in

A year in the life of a North Atlantic seabird: behavioural and energetic adjustments during the annual cycle

  • 1.

    Marra, P. P., Cohen, E. B., Loss, S. R., Rutter, J. E. & Tonra, C. M. A call for full annual cycle research in animal ecology. Biol. Lett. 11, 20150552 (2015).

  • 2.

    Buehler, D. M. & Piersma, T. Travelling on a budget: Predictions and ecological evidence for bottlenecks in the annual cycle of long-distance migrants. Philos. Trans. R. Soc. B Biol. Sci. 363, 247–266 (2008).

    • Article
    • Google Scholar
  • 3.

    Karasov, W. H. Energetics, physiology and vertebrate ecology. Trends Ecol. Evol. 1, 101–104 (1986).

  • 4.

    Bryant, D. M. Energy expenditure in wild birds. Proc. Nutr. Soc. 56, 1025–1039 (1997).

  • 5.

    Thometz, N. M., Kendall, T. L., Richter, B. P. & Williams, T. M. The high cost of reproduction in sea otters necessitates unique physiological adaptations. J. Exp. Biol. 219, 2260–2264 (2016).

  • 6.

    Drent, R. & Daan, S. The prudent parent: energetic adjustments in avian breeding. Ardea 68, 225–252 (1980).

    • Google Scholar
  • 7.

    McBride, R. S. et al. Energy acquisition and allocation to egg production in relation to fish reproductive strategies. Fish Fish. 16, 23–57 (2015).

    • Article
    • Google Scholar
  • 8.

    Boyd, I. L. Foraging and provisioning in Antarctic fur seals: interannual variability in time-energy budgets. Behav. Ecol. 10, 198–208 (1999).

    • Article
    • Google Scholar
  • 9.

    Dingle, H. & Drake, V. A. What Is Migration? Bioscience 57, 113–121 (2007).

    • Article
    • Google Scholar
  • 10.

    Lennox, R. J. et al. Conservation physiology of animal migration. Conserv. Physiol. 4, 1–15 (2016).

    • Article
    • Google Scholar
  • 11.

    Braithwaite, J. E., Meeuwig, J. J. & Hipsey, M. R. Optimal migration energetics of humpback whales and the implications of disturbance. Conserv. Physiol. 3, cov001 (2015).

  • 12.

    Sims, D. W., Southall, E. J., Tarling, G. A. & Metcalfe, J. D. Habitat-specific normal and reverse diel vertical migration in the plankton-feeding basking shark. J. Anim. Ecol. 74, 755–761 (2005).

    • Article
    • Google Scholar
  • 13.

    Dunn, R. E., Wanless, S., Green, J. A., Harris, M. P. & Daunt, F. Effects of body size, sex, parental care and moult strategies on auk diving behaviour outside the breeding season. J. Avian Biol. 50, 1–14 (2019).

    • Article
    • Google Scholar
  • 14.

    Elliott, K. H. et al. High flight costs, but low dive costs, in auks support the biomechanical hypothesis for flightlessness in penguins. Proc. Natl. Acad. Sci. USA 110, 9380–4 (2013).

  • 15.

    Davoren, G. K. & Montevecchi, W. A. Consequences of foraging trip duration on provisioning behaviour and fledging condition of common murres Uria aalge. J. Avian Biol. 34, 44–53 (2003).

    • Article
    • Google Scholar
  • 16.

    Cairns, D. K., Montevecchi, W. A., Birt-Friesen, V. L. & Macko, S. A. Energy Expenditures, Activity Budgets, and Prey Harvest of Breeding Common Murres. Stud. Avian Biol. 14, 84–92 (1990).

    • Google Scholar
  • 17.

    Weathers, W. & Sullivan, K. A. Juvenile foraging proficiency, parental effort, and avian reproductive success. Ecol. Monogr. 59, 223–246 (1989).

    • Article
    • Google Scholar
  • 18.

    Harris, M. P. et al. Geolocators reveal an unsuspected moulting area for Isle of May Common Guillemots Uria aalge. Bird Study 62, 267–270 (2015).

    • Article
    • Google Scholar
  • 19.

    Merkel, B. et al. Earlier colony arrival but no trend in hatching timing in two congeneric seabirds (Uria spp.) across the North Atlantic. Biol. Lett. 15, 20190634 (2019).

  • 20.

    Fort, J. et al. Energetic consequences of contrasting winter migratory strategies in a sympatric Arctic seabird duet. J. Avian Biol. 44, 255–262 (2013).

    • Article
    • Google Scholar
  • 21.

    Burke, C. M. & Montevecchi, W. A. Taking the bite out of winter: Common Murres (Uria aalge) push their dive limits to surmount energy constraints. Front. Mar. Sci. 5, 63 (2018).

    • Article
    • Google Scholar
  • 22.

    Newell, M. A. et al. Isle of May seabird studies in 2006. JNCC 475b (2013).

  • 23.

    Gabrielsen, G. W. Energy expenditure of breeding Common Murres. Occas. Pap. Can. Wildl. Serv. 49–58 (1996).

  • 24.

    Boyles, J. G., Seebacher, F., Smit, B. & McKechnie, A. E. Adaptive thermoregulation in endotherms may alter responses to climate change. Integrative and Comparative Biology 51, 676–690 (2011).

  • 25.

    Croll, D. A. & McLaren, E. Diving metabolism and thermoregulation in common and thick-billed murres. J. Comp. Physiol. B 163, 160–166 (1993).

  • 26.

    Camphuysen, K. C. J. & Webb, A. Multi-species feeding associations in north sea seabirds: Jointly exploiting a patchy environment. Ardea 87, 177–198 (1999).

    • Google Scholar
  • 27.

    Camphuysen, K. C. J. Post-fledging dispersal of Common Guillemots Uria aalge guarding chicks in the North Sea: the effect of predator presence and prey availability at sea. Ardea 90, 103–119 (2002).

    • Google Scholar
  • 28.

    Guillemette, M., Pelletier, D., Grandbois, J. M. & Butler, P. J. Flightlessness and the energetic cost of wing molt in a large sea duck. Ecology 88, 2936–2945 (2007).

  • 29.

    Harris, M. P., Wanless, S. & Webb, A. Changes in body mass of common guillemots Uria aalge in southeast scotland throughout the year: Implications for the release of cleaned birds. Ringing Migr. 20, 134–142 (2000).

    • Article
    • Google Scholar
  • 30.

    Lindström, Å., Visser, G. H. & Daan, S. The Energetic Cost of Feather Synthesis Is Proportional to Basal Metabolic Rate. Physiol. Zool. 66, 490–510 (1993).

    • Article
    • Google Scholar
  • 31.

    Bridge, E. S. Influences of morphology and behavior on wing-molt strategies in seabirds. Mar. Ornithol. 34, 7–19 (2006).

    • Google Scholar
  • 32.

    De La Hera, I., Pérez-Tris, J. & Tellería, J. L. Relationships among timing of moult, moult duration and feather mass in long-distance migratory passerines. J. Avian Biol. 41, 609–614 (2010).

    • Article
    • Google Scholar
  • 33.

    Harris, M. P., Wanless, S., Barton, T. R. & Elston, D. A. Nest site characteristics, duration of use and breeding success in the Guillemot Uria aalge. Ibis (Lond. 1859). 139, 468–476 (1997).

    • Article
    • Google Scholar
  • 34.

    Green, J. A., Boyd, I. L., Woakes, A. J., Green, C. J. & Butler, P. J. Do seasonal changes in metabolic rate facilitate changes in diving behaviour? J. Exp. Biol. 208, 2581–2593 (2005).

  • 35.

    Dunn, R. E., White, C. R. & Green, J. A. A model to estimate seabird field metabolic rates. Biol. Lett. 14, 20180190 (2018).

  • 36.

    Shaffer, S. A., Costa, D. P. & Weimerskirch, H. Behavioural factors affecting foraging effort of breeding wandering albatrosses. J. Anim. Ecol. 70, 864–874 (2001).

    • Article
    • Google Scholar
  • 37.

    Shaffer, S. A., Costa, D. P. & Weimerskirch, H. Field metabolic rates of black-browed albatrosses Thalassarche melanophrys during the incubation stage. J. Avian Biol. 35, 551–558 (2004).

    • Article
    • Google Scholar
  • 38.

    Camphuysen, K. C. J. Diurnal Activity Patterns and Nocturnal Group Formation of Wintering Common Murres in the Central North Sea. Colon. Waterbirds 21, 406 (1998).

    • Article
    • Google Scholar
  • 39.

    Birkhead, T. R. & del Nevo, A. J. Egg formation and the pre‐laying period of the Common guillemot Uria aalge. J. Zool. 211, 83–88 (1987).

    • Article
    • Google Scholar
  • 40.

    Ancel, A., Gilbert, C., Poulin, N., Beaulieu, M. & Thierry, B. New insights into the huddling dynamics of emperor penguins. Anim. Behav. 110, 91–98 (2015).

    • Article
    • Google Scholar
  • 41.

    Finney, S. K., Wanless, S. & Harris, M. P. The effect of weather conditions on the feeding behaviour of a diving bird, the Common Guillemot Uria aalge. J. Avian Biol. 30, 23–30 (1999).

    • Article
    • Google Scholar
  • 42.

    Fort, J., Porter, W. P. & Grémillet, D. Thermodynamic modelling predicts energetic bottleneck for seabirds wintering in the northwest Atlantic. J. Exp. Biol. 212, 2483–90 (2009).

  • 43.

    Elliott, K. H. et al. Age-related variation in energy expenditure in a long-lived bird within the envelope of an energy ceiling. J. Anim. Ecol. 83, 136–146 (2014).

  • 44.

    Blake, B. F., Dixon, T. J., Jones, P. H. & Tasker, M. L. Seasonal changes in the feeding ecology of guillemots (Uria aalge) off north and east Scotland. Estuar. Coast. Shelf Sci. 20, 559–568 (1985).

  • 45.

    Lorentsen, S. H. & Anker-Nilssen, T. Diet of Common Murres wintering in the Northern Skagerrak during 1988-1990: Variation with sex, age and season. Waterbirds 22, 80–89 (1999).

    • Article
    • Google Scholar
  • 46.

    Hedd, A. et al. Seasonal shift in the foraging niche of Atlantic puffins Fratercula arctica revealed by stable isotope (δ15N and δ13C) analyses. Aquat. Biol. 9, 13–22 (2010).

    • Google Scholar
  • 47.

    Newell, M., Wanless, S., Harris, M. P. & Daunt, F. Effects of an extreme weather event on seabird breeding success at a North Sea colony. Mar. Ecol. Prog. Ser. 532, 257–268 (2015).

  • 48.

    Griffiths, R., Daan, S. & Dijkstra, C. Sex identification in birds using two CHD genes. Proc. R. Soc. B Biol. Sci. 263, 1251–1256 (1996).

  • 49.

    Harris, M. P. & Wanless, S. Moult and autumn colony attendance of auks. Br. Birds 83, 55–66 (1990).

    • Google Scholar
  • 50.

    Ekstrom, P. A. An advance in geolocation by light. Mem. Natl. Inst. Polar Res. Spec. issue 58, 210–226 (2004).

    • Google Scholar
  • 51.

    Merkel, B. probGLS: probabilistic algorithm for geolocation data. R package version 0.9.5. (2018).

  • 52.

    Reynolds, R. W. et al. Daily high-resolution-blended analyses for sea surface temperature. J. Clim. 20, 5473–5496 (2007).

  • 53.

    Physical Sciences Division, N. NOAA High Resolution SST data. (2019).

  • 54.

    Merkel, B. et al. A probabilistic algorithm to process geolocation data. Mov. Ecol. 4, 26 (2016).

  • 55.

    Pennycuick, C. J. Flight of auks (Alcidae) and other northern seabirds compared with southern procellariiformes: ornithodolite observations. Deep Sea Res. Part B. Oceanogr. Lit. Rev. 128, 335–347 (1987).

    • Google Scholar
  • 56.

    Calenge, C. The package adehabitat for the R software: a tool for the analysis of space and habitat use by animals. Ecol. Model. 197, 516–519 (2006).

    • Article
    • Google Scholar
  • 57.

    Met Office. Met Office Integrated Data Archive System (MIDAS) Land and Marine Surface Stations Data (1853-current). (2012).

  • 58.

    Bivand, R. & Lewin-Koh, N. maptools: Tools for reading and handling spatial objects. (2018).

  • 59.

    Luque, S. P. Diving Behaviour Analysis in R. R News 7, 8–14 (2007).

    • Google Scholar
  • 60.

    Linnebjerg, J. F. et al. Inferring seabird activity budgets from leg-mounted time-depth recorders. J. Ornithol. 155, 301–306 (2014).

    • Article
    • Google Scholar
  • 61.

    Elliott, K. H. & Gaston, A. J. Dive behaviour and daily energy expenditure in Thick-billed Murres Uria lomvia after leaving the breeding colony. Mar. Ornithol. 42, 183–189 (2014).

    • Google Scholar
  • 62.

    Robertson, G. J. et al. Miniaturized data loggers and computer programming improve seabird risk and damage assessments for marine oil spills in Atlantic Canada. J. Ocean Technol. 7, 42–58 (2012).

    • Google Scholar
  • 63.

    Harris, M. P. & Wanless, S. Fall Colony Attendance and Breeding Success in the Common Murre. Condor 91, 139–146 (1989).

    • Article
    • Google Scholar
  • 64.

    Wanless, S. & Harris, M. P. Time spent at the colony by male and female guillemots Uria aalge and razorbills Alca torda. Bird Study 33, 168–176 (1986).

    • Article
    • Google Scholar
  • 65.

    Wood, S. & Scheipl, F. gamm4: Generalized Additive Mixed Models using ‘mgcv’ and ‘lme4’. (2017).

  • 66.

    Gutowsky, S. E. et al. Daily activity budgets reveal a quasi-flightless stage during non-breeding in Hawaiian albatrosses. Mov. Ecol. 2, 23 (2014).

  • 67.

    Ramos, R., Llabrés, V., Monclús, L., López-Béjar, M. & González-Solís, J. Costs of breeding are rapidly buffered and do not affect migratory behavior in a long-lived bird species. Ecology 99, 2010–2024 (2018).

  • 68.

    Zuur, A. F., Saveliev, A. A. & Ieno, E. N. A Beginner’s Guide to Generalised Additive Mixed Models with R. (Highland Statistics Ltd., 2014).

  • 69.

    R Core Team. R: A language and environment for statistical computing. (2018).

  • 70.

    Dunn, R. E., Daunt, F., Wanless, S., Harris, M. P. & Green, J. A. Activity data from common guillemots from the Isle of May during the 2005–2006 annual cycle. NERC Environmental Information Data Centre. https://doi.org/10.5285/bd24da1f-0761-4564-8dd8-dfd71a559a71. (2020).

  • 71.

    Wickham, H. ggplot2: Elegant Graphics for Data Analysis. (Springer-Verlag, 2016).

  • 72.

    Dunnington, D. ggspatial: Spatial Data Framework for ggplot2. R Packag. version 1.0.3. (2018).

  • 73.

    Auguie, B. gridExtra: Miscellaneous Functions for ‘Grid’ Graphics. R Packag. version 2.3. (2017).

  • 74.

    South, A. rworldmap: A New R package for Mapping Global Data. The R Journal. 3/1, 35–43 (2011).

    • Article
    • Google Scholar

  • Source: Ecology - nature.com

    A genetic toolbox for marine protists

    Uncovering spatial and ecological variability in gap size frequency distributions in the Canadian boreal forest