. 392, 193–209 (2009).

    ADS  Article  Google Scholar 

  • 55.

    Layman, C. A. et al. Applying stable isotopes to examine food-web structure: an overview of analytical tools. Biol. Rev. 87, 545–562 (2012).

    PubMed  Article  Google Scholar 

  • 56.

    Albo-Puigserver, M., Navarro, J., Coll, M., Layman, C. A. & Palomera, I. Trophic structure of pelagic species in the northwestern Mediterranean Sea. J. Sea Res. 117, 27–35 (2016).

    ADS  Article  Google Scholar 

  • 57.

    Petta, J. C. et al. Are you really what you eat? Stomach content analysis and stable isotope ratios do not uniformly estimate dietary niche characteristics in three marine predators. Oecologia 192, 1111–1126 (2020).

    ADS  PubMed  Article  Google Scholar 

  • 58.

    Demestre, M. Growth and distribution of Solenocera membranacea (Risso, 1816) (Decapoda, Dendrobranchiata) in the northwestern Mediterranean Sea. Sci. Mar. 57, 161–166 (1993).

    Google Scholar 

  • 59.

    Tsagarakis, K., Giannoulaki, M., Somarakis, S. & Machias, A. Variability in positional, energetic and morphometric descriptors of European anchovy Engraulis encrasicolus schools related to patterns of diurnal vertical migration. Mar. Ecol. Prog. Ser. 446, 243–258 (2012).

    ADS  Article  Google Scholar 

  • 60.

    Coll, M., Shannon, L. J., Moloney, C. L., Palomera, I. & Tudela, S. Comparing trophic flows and fishing impacts of a NW Mediterranean ecosystem with coastal upwelling systems by means of standardized models and indicators. Ecol. Modell. 198, 53–70 (2006).

    Article  Google Scholar 

  • 61.

    Checkley, D. M., Asch, R. G. & Rykaczewski, R. R. Climate, Anchovy, and Sardine. Ann. Rev. Mar. Sci. 9, 469–493 (2017).

    PubMed  Article  Google Scholar 

  • 62.

    Irigoien, X. & De Roos, A. The role of intraguild predation in the population dynamics of small pelagic fish. Mar. Biol. 158, 1683–1690 (2011).

    Article  Google Scholar 

  • 63.

    Bachiller, E., Cotano, U., Ibaibarriaga, L., Santos, M. & Irigoien, X. Intraguild predation between small pelagic fish in the Bay of Biscay: impact on anchovy (Engraulis encrasicolus L.) egg mortality. Mar. Biol. 162, 1351–1369 (2015).

    Article  Google Scholar 

  • 64.

    Purcell, J. E. Jellyfish and ctenophore blooms coincide with human proliferations and environmental perturbations. Ann. Rev. Mar. Sci. 4, 209–235 (2012).

    PubMed  Article  Google Scholar 

  • 65.

    Naman, S. M. et al. Stable isotope-based trophic structure of pelagic fish and jellyfish across natural and anthropogenic landscape gradients in a fjord estuary. Ecol. Evol. 6, 8159–8173 (2016).

    PubMed  PubMed Central  Article  Google Scholar 

  • 66.

    Albo-Puigserver, M. et al. Trophic ecology of range-expanding round sardinella and resident sympatric species in the NW Mediterranean. Mar. Ecol. Prog. Ser. 620, 139–154 (2019).

    ADS  CAS  Article  Google Scholar 

  • 67.

    Morote, E., Olivar, M. P., Villate, F. & Uriarte, I. A comparison of anchovy (Engraulis encrasicolus) and sardine (Sardina pilchardus) larvae feeding in the Northwest Mediterranean: influence of prey availability and ontogeny. ICES J. Mar. Sci. 67, 897–908 (2010).

    Article  Google Scholar 

  • 68.

    Robinson, M. L., Gomez-Raya, L., Rauw, W. M. & Peacock, M. M. Fulton’s body condition factor K correlates with survival time in a thermal challenge experiment in juvenile Lahontan cutthroat trout (Oncorhynchus clarki henshawi). J. Therm. Biol. 33, 363–368 (2008).

    Article  Google Scholar 

  • 69.

    Siokou-Frangou, I. et al. Plankton in the open Mediterranean Sea: a review. Biogeosciences 7, 1543–1586 (2010).

    ADS  Article  Google Scholar 

  • 70.

    Vila, M. & Masó, M. Phytoplankton functional groups and harmful algal species in anthropogenically impacted waters of the NW Mediterranean Sea. Sci. Mar. 69, 31–45 (2005).

    Article  Google Scholar 

  • 71.

    Percopo, I., Siano, R., Cerino, F., Sarno, D. & Zingone, A. Phytoplankton diversity during the spring bloom in the northwestern Mediterranean Sea. Bot. Mar. 54, 243–267 (2011).

    Article  Google Scholar 

  • 72.

    Devloo-Delva, F. et al. How does marker choice affect your diet analysis: comparing genetic markers and digestion levels for diet metabarcoding of tropical-reef piscivores. Mar. Freshw. Res. 70, 8–18 (2019).

    Article  Google Scholar 

  • 73.

    Forin-Wiart, M.-A. et al. Evaluating metabarcoding to analyse diet composition of species foraging in anthropogenic landscapes using Ion Torrent and Illumina sequencing. Sci. Rep. 8, 17091 (2018).

    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 74.

    Thuo, D. et al. Food from faeces: evaluating the efficacy of scat DNA metabarcoding in dietary analyses. PLoS ONE 14, e0225805 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 75.

    Coll, M., Pennino, M. G., Steenbeek, J., Sole, J. & Bellido, J. M. Predicting marine species distributions: complementarity of food-web and Bayesian hierarchical modelling approaches. Ecol. Modell. 405, 86–101 (2019).

    Article  Google Scholar 

  • 76.

    Feuilloley, G. et al. Concomitant changes in the environment and small pelagic fish community of the Gulf of Lions. Prog. Oceanogr. 186, 102375 (2020).

    Article  Google Scholar 

  • 77.

    Pennino, M. G. et al. Ingestion of microplastics and occurrence of parasite association in Mediterranean anchovy and sardine. Mar. Pollut. Bull. 158, 111399 (2020).

    CAS  PubMed  Article  Google Scholar 

  • 78.

    Compa, M., Ventero, A., Iglesias, M. & Deudero, S. Ingestion of microplastics and natural fibres in Sardina pilchardus (Walbaum, 1792) and Engraulis encrasicolus (Linnaeus, 1758) along the Spanish Mediterranean coast. Mar. Pollut. Bull. 128, 89–96 (2018).

    CAS  PubMed  Article  Google Scholar 

  • 79.

    Bertrand, J., Leonori, I., Dremière, P. Y. & Cosimi, G. The general specifications of the MEDITS surveys. Sci. Mar. 66, 9–17 (2002).

    Article  Google Scholar 

  • 80.

    Bertrand, J. A., De Sola, L. G., Papaconstantinou, C., Relini, G. & Souplet, A. The general specifications of the MEDITS surveys. Sci. Mar. 66, 9–17 (2002).

    Article  Google Scholar 

  • 81.

    Cole, M. et al. Isolation of microplastics in biota-rich seawater samples and marine organisms. Sci. Rep. 4, 4528 (2014).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 82.

    Hyslop, E. J. Stomach contents analysis-a review of methods and their application. J. Fish Biol. 17, 411–429 (1980).

    Article  Google Scholar 

  • 83.

    Bachiller, E., Skaret, G., Nøttestad, L. & Slotte, A. Feeding ecology of Northeast Atlantic mackerel, Norwegian spring-spawning herring and blue whiting in the Norwegian Sea. PLoS ONE 11, e0149238 (2016).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 84.

    Somarakis, S. et al. Daily egg production of anchovy in European waters. ICES J. Mar. Sci. 61, 944–958 (2004).

    Article  Google Scholar 

  • 85.

    Palomera, I., Tejeiro, B. & Alemany, F. Size at first maturity of the NW Mediterranean anchovy. (2003).

  • 86.

    Silva, A. et al. Temporal and geographic variability of sardine maturity at length in the northeastern Atlantic and the western Mediterranean. ICES J. Mar. Sci. 63, 663–676 (2006).

    Article  Google Scholar 

  • 87.

    Lawlor, L. R. Overlap, similarity, and competition coefficients. Ecology 61, 245–251 (1980).

    Article  Google Scholar 

  • 88.

    Barroeta, Z., Olivar, M. P. & Palomera, I. Energy density of zooplankton and fish larvae in the southern Catalan Sea (NW Mediterranean). J. Sea Res. 124, 1–9 (2017).

    ADS  Article  Google Scholar 

  • 89.

    Sabatés, A. Distribution pattern of larval fish populations in the Northwestern Mediterranean. Mar. Ecol. Prog. Ser. 59, 75–82 (1990).

    ADS  Article  Google Scholar 

  • 90.

    Wangensteen, O. S., Palacín, C., Guardiola, M. & Turon, X. DNA metabarcoding of littoral hard-bottom communities: high diversity and database gaps revealed by two molecular markers. PeerJ 6, e4705 (2018).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 91.

    Leray, M. et al. A new versatile primer set targeting a short fragment of the mitochondrial COI region for metabarcoding metazoan diversity: application for characterizing coral reef fish gut contents. Front. Zool. 10, 34 (2013).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 92.

    Vasselon, V., Rimet, F., Tapolczai, K. & Bouchez, A. Assessing ecological status with diatoms DNA metabarcoding: Scaling-up on a WFD monitoring network (Mayotte island, France). Ecol. Indic. 82, 1–12 (2017).

    CAS  Article  Google Scholar 

  • 93.

    Vierna, J., Doña, J., Vizcaíno, A., Serrano, D. & Jovani, R. PCR cycles above routine numbers do not compromise high-throughput DNA barcoding results. Genome 60, 868–873 (2017).

    CAS  PubMed  Article  Google Scholar 

  • 94.

    Magoc, T. & Salzberg, S. L. FLASH: fast length adjustment of short reads to improve genome assemblies. Bioinformatics 27, 2957–2963 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 95.

    Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMB net.journal 17, 10 (2011).

    Article  Google Scholar 

  • 96.

    Caporaso, J. G. et al. QIIME allows analysis of high-throughput community sequencing data. Nat. Methods 7, 335–336 (2010).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 97.

    Rognes, T., Flouri, T., Nichols, B., Quince, C. & Mahé, F. VSEARCH: a versatile open source tool for metagenomics. PeerJ 4, e2584 (2016).

    PubMed  PubMed Central  Article  Google Scholar 

  • 98.

    Mahé, F., Rognes, T., Quince, C., de Vargas, C. & Dunthorn, M. Swarm v2: highly-scalable and high-resolution amplicon clustering. PeerJ 3, e1420 (2015).

    PubMed  PubMed Central  Article  Google Scholar 

  • 99.

    Edgar, R. C., Haas, B. J., Clemente, J. C., Quince, C. & Knight, R. UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 27, 2194–2200 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 100.

    Edgar, R. C. Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26, 2460–2461 (2010).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 101.

    Wang, Q., Garrity, G. M., Tiedje, J. M. & Cole, J. R. Naive bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl. Environ. Microbiol. 73, 5261–5267 (2007).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 102.

    Bokulich, N. A. et al. Quality-filtering vastly improves diversity estimates from Illumina amplicon sequencing. Nat. Methods 10, 57–59 (2013).

    CAS  PubMed  Article  Google Scholar 

  • 103.

    Esling, P., Lejzerowicz, F. & Pawlowski, J. Accurate multiplexing and filtering for high-throughput amplicon-sequencing. Nucleic Acids Res. 43, 2513–2524 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 104.

    Illumina, Inc [internet]. Effects of index Misassignment on multiplexing and downstream analysis (2017). Available from: https://www.illumina.com/. Accessed October 2020.

  • 105.

    National Center for Biotechnology Information (NCBI) [internet]. Bethesda (MD): National Library of Medicine (US), National Center for Biotechnology Information (2018). Available from: https://www.ncbi.nlm.nih.gov/. Accessed August 2020.

  • 106.

    Coplen, T. B. Guidelines and recommended terms for expression of stable-isotope-ratio and gas-ratio measurement results. Rapid Commun. Mass Spectrom. 25, 2538–2560 (2011).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 107.

    Post, D. M. et al. Getting to the fat of the matter: models, methods and assumptions for dealing with lipids in stable isotope analyses. Oecologia 152, 179–189 (2007).

    ADS  PubMed  PubMed Central  Article  Google Scholar 

  • 108.

    Hastie, T. & Tibshirani, R. Generalized Additive Models. Stat. Sci. 1, 297–318 (1986).

    MathSciNet  MATH  Article  Google Scholar 

  • 109.

    Zuur, A. F., Ieno, E. N. & Elphick, C. S. A protocol for data exploration to avoid common statistical problems. Methods Ecol. Evol. 1, 3–14 (2010).

    Article  Google Scholar 

  • 110.

    Fox, J. & Weisberg, S. An R Companion to Applied Regression (Sage, Thousand Oaks, 2011).

    Google Scholar 

  • 111.

    Wood, S. N. Generalized additive models: an introduction with R. J. Stat. Softw. 16, 2 (2006).

    Google Scholar 

  • 112.

    R Core Team. R: A Language and Environment for Statistical Computing. (2019).

  • 113.

    Wickham, H. ggplot2: elegant graphics for data analysis. Springer (Springer, 2009).

  • 114.

    Gotelli, N. J., Hart, E. M. & Ellison, A. M. EcoSimR: Null model analysis for ecological data. (2015). doi:https://doi.org/10.5281/zenodo.16522

  • 115.

    Wood, S. N. Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models. J. R. Stat. Soc. Ser. B (Statistical Methodol).73, 3–36 (2011).

  • 116.

    Wei, T. et al. Package ‘corrplot’. Am. Stat. 56, 316–324 (2017).

    Google Scholar 

  • 117.

    QGIS Development Team. QGIS (Version 3.2.1-Bonn). (2018).

  • 118.

    Hsieh, T. C., Ma, K. H., Chao, A. & McInerny, G. iNEXT: an R package for rarefaction and extrapolation of species diversity (ill numbers). Methods Ecol. Evol. 7(12), 1451–1456 (2016).

    Article  Google Scholar 


  • Source: Ecology - nature.com

    A controllable membrane to pull carbon dioxide out of exhaust streams

    More than a meal